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Given the prevalence and debilitating nature of chronic inflamma-
tory diseases, there is a never-ending quest to identify novel targets
for the rational development of antiinflammatory drugs. The major
signaling pathway that controls inflammation-associated gene ex-
pression is the one which leads to activation of transcription factor
nuclear factor-kB. Therefore, inhibitors of the kinase responsible for
nuclear factor-kB activation, IkB kinase, are expected to have potent
antiinflammatory activity. Indeed, our results with cell type—specific
inactivation of the B-catalytic subunit of IkB kinase are by and large
consistent with this assertion. In addition to I«B kinase and nuclear
factor-kB, the expression of certain proinflammatory cytokines,
such as interleukin-1 and tumor necrosis factor-a, is dependent on
mitogen-activated protein kinases. Therefore, considerable attention
has also been given to mitogen-activated protein kinases as likely
targets for the development of novel antiinflammatory therapeu-
tics. Preliminary preclinical data suggest that inhibitors that target
all these pathways exhibit antiinflammatory activity. This review
focuses on the possible mechanisms through which such inhibitors
may interfere with inflammation and some of the complications
that may be associated with their use.
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Chronic inflammatory diseases, such as rheumatoid arthritis,
psoriatic arthritis, inflammatory bowel disease, and chronic ob-
structive pulmonary disease, are highly debilitating diseases that
affect a large segment of our population. It has become apparent
that even metabolic diseases, such as type 2 diabetes, and certain
cardiovascular diseases, for instance, atherosclerosis, should also
be considered inflammatory in nature and origin. Thus, inflamma-
tion seems to be at the root of almost all chronic diseases (cancer
notwithstanding), and huge efforts and resources are dedicated
to the development of antiinflammatory drugs. However, be-
cause of its very nature —a chronic disorder that in its initial and
even more advanced stages is frequently not life-threatening—
chronic inflammation presents a challenge for therapeutic inter-
vention, because one needs to develop drugs that are efficacious,
relatively free of side effects, and can be used effectively for a
long time. Therefore, there is a never-ending quest for new
targets for the development of antiinflammatory drugs that one
hopes will be highly specific, potent, and free of side effects.
The logical identification of such targets depends on better un-
derstanding of the signaling pathways involved in the initiation
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and maintenance of inflammation and the availability of target
validation technology, such as targeted mutagenesis in mice and
gene silencing mediated by small inhibitory RNA.

ROLE OF NUCLEAR FACTOR-kB ACTIVATION
IN INFLAMMATION

Considerable evidence indicates that the primary signaling path-
way involved in the initiation and amplification of inflammatory
responses is the one that leads to activation of nuclear factor
(NF)-xB transcription factors (1, 2). Although many different
receptors can lead to activation (i.e., nuclear translocation) of
NF-kB, they all rely on two major signaling pathways, known as the
classic (or canonical) and the alternative NF-kB signaling pathways
(Figure 1) (3, 4). The first pathway primarily affects diverse
NF-kB dimers, such as the most common one, the RelA (p65)-
p50 heterodimer, through phosphorylation-induced proteolysis
of the kinase responsible for NF-kB activation, IkB kinase
(IKK). The alternative pathway affects only the activation of
RelB—p52 dimers, through phosphorylation-induced processing
of the NF-kB2 (p100) precursor protein (5). Ample evidence
suggests that it is the classic pathway, which relies on the IKKf3
catalytic subunit and IKK+ regulatory subunit of the IKK com-
plex, that is most important for the initiation and propagation
of inflammatory responses (3, 6). The alternative pathway, by
contrast, is most important for secondary lymphoid organ devel-
opment and adaptive immunity (4).

