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ABSTRACT

Objective: To determine whether white matter hyperintensity (WMH) progression rate is a better
predictor of cognitive impairment risk than baseline WMH volume in healthy elderly individuals.

Method: Ninety-eight cognitively intact elderly subjects were followed in the Oregon Brain Aging
Study. Forty-nine had at least 3 brain MRIs and annual cognitive and neurologic assessments until
diagnosed with persistent cognitive impairment (PCI). Brain, ventricular CSF (vCSF), intracranial
volume (ICV), hippocampus, total WMH, periventricular (PV) WMH, and subcortical WMH volumes
were measured. Cox proportional hazards survival analyses were used to assess cognitive impair-
ment risk.

Results: After adjusting for age, apolipoprotein E4 status, incident hypertension, ICV, entry Mini-
Mental State Examination, baseline hippocampus, and both baseline vCSF volume and rate of
vCSF volume change, increased progression of total WMH volume (hazard ratio [HR] 1.84, 95%
confidence interval [CI] 1.3–2.7, p � 0.0007) and PV WMH volume (HR 1.94, 95% CI 1.3–3.1,
p � 0.001) conferred higher risk of PCI, whereas baseline WMH volumes did not. Every 1 mL/y
increase in PV WMH volume was associated with a 94% increased risk of PCI.

Conclusion: Progression of total and periventricular (PV) white matter hyperintensity (WMH)
volumes are better predictors of persistent cognitive impairment (PCI) than baseline WMH
burden. Greater PV WMH burden progression is associated with the development of PCI, a
potential precursor to Alzheimer or vascular dementia. Identification of factors that decrease
WMH accumulation over time is needed to maintain cognitive health in our growing elderly
population. Neurology® 2009;73:120 –125

GLOSSARY
AD � Alzheimer disease; CDR � Dementia Rating Scale; CI � confidence interval; HR � hazard ratio; HS � hippocampal
sclerosis; HTN � hypertension; ICV � intracranial volume; MCI � mild cognitive impairment; MMSE � Mini-Mental State
Examination; NA � not applicable; NS � not significant; PCI � persistent cognitive impairment; PV � periventricular; SES �
socioeconomic status; TE � echo time; TR � repetition time; vCSF � ventricular CSF; vol � volume; WMH � white matter
hyperintensity.

White matter changes seen as white matter hyperintensities (WMHs) on T2-weighted MRI are
commonly observed on brain imaging of elderly individuals1 and are associated with cognitive
changes2-5 and conversion to mild cognitive impairment (MCI).6 It has been shown that such
white matter change is likely to progress over time,7-9 with increased rate of progression in those
with greater baseline WMH burden.7,8,10 A few longitudinal volumetric MRI studies have
shown detrimental effects of total WMH progression on verbal IQ, memory, and executive
function.11-13 One previous study showed more specific regional consequences of periventricu-
lar (PV) white matter progression on worsening executive function testing,14 whereas another
volumetric study showed that progression of PV WMH is associated with onset of dementia in
depressed elderly subjects.15 Most previous longitudinal studies calculated rates of WMH
change from scans obtained from all subjects regardless of whether they had converted to
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cognitive impairment, thus increasing the
chance of introducing confounding effects on
CNS structural changes from non–WMH-
related neurodegenerative disease (i.e., hip-
pocampal or brain volume decline known to
be associated with Alzheimer disease [AD]).

One recent study has shown that increased
total baseline WMH burden is associated
with onset of MCI.6 Few, if any, however,
have studied the effects of WMH progression
on the onset of mild cognitive symptoms,
which in some cases precedes conversion to
dementia, particularly in those with greater
baseline and PV WMH burden.16 The objec-
tive of this study was to compare the regional
effects of baseline WMH burden with rates of
WMH volume change over time in cogni-
tively intact elderly individuals on the risk of
eventual cognitive impairment.