ROLE OF MITOGEN-ACTIVATED PROTEIN KINASE
ACTIVATION IN INFLAMMATION

Despite its central role, it is unlikely that the mere activation
of NF-kB is sufficient for transcriptional activation or induction
of any single NF-kB target gene that is involved in the initiation
of inflammatory responses. For most promoters that have been
critically analyzed, for instance, the IFN-B promoter (7), NF-xB
requires assistance from other sequence-specific transcription
factors. Often the activity of such transcription factors, for in-
stance, members of the activator protein (AP)-1 family (8), is
dependent on their phosphorylation by mitogen-activated pro-
tein kinases (MAPKs) or MAPK-activated kinases. A classic
MAPK cascade is composed of an MAPK, the kinase that acti-
vates the MAPK through phosphorylation on serine and tyrosine
residues (called a MAPK kinase, MKK, MAPKK, or MAP2K),
and the kinase that activates the MKK (called a MKK kinase,
MEKK, MAPKKK, or MAP3K; Figure 2) (9). The MAP3Ks
are activated through a variety of mechanisms, most of which
are not entirely clear, in response to engagement of cell surface
receptors. Thus, the MAP3Ks provide the stimulus specificity,
whereas the MAPKs carry out the effector functions of each
cascade, either though direct phosphorylation of effector pro-
teins or via the activation of subordinate kinases, the MAPK-
activated kinases.

Several distinct MAPK cascades have been identified in mam-
mals, including humans. The three most common are the extra-
cellular signal-regulated kinase (ERK), the Jun-N terminal ki-



Karin: IKK and MAPKs as Drug Targets

TNFoR

IL-1

LPS

CD40L LTap
(LTaB) CD40L
(Blys) Blys

o] "’S
IKKy G)
IKKao 1IKKo

IKKp *IKKu

Classical Alternative

kB Ubiquitination pIOR .
Proteasomal degradation r

\

D L
Target gene

Innate immunity  Inflammation Cell survival
Figure 1. The classical (left) and alternative (right) nuclear factor-«xB
signaling pathways. BlyS = B lymphocyte stimulator; CD40L = CD40
ligand; IKK = IkB kinase; IL-1 = interleukin 1; LT = lymphotoxin; RelA =
reticuloendotheliosis viral oncogene homolog A; TNF = tumor necrosis
factor.

nase (JNK), and the p38 MAPK cascades. Each cascade leads
to activation of several closely related MAPK enzymes, for in-
stance, ERK1 and ERK2 or JNK1, JNK2, and JNK3, which can
be activated by two different MKKs, such as MAPK/ERK kinase
(MEK)1 and MEK2 for the ERK cascade and MKK4 and MKK7
for the JNKs (9). The MKKs, however, can be activated by a
myriad of MAP3Ks. Gene disruption experiments reviewed by
Chang and Karin (9) indicate that each of the MAPK cascades
has a distinct function, although a given stimulus, for example,
tumor necrosis factor (TNF)-« or interleukin (IL)-1, can activate
to variable extents all three MAPK cascades. Gene disruption
experiments also reveal that the response specificity (i.e., the
type of stimulus that activates any given cascade) is determined
by the MAP3K (10).

Although quite a few cell surface receptors can lead to the
activation of IKK and MAPK, those that are most relevant to
inflammation are the type 1 TNF receptor (TNFR1), the IL-1
receptor (IL-1R), and Toll-like receptors (TLRs). TNFRI1 trans-
mits its signals through the recruitment of adaptor proteins called
the Fas-associated death domain protein and the TNF receptor—
associated death domain protein (11). Whereas the Fas-associated
death domain protein is important for activation of caspase-8 and
the induction of programmed cell death, the TNF receptor —asso-
ciated death domain protein is required for most other TNFR1-
mediated functions, also including induction of programmed cell death.
The TNF receptor —associated death domain protein (TRADD) medi-
ates Fas-associated death domain protein (FADD) recruitment
and the recruitment of receptor-interacting protein-1 (RIP-1)
and related protein kinases and the signal-transducing proteins
TNF receptor—associated factor 2 (TRAF2) and TRAFS, all of
which participate in the activation of IKK and MAPKs (12, 13).
The function of TRAF2 and TRAFS is somewhat redundant,
and both of them need to be deleted for complete inhibition
of TNF-a—induced MAPK and IKK activation (14). Another
member of the TRAF family, TRAF6, plays a critical role in
IL-1R and TLR signaling (15). Both IL-1R and the TLRs belong
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Figure 2. Mitogen-activated protein kinase (MAPK) signaling pathways.
ASK = apoptosis signal-regulating kinase; ATF = activating transcription
factor; Elk-1 = ETS-like gene-1; ERK = extracellular signal-regulated
kinase; JNK = Jun-N terminal kinase; MAPK = mitogen-activated protein
kinase; MAPKK = MAPK kinase; MAPKKK = MAPK kinase kinase; MEF-
2C = myocyte-specific enhancer factor 2C; MEKK = MAPK/ERK kinase
kinase; MKK = MAPK kinase; MLK = mixed lineage kinase; TAK = TGF-
Bs-associated kinase; TPL = tumor progression locus-2 (MAPKKK-8).