METHODS Subjects. Ninety-eight subjects aged 65 years or
older underwent baseline brain MRI, ApoE allele testing, and
detailed annual cognitive and neurologic assessments as part of
an ongoing longitudinal study of brain aging and cognition (Or-
egon Brain Aging Study).17,18 Entry inclusion criteria included a
score of 24 or greater on the Mini-Mental State Examination
(MMSE)19 and a 0 on the Clinical Dementia Rating Scale
(CDR).20 At entry, subjects were community-dwelling, function-
ally independent adults, free of comorbid conditions commonly
associated with cognitive decline (e.g., stroke, heart disease, can-
cer, diabetes, neurologic disorders), and were not taking medica-
tions that affect cognition. Volunteers were solicited from
retirement homes, senior citizens’ organizations, and public rela-
tion activities. Those who showed evidence of questionable de-
mentia by CDR �0, had an MMSE score �24, or who had
sought or planned to seek medical attention for memory prob-
lems were not enrolled. Each CDR was based on interviews with
the participant and someone familiar with the participant who
served as a collateral source, as well as examination by a neurolo-
gist. Elders who showed evidence of clinical depression were not
enrolled. Participants who developed health problems were re-
tained in the project. All subjects had total WMH volumes ana-
lyzed. In addition, WMH volumes were regionally defined as
being subcortical or periventricular. Forty-nine subjects had 3 or
more MRIs analyzed for total, PV, and subcortical WMH vol-
umes corresponding with a cognitive and motor evaluation be-
fore conversion to persistent cognitive impairment (PCI). As
defined previously, subjects were considered to have PCI if they
had 2 consecutive semiannual CDR scores of 0.5 or greater and
did not convert back to normal cognition (defined as having 2 or
more consecutive CDR scores of 0 during the duration of their
follow-up).21 For subjects who converted to PCI, neurologic and
MRI data were used from the last visit before their conversion.
All subjects signed written informed consent, and approval from
the Institutional Review Board of Oregon Health & Science
University was obtained. Information regarding subjects’ cardiac
risk factors at enrollment was obtained from a detailed medical
history form. Changes in subjects’ general medical conditions
were obtained yearly through patient report, and from 1996 on,

from a modified cumulative illness rating scale22 administered

yearly. A subset of subjects agreed to brain autopsy at the time of

their death. Neuropathologic diagnosis of AD and vascular de-

mentia followed published criteria.23-26

MRI acquisition. The general procedures have been described

previously.27 Briefly, MRI scans were performed with a 1.5-T

magnet. The protocol consists of slice thickness of 4 mm (no

gap), 24-cm field of view with a 256 � 256 matrix (0.86 �

0.86-mm pixel size), and 0.5 repetitions per sequence. The brain

was visualized in 2 planes using the following pulse sequences: 1)

T1-weighted sagittal images centered in the midsagittal plane

with the pituitary profile (including the infundibulum) and cer-

ebellar vermis clearly delineated: repetition time [TR] � 600

msec, echo time [TE] � 20 msec-images; 2) multiecho sequence

T2-weighted (TR � 2,800 msec, TE � 80 msec) and proton

density (TR � 2,800 msec, TE � 32 msec) coronal images

perpendicular to the sagittal plane. The coronal plane is deter-

mined by a line drawn from the lowest point of the splenium to

the lowest point of the genu of the corpus callosum on the mid-

sagittal image.

Image analysis. Image analysts evaluated each scan indepen-

dently and were blind to subjects’ cognitive or neurologic test-

ing, demographic characteristics, and results from previous

imaging. The image analysis software REGION is used to quan-

titatively assess regional brain volumes of interest.27,28 Briefly, re-

cursive regression analysis of bifeature space based on relative

tissue intensities was used to separate tissue types on each coronal

image. Pixel areas were summed for all slices and converted to

volumetric measures by multiplying by the slice thickness for

each of the following regions of interest: PV WMH, subcortical

WMH, total WMH (PV plus subcortical WMH), brain volume,

ventricular cerebral spinal fluid (vCSF), and hippocampal vol-

umes. Intracranial volume was determined by automatically re-

gressing for brain tissue, CSF, and WMH collectively against

bone, creating a boundary along the inner table of the skull.