to the same superfamily of Toll and IL-1 receptor (TIR) domain—
containing proteins (16). These receptors signal through recruit-
ment of TIR domain—containing adaptor proteins, such as MyD88,
TIRAP/MAL (TIR domain—containing activator protein/MyD88
adaptor-like), TRIF (TIR domain—containing adaptor inducing
interferon-B), and TRAM (TRIF-related adaptor molecule).
The adaptors then lead to recruitment and activation of com-
plexes between TRAF6 and IL-1 receptor—associated kinase. In
all three cases (TNFR1, IL-1R, and TLRs), it is the TRAF pro-
teins that are responsible for activation of the MAPK and IKK
effector pathways (11). The mechanisms by which the TRAFs
lead to MAPK and IKK activation are still a matter of debate
and are not discussed here.

SUITABILITY OF THE IKK AND MAPK CASCADES AS
DRUG TARGETS

IKK

The IKK complex contains two catalytic subunits, IKKa and
IKKB, and a regulatory subunit, IKKy/NEMO (NF-«B essential
modulator) (17). Targeted mutagenesis in mice indicates that
IKKPB is required for NF-kB activation in response to proin-
flammatory stimuli, such as TNF-a, IL-1, and LPS (18-20).
IKKa, on the other hand, is not essential for NF-kB activation
by these stimuli (21) and is instead required for activation of
the alternative NF-kB pathway, which as explained previously
is based on induced processing of NF-kB2 (p100) (5). Using
mice harboring a conditional /kkB “floxed” allele, we were able
to inactivate and delete IKKp in specific cell types and analyze
its contribution to various inflammatory responses. Using this
approach we found that deletion of IKK in intestinal epithelial
cells (enterocytes) prevented the onset of multiple organ failure
in response to gut ischemia-reperfusion (6). However, the dele-
tion of IKK in enterocytes also greatly increased their suscepti-
bility to various apoptosis-inducing stimuli (22, 23). Because the
apoptosis of enterocytes disrupts the barrier function of the
intestinal mucosa, the deletion of IKKp in these cells increased
the colonic inflammation caused by oral administration of dex-
tran sulfate salt, which is generated by invasion of enteric bacte-
ria into the lamina propria (23). We also found that deletion of
IKKR in myeloid cells (macrophages and neutrophils) or in all
hematopoietic cells inhibited the production of inflammatory
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TABLE 1. MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING AND ITS ROLE IN ACUTE
INFLAMMATION (REGULATION OF TUMOR NECROSIS FACTOR-ac SYNTHESIS)

MAPK ERK JNK p38

MKK MEK1/2 MKK4/7 MKK3/6
Inhibitor PDO98059 SP600025 $B202190

Role in acute Transport of TNF-a Increased Tnfa Stabilization and

mRNA from nucleus
to cytoplasm

inflammation

translation of
TNF-ae mRNA

gene transcription

Definition of abbreviations: ERK = extracellular signal-regulated kinase; JNK = Jun-N terminal kinase; MAPK = mitogen-activated

protein kinase; MKK = MAPK kinase; TNF = tumor necrosis factor.