Additional boundaries were manually traced along the tentorium

cerebelli and the superior border of the superior colliculus, the

pons, and the fourth ventricle. The pituitary, vessels in the sphe-

noidal area, and any sinuses that may have been included by the

automatic regression were also manually excluded. Hippocampal

bodies were determined by manually outlining the structures

with a cursor directly on the computer display, as previously

described.28 Rates of change of outcomes were determined by

calculating the slope obtained from the regression line created by

all available data points from scans performed before the onset of

conversion. The intraclass correlation coefficient as a measure of

reliability of volume determination was �0.95 for all regions

except for WMH volume, which was 0.85.

Quantification of WMH using REGION. Using

REGION�s sampling tools, the analyst selects representative, un-

ambiguous pixels of WMH (as well as brain tissue, fluid, and

bone) from the multiecho sequence display. A regression model

including the proton density and T2 intensities and location of

each pixel differentiates tissue types. WMH is distinguished

from brain tissue and fluid based on higher signal on both the

proton density and T2 images. Areas of high signal that immedi-

ately abut ventricular fluid as visualized on the coronal image are

considered periventricular. WMH bounded by brain tissue on all

sides is considered subcortical. Areas of infarct were determined

separately from WMH volumes based on whether they had clean

or sharp edges and were relatively dark on proton density images.
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Statistical analysis. Longitudinal clinical data and coded MRI
data were exported from a dedicated database into the statistical
program JMP (SAS Institute, Cary, NC). MRI regions and clinical
outcomes of interest were examined as continuous variables.
Change in MRI outcome measures over time was determined from
the calculated slope of a regression line created from 3 or more time
points for each subject. T tests for continuous variables and Fisher
exact tests for categorical variables were used to determine differ-
ences in subject and MRI characteristics between those who con-
verted to PCI and those who did not. Survival analyses (Cox
proportional hazards) were used to determine associations between

baseline brain volumes and rates of brain volume change over time
with risk of PCI. Analyses were adjusted for age, intracranial vol-
ume, baseline MMSE, baseline hippocampal volume, and ApoE-4
status. When rate of volume change was included as a covariate, we
also controlled for the baseline volume of that variable. Propor-
tionality assumptions were examined through visual inspec-
tion of survival curves (�ln(�ln S(t))) as well as statistical
assessments for all variables.29

RESULTS Ninety-eight participants were followed up
to 15.8 years (average 9.5 years), during which time 53
subjects developed PCI. Two percent of subjects had a
diagnosis of hypertension (HTN) at entry into the
study. Over the total duration of follow-up, 32% had
an HTN diagnosis. Subjects who eventually converted
to PCI were more likely to have at least 1 ApoE-4 allele
present (�2 � 6.8, p � 0.009). Forty-nine subjects had
3 or more scans from which rates of volumetric change
was calculated. These subjects did not differ in entry
age, sex, socioeconomic status, education, ApoE-4 sta-
tus, cerebrovascular risk factor status (presence of HTN,
diabetes, TIA, stroke, or smoking history), or baseline
MMSE from those without 3 or more scans. Baseline
subject and MRI characteristics for subjects with longi-
tudinal data are presented in table 1. Of the 49 subjects
with multiple scans, 24 developed PCI. The average
time between first and last precognitive impairment
scan was 5.6 years. Longitudinal MRI characteristics are
presented in table 2. Subjects who converted to PCI had
greater progression of total and PV WMH burden over
time.