mediators in response to LPS (20) and reduced the severity of
dextran sulfate salt-induced colitis. (24) At the same time, this
deletion greatly increased the susceptibility of macrophages to
LPS-induced apoptosis (20) and, as a result, increased the secre-
tion of mature IL-1B, the processing of which depends on activa-
tion of caspase-1 (F. R. Greten and M. Karin, unpublished data).
Deletion of IKK in hematopoietic cells also prevented inflam-
mation-induced bone loss caused by injection of LPS into the
joints of mice (25).

Inflammation-induced bone loss is also prevented by a pep-
tide inhibitor that disrupts the interaction between IKKB and
IKKYy (26). We extensively analyzed how the deletion of IKKB
in hematopoietic cells prevents inflammation-induced bone loss
and identified two relevant mechanisms. First, the loss of IKKf
in bone marrow progenitors prevents terminal osteoclast differ-
entiation. Second, macrophages and osteoclast precursors that are
IKKR deficient become highly susceptible to TNF-a—induced
apoptosis, resulting in the elimination of activated osteoclasts
(25). When TNF-a—induced apoptosis was prevented by deleting
the gene for TNFRI, the inhibitory effect of the IKKR deletion
on inflammation-induced bone loss was considerably reduced.

The ability of NF-kB to suppress apoptosis, especially in
response to TNF-a, is well established (27). As discussed above,
this can result in a beneficial effect in the case of inflammation-
induced bone loss caused by localized exposure to LPS. However,
at the same time, by increasing the susceptibility of macrophages
to LPS- or TNF-a—induced apoptosis and thereby increasing
the release of mature IL-1p3, the deletion of IKKf in hematopoi-
etic cells increases the acute inflammatory response (septic
shock) caused by systemic exposure to LPS.

Of course, in real life situations, that is, in a patient treated
with an IKKp inhibitor, the final outcome may depend on the
extent of the IKKp inhibition that is required for prevention of
inflammation and the nature of the inflammatory disorder being
treated. Small-molecule inhibitors of IKK@ have been devel-
oped, but at this point there is only a limited amount of informa-
tion regarding their efficacy and safety in experimental models
of inflammation (28). So far, such inhibitors have been shown
to be effective in mouse models of short-term collagen-induced
arthritis and dextran sulfate salt (DSS)-induced colitis (28).

ERK

Compared with the MAPK cascades leading to p38 MAPK and
JNK activation, there is relatively little information about the
role of the ERK cascade in inflammation (Table 1). However,
one publication indicates that the MAP3K Tpl2/Cot is responsi-
ble for ERK activation in response to bacterial endotoxin (LPS)
in macrophages (29). The knockout of Tpl2 abolished ERK
activation by LPS, an agonist of TLR4 (16) and, of most impor-
tance, inhibited the induction of TNF-a release (29). Further
investigation revealed that the inhibition of ERK activation or
the deletion of Tpl2 prevented the transport of TNF-a mRNA

from the nucleus to the cytoplasm but had no effect on transcrip-
tion of the Tnfa gene or the stabilization of TNF-a mRNA (29).
Although the exact substrate for ERK that controls the nuclear
export of TNF-a mRNA remains to be identified, these interest-
ing findings suggest that inhibition of ERK activity may offer a
unique strategy for inhibition of TNF-a production. Because
TNF-« is a major mediator of chronic inflammation, inhibition
of ERK represents a novel means of therapeutic intervention.