Baseline subject characteristics and risk of PCI. Sub-
ject characteristics were individually entered into a
Cox proportional hazards survival regression ad-
justed for age. Sex, education, socioeconomic status,
a history of HTN, stroke or TIA, and smoking were
not associated with cognitive decline. The absence of
any ApoE-4 allele (hazard ratio [HR] 0.61, 95% con-
fidence interval [CI] 0.45–0.84, p � 0.003) con-
ferred a lower risk of PCI.

Baseline MRI volumes and risk of PCI (n � 98). Base-
line MRI volumes (cubic centimeters) were individu-
ally entered into a Cox proportional hazards survival
regression adjusted for age, incident HTN, ICV,
MMSE at entry, and ApoE-4 status. Because a larger
baseline hippocampal volume conferred a lower risk
of cognitive impairment (HR 0.11, 95% CI 0.02–
0.73, p � 0.02), all other analyses were also adjusted
for baseline hippocampal volume. Greater baseline
PV WMH (HR 1.06, 95% CI 1.01–1.10, p � 0.02)
and total WMH (HR 1.04, 95% CI 1.00–1.07, p �

0.03), and vCSF (HR 1.02, 95% CI 1.00–1.04, p �

0.04) conferred a higher risk of cognitive impair-
ment. Brain volume at baseline was not associated
with cognitive decline. After adjusting for baseline

Table 1 Baseline subject and MRI characteristics

All
(n � 49)

Cognitively
intact
(n � 25)

Became
cognitively
impaired (n � 24) p Value

Age at entry, y 84.1 (6.2) 83.1 (7.5) 85.0 (4.5) 0.30

Duration of follow-up, y 10.7 (3.2) 10.0 (3.7) 11.5 (2.6) 0.11

MMSE at entry 27.9 (1.8) 28.0 (1.8) 27.8 (1.8) 0.62

ApoE 4� 10 2 8 0.04

% Female 53 48 58 0.57

Education, y 14.5 (2.7) 14.4 (2.7) 14.5 (2.7) 0.90

SES at entry 46.7 (12.7) 45.6 (10.1) 47.8 (15.1) 0.55

% Hypertension at entry 0 0 0 NA

% Diabetes at entry 0 0 0 NA

% Stroke or TIA at entry 0 0 0 NA

% Smoking history 16 16 16.7 1.00

Baseline ICV, mL 1,160.4 (129.8) 1,164.9 (122.6) 1,155.7 (138.6) 0.81

Baseline brain vol, mL 906.0 (97.6) 918.9 (100.1) 892.6 (95.2) 0.35

Baseline vCSF vol, mL 38.5 (15.4) 36.5 (14.6) 40.6 (16.2) 0.36

Baseline hippocampal
vol, mL

1.3 (0.2) 1.3 (0.2) 1.3 (0.2) 0.93

Baseline total WMH vol, mL 7.5 (7.2) 5.6 (5.3) 9.6 (8.4) 0.05

Baseline PV WMH vol 6.3 (5.6) 5.1 (4.7) 7.5 (6.3) 0.15

Baseline subcortical WMH
vol, mL

1.3 (2.0) 0.5 (0.7) 2.1 (2.5) 0.003

Data are mean (SD).
MMSE � Mini-Mental State Examination; SES � socioeconomic status (Hollingshead,
1975)41; NA � not applicable; ICV � intracranial volume; vol � volume; vCSF � ventricular
CSF; WMH � white matter hyperintensity; PV � periventricular.

Table 2 Rates of MRI volume change

Total
(n � 49)

Cognitively
intact
(n � 25)

Became
cognitively
impaired (n � 24) p Value

Time between first and last
precognitive impairment scan

5.6 (3.4) 6.3 (3.4) 4.9 (3.2) 0.13

Brain volume slope, mL/y �3.9 (7.1) �3.9 (6.5) �4.0 (7.8) 0.97

vCSF volume slope, mL/y 1.6 (1.5) 1.5 (1.5) 1.7 (1.5) 0.61

Hippocampal slope, mL/y �0.02 (0.04) �0.02 (0.03) �0.02 (0.05) 0.92

Total WMH slope, mL/y 1.6 (1.9) 0.8 (1.1) 2.4 (2.2) 0.004

PV WMH slope, mL/y 1.3 (1.6) 0.7 (1.1) 2.0 (1.9) 0.003

Subcortical WMH slope, mL/y 0.2 (0.4) 0.2 (0.4) 0.3 (0.4) 0.32

Data are mean (SD).
vCSF � ventricular CSF; WMH � white matter hyperintensity; PV � periventricular.
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vCSF volume, higher PV WMH (HR 1.04, 95% CI
1.00–1.09, p � 0.078) remained a relatively weak
predictor of PCI, whereas total WMH volume was
no longer significant.

Rates of MRI volume change and risk of PCI (n � 49).
Rates of MRI volume change were individually entered
into a Cox proportional hazards survival regression ad-
justed for age, incident HTN, ICV, MMSE at entry,
baseline hippocampal and vCSF volume, ApoE-4 sta-
tus, and baseline MRI volume for each region of inter-
est. Because vCSF volume increase over time conferred
a higher risk of PCI (HR 1.69, 95% CI 1.10–2.68, p �
0.02), all other analyses were also adjusted for vCSF
slope. Greater rates of total WMH and PV WMH in-
crease were associated with a higher risk of cognitive
impairment (table 3). No relationship was observed be-
tween brain volume change or subcortical WMH vol-
ume change and cognitive decline.

Brain pathology. Of the 53 converters, 42 died dur-
ing the follow-up period. Brain autopsy evaluations
were available for 71% (30/42) of those subjects.
There was no difference in age, sex, socioeconomic
status, ApoE 4 status, baseline MMSE, or duration
of follow-up between those with and without brain
autopsy. Of those with pathology available, 70%
(21/30) had a pathologic diagnosis of AD. Fifteen of
these 21 AD subjects also had evidence of vascular
disease, 1 had hippocampal sclerosis (HS), 1 had
concurrent Lewy body disease, and 3 had a mixed
AD/vascular dementia. Thirteen percent (4/30) had
pathology consistent with vascular dementia, with 1
also having HS. Seven percent (2/30) had mixed pa-
thology of HS, some AD pathology, and vascular dis-

ease, and 10 percent (3/30) had mild microvascular
ischemic injury with moderate arteriolosclerosis.

DISCUSSION Results from this study show that
greater total and PV WMH burden predicts PCI in
healthy elderly people. In addition, this is one of the
first studies to demonstrate that progression of total
and PV WMH volumes are more robust predictors
of cognitive impairment than baseline WMH bur-
den. In those with brain autopsy available, AD pa-
thology was the most common diagnosis. However,
evidence of cerebrovascular disease was seen in al-
most all cases. The high prevalence of vascular disease
among other types of pathology has been reported by
others.30-32 Because it is thought that AD pathology
may precede the onset of cognitive symptoms by
years,33 it is possible that total and PV WMH pro-
gression is an early imaging manifestation of neuro-
nal degeneration in those who have underlying AD
pathology and are destined to develop the disease.
Alternatively, the effects of cerebrovascular disease
may promote A� aggregation or plaque formation
and cognitive decline in early or mild AD, as has
been suggested by others.34-37 In this study, subcorti-
cal WMH progression was not associated with PCI.
The total amount of subcortical WMH volume was
small (�0.3% of brain), however, and likely reflec-
tive of the healthy nature of this cohort. It is possible
that other subject populations with more cerebrovas-
cular risk factors would have greater total subcortical
WMH progression with subsequently increased im-
pact on cognitive health. Alternatively, there may be
a regional significance of PV WMH progression in

Table 3 Proportional hazards regression model of persistent cognitive impairment (n � 49)