No direct ERK inhibitors have been reported to date, but
several inhibitors have been described that interfere with the
activity of the MKKs that act upstream of the ERKs and down-
stream of the relevant MAP3Ks, MEK1 and MEK2. These com-
pounds, including PD098059 (30) and U0126 (31), are effective
inhibitors of ERK activation. In light of the results discussed
above, it would be worthwhile to test their effectiveness in animal
models of chronic and acute inflammation. More recently it was
found that the activation of Tpl2 and the subsequent activation
of ERK in LPS-treated macrophages are dependent on the acti-
vation of IKKB (32). It was observed that activation of Tpl2
depends on its dissociation from p105, the precursor for the
NF-«kB subunit p50 (32). As the processing of pl05 to p50 is
IKKB dependent, IKK inhibitors can also inhibit the activation
of Tpl2 and the subsequent activation of ERK by LPS. It would,
therefore, be of interest to evaluate which of the therapeutic
effects of IKK inhibitors in the mouse model of collagen-induced
arthritis (33) are due to inhibition of NF-«B activation and which
are due to inhibition of ERK activation.

JNK

Compared with ERK, JNK activity is more strongly induced in
response to proinflammatory stimuli, and there is preliminary
evidence that inhibition of JNK activity can retard or even prevent
tissue damage in animal models of rheumatoid arthritis (34).
The JNKs were first identified by their ability to phosphory-
late and, thereby, activate the transcriptional potential of c-Jun,
a critical component of the AP-1 transcription factor (35). How-
ever, it is quite obvious that in addition to c-Jun, the JNKs can
stimulate the activity of other transcription factors (36, 37) and
other target proteins (10, 38). Although not as critical as NF-«B,
AP-1 and related transcription factors, such as activating tran-
scription factor-2 (the activity of which is also stimulated by
JNK-mediated phosphorylation), play an important role in the
inflammatory response through their ability to contribute to the
transcriptional activation of important cytokine genes, such as
those that encode TNF-a and IFN-B (Table 1) (8). In addition,
AP-1 activity is required for the induction of matrix-degrading
enzymes, such as collagenase (39). Besides being involved in the
induction of TNF-a gene expression, AP-1 activity is induced by
TNF-a (40), and JNK activity is required for this response (34).
Several different JNK inhibitors have been identified through
high-throughput screening, and at least one of them, SP6000125,
has been tested in a rat model of rheumatoid arthritis, where it
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reduced not only inflammation (paw swelling) but also tissue
damage (34). The reduction in tissue damage was attributed to
inhibition of collagenase and stromalysin expression, an effect
that correlates with reduced c-Jun N-terminal phosphorylation
and TNF-a—induced AP-1 activity (34). Similar findings were
obtained with mice deficient in JNK1, the major JNK isoform
responsible for c-Jun phosphorylation and AP-1 activation (34),
thereby validating the results obtained with the low molecular
weight JNK inhibitor. Interestingly, JNK1-deficient mice are also
resistant to obesity-induced insulin resistance, a metabolic disor-
der thought to be caused by low-grade inflammation that is
elicited by fat deposition (41). Whereas NF-«B activation confers
resistance to apoptosis (25), the sustained activation of JNK,
which is seen on inhibition of NF-kB activity, contributes to the
apoptotic response (42, 43). Thus, JNK inhibition may alleviate
one of the adverse side effects that could be associated with the
use of IKK inhibitors. Indeed, reduced JNK activity was shown
to protect mice from fulminant liver failure, a condition that
accompanies severe liver inflammation and is exacerbated by
IKKPB inhibition (43).

We have examined how many of the LPS-inducible genes in
macrophages are JNK dependent. Whereas most LPS-inducible
genes are IKKB dependent, only a small percentage of them are
sensitive to inhibition of INK (M. G. Ruocco and J. M. Park,
unpublished results). Of importance, however, the JNK-depen-
dent genes include TNF-a and several other members of the
TNF family, such as Fas ligand, an important death-inducing
cytokine (M. G. Ruocco and J. M. Park, unpublished results).

p38 MAPK

p38 MAPK was first identified as an IL-1-activated kinase (44)
and as an LPS-activated kinase (45). Therefore, from the begin-
ning it was assumed that it plays an important role in inflamma-
tion. Indeed, early support for the critical role of p38 in inflam-
mation was derived from studies that identified p38 as a critical
target for a group of novel antiinflammatory drugs, a prototype
of which is SB202190 (46).

It is important to note that the p38 inhibitors are potent
inhibitors of LPS-mediated TNF-a production by macrophages
(46). However, the mechanism through which p38 contributes
to TNF-a production is not entirely clear. It is almost certain
that p38 activity is not required for transcriptional activation of
the Tnfa gene. Yet, because TNF-a is an important and central
mediator of inflammation, its synthesis is subject to intricate
control. In addition to transcriptional activation, the mRNA for
TNF-a, which is inherently short-lived in nonstimulated cells,
becomes stabilized in response to cell stimulation, but p38 activ-
ity does not appear to be required for this process either. In
addition, p38 does not seem to be involved in the transport of
TNF-a mRNA from the nucleus to the cytoplasm, a process that
depends on ERK activity instead. Most likely, p38 activity is
required for initiation of TNF-a mRNA translation (Table 1)
(46). However, the mechanism through which p38 contributes
to activation of TNF-a mRNA translation is unknown. Neverthe-
less, the ability of p38 inhibitors to block TNF-a synthesis can
be exploited in the treatment of inflammatory diseases, and
p38 inhibitors have been shown to inhibit the development of
rheumatoid arthritis in small-animal models (47). It is not en-
tirely clear, however, whether the therapeutic effect of such
inhibitors is solely dependent on inhibition of TNF-a production
or whether p38 also contributes to other important processes.
For instance, we have found that inhibition of p38 activity pre-
vents the transcriptional activation of both the //-7«a and II-13
genes, encoding the two different forms of IL-1, in LPS-stimu-
lated macrophages (48). As discussed below, just like TKK,
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p38a is required for maintaining the viability of activated macro-
phages (20, 48).

PITFALLS AND BENEFITS OF TARGETING THE IKK AND
MAPK CASCADES

In addition to their roles in expression of cytokines and other
genes involved in inflammation and tissue remodeling, the IKK
and MAPK cascades have other important biological functions,
which can either complicate the outcome of their inhibition or
generate additional benefits. Of most importance, these signaling
cascades are involved in the control of cell survival, especially
in macrophages, which are central regulators and effectors of
inflammatory responses. Inhibition of either IKKf{ or p38 activi-
ties greatly increases the susceptibility of macrophages to the
induction of apoptosis in response to activation of TLR4 (20, 48).
Although induction of macrophage apoptosis can accelerate the
resolution of inflammation in some cases, as in that of inflamma-
tion-induced bone loss, we found that massive macrophage apo-
ptosis caused by systemic exposure to LPS can strongly potenti-
ate inflammation because it leads to the processing and release
of mature IL-1B, a major inflammatory mediator (F. R. Greten
and coworkers, unpublished data). It is well established that
the processing of the IL-18 precursor requires the activation of
caspase-1 and that without caspase-1 activation, no mature IL-1
can be released (49-51). As caspase-1 activation is linked to
apoptosis, any condition that increases macrophage apoptosis,
including p38 inhibition, potentiates IL-1B release. Such prob-
lems, however, if encountered, can be addressed through the
use of IL-1 inhibitors, such as IL-1Ra.

As mentioned previously, in contrast to IKK@ and p38, JNK
activation can promote apoptosis (43). Therefore, inhibition of
JNK, in addition to inhibition of inflammation, may be used in
conjunction with IKK or p38 inhibition.

CONCLUSIONS

Preliminary preclinical data suggest that inhibitors that target
IKKR and the JNK and p38 MAPK cascades exhibit antiinflam-
matory activity. In addition, inhibition of ERK is a promising
means of reducing production of TNF-a, although no direct
inhibitors have been identified. However, it is difficult to extrapo-
late from gene knockout studies, in which the activity of a given
kinase is completely abolished, to drug therapy, where a partial
inhibition may be sufficient to achieve the desired therapeutic
effect. Further experimentation with actual IKK@, JNK, and p38
inhibitors is needed.
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