Model 1: Total WMH progression Model 2: PV WMH progression

HR 95% CI p Value HR 95% CI p Value

Age at entry 1.2 1.0–1.4 0.01 1.22 1.1–1.4 0.007

MMSE at entry 0.89 0.7–1.2 NS 0.82 0.6–1.1 NS

Incipient HTN (0) 1.44 0.8–2.7 NS 1.53 0.9–2.9 NS

ApoE 4 status (0) 0.54 0.3–1.0 0.05 0.64 0.3–1.2 NS

Baseline ICV, mL 1.0 1.0–1.0 NS 1.0 1.0–1.0 NS

Baseline hippocampal vol, mL 0.16 0.008–2.8 NS 0.24 0.01–4.1 NS

Baseline vCSF 0.97 0.9–1.0 NS 0.98 0.9–1.02 NS

Baseline total WMH vol, mL 0.94 0.8–1.1 NS

Baseline PV WMH vol, mL 0.92 0.8–1.04 NS

Total WMH slope, mL/y 1.84 1.3–2.7 0.0007

PV WMH slope, mL/y 1.94 1.3–3.1 0.001

vCSF slope, mL/y 1.79 1.2–2.8 0.007 1.80 1.2–2.8 0.006

WMH � white matter hyperintensity; PV � periventricular; HR � hazard ratio; CI � confidence interval; MMSE � Mini-
Mental State Examination; NS � not significant; HTN � hypertension; ICV � intracranial volume; vol � volume; vCSF �

ventricular CSF.
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conferring greater cerebrovascular injury or in being
a specific indicator of neuronal vulnerability when
compared with progression of subcortical lesions.

Limitations of the study include generalizing results
to other populations, given that our subjects had few
cerebrovascular risk factors at entry, and—perhaps re-
lated to this—the small volume of subcortical WMH.
On the other hand, 48% had acquired at least 1 vascular
risk factor (HTN, diabetes, stroke, or TIA) by the mean
follow-up period of the cohort. This suggests that if vas-
cular risk factors are important for subcortical WMH
development, their effect results from sustained risk fac-
tor exposure for many years. A strength of this study is
use of the designation of persistent cognitive decline as
an endpoint which helped ensure that individuals had
enduring meaningful change. We chose to use the term
PCI rather than other definitions of mild cognitive de-
cline (e.g., cognitive impairment nondemented, vascu-
lar cognitive impairment, or various forms of MCI) to
capture the full spectrum of early and mild cognitive
symptoms before the onset of dementia in those show-
ing a temporal pattern of decline likely to be reflective of
true cognitive change. A PCI diagnosis has the addi-
tional advantage of being relatively easily replicated by
other population- and community-based studies in
which detailed neuropsychological testing may not be
readily available. Other strengths of this study include
the relatively long follow-up period and availability of
pathologic data on some of the subjects. In addition,
rates of volumetric change were created from a mini-
mum of 3 time points, a method that is likely to reduce
the amount of variability inherent in longitudinal mea-
sures. MRI volumetric slopes were determined from the
scan before conversion for those who became cogni-
tively impaired, thus reducing potential confounding
effects from neurodegenerative disease. It is possible that
cognitive effects from progressive ischemic brain injury
may be more apparent during this time period, before
the onset of overt dementia. This hypothesis is sup-
ported by pathologic studies that show reduced cogni-
tive repercussions of certain types of cerebrovascular
lesions after the spectrum of AD pathology is taken into
account.32,38,39 While prior studies have shown that con-
comitant vascular lesions do not affect rates of cognitive
decline in those with AD,40 results from this study sug-
gest that the total burden and rate of accumulation of
such WMH lesions may have a more significant impact
on the development of cognitive decline before a clini-
cal diagnosis of AD.

Total and PV WMH progression in cognitively
intact elderly individuals confers increased risk of
eventual cognitive impairment in relatively healthy
elderly individuals. Specifically, every 1-mL/year in-
crease in PV WMH increases risk of PCI by 94%.

Identifying those vulnerable to such progression may
be important so that those at risk for cognitive de-
cline can be targeted for early intervention and treat-
ment trials.
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