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BACKGROUND: The human death-associated protein 3 (hDAP3) is a GTP-binding constituent of the small subunit of the mitochondrial
ribosome with a pro-apoptotic function.
METHODS: A search through publicly available microarray data sets showed 337 genes potentially coregulated with the DAP3 gene.
The promoter sequences of these 337 genes and 70 out of 85 mitochondrial ribosome genes were analysed in silico with the DAP3
gene promoter sequence. The mitochondrial role of DAP3 was also investigated in the thyroid tumours presenting various
mitochondrial contents.
RESULTS: The study revealed nine transcription factors presenting enriched motifs for these gene promoters, five of which are
implicated in cellular growth (ELK1, ELK4, RUNX1, HOX11-CTF1, TAL1-ternary complex factor 3) and four in mitochondrial
biogenesis (nuclear respiratory factor-1 (NRF-1), GABPA, PPARG-RXRA and estrogen-related receptor alpha (ESRRA)). An
independent microarray data set showed the overexpression of ELK1, RUNX1 and ESRRA in the thyroid oncocytic tumours.
Exploring the thyroid tumours, we found that DAP3 mRNA and protein expression is upregulated in tumours presenting a
mitochondrial biogenesis compared with the normal tissue. ELK1 and ESRRA were also showed upregulated with DAP3.
CONCLUSION: ELK1 and ESRRA may be considered as potential regulators of the DAP3 gene expression. DAP3 may participate in
mitochondrial maintenance and play a role in the balance between mitochondrial homoeostasis and tumourigenesis.
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Mitochondria play a major role in life and death of cells, ensuring
most of the cellular ATP synthesis through oxidative phosphor-
ylations (OXPHOS) and participating in the induction of apoptosis
((Regula et al, 2003) for review). Mitochondrial defects have been
implicated in a wide variety of pathologies, including degenerative
diseases and cancer, as well as in physiological processes such as
aging (Schapira, 2006).

Mitochondria possess their own genome; mitochondrial DNA
(mtDNA) encodes 37 genes corresponding to two rRNAs, 22
tRNAs and 13 mRNAs. The 13 mRNAs, translated on mitochon-
drial ribosomes, encode for essential catalytic components of four
of the five OXPHOS complexes. The mitochondrial ribosome is a
ribonucleoproteic complex composed of two asymmetric subunits,
the large subunit containing a 16S rRNA molecule associated with

52 proteins, and the small subunit containing a 12S rRNA
molecule associated with 33 proteins. The 85 mitochondrial
ribosomal proteins (MRP) are encoded by nuclear genes,
translated in the cytoplasm and addressed by mitochondrial
signals to the appropriate mitochondrial compartment, where they
associate with the two rRNA molecules ((O’Brien, 2002; Mears
et al, 2006) for review).

The death-associated protein 3 (DAP3) is one of the constituents
of the small subunit of the mitochondrial ribosome that has no
counterpart in bacterial or cytoplasmic ribosomes (Cavdar Koc
et al, 2001a, 2001b; Suzuki et al, 2001a, 2001b; O’Brien et al, 2005).
Multiple roles have been assigned to DAP3; first identified as a
pro-apoptotic factor, this protein is suspected of interacting with
the TNF-related apoptosis-inducing ligand (TRAIL) receptors and
the Fas-associated death domain protein (FADD) in the cytosol
(Kissil et al, 1995, 1999; Miyazaki and Reed, 2001).

Knocking down DAP3 by small interfering RNA (siRNA) or
short hairpin RNA (shRNA) reduces fragmentation of the
mitochondrial network, increases resistance to oxidative stress
and decreases the production of intracellular reactive oxygen
species (ROS) (Mukamel and Kimchi, 2004; Murata et al, 2006).
The treatment of HeLa cells with a DAP3 siRNA led to a five-fold
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reduction of mitochondrial respiration. Homozygous DAP3 –/–
mouse embryos, which died in utero at 9.5 days of gestation on an
average, had low levels of mitochondrial proteins encoded by the
mtDNA (Kim et al, 2007). These results indicate that DAP3 is
essential to mammalian cells because of its contribution to
mitochondrial maintenance; however, the function of DAP3 in
mitochondrial protein synthesis remains to be elucidated.

The implication of DAP3 in apoptosis suggests a modulation of
the expression of the protein in pathological contexts such as the
development of tumours. First explored in glioblastoma multiform
(GBM) cells, the DAP3 mRNA and protein were found to be
overexpressed in the invasive GBM cells (Mariani et al, 2001). In
thymoma, the DAP3 mRNA level was positively correlated with the
stage of the disease defined in the World Health Organisation
(WHO) classification (Sasaki et al, 2004). In contrast, a study on
senescence induced by oxidative stress in cells showed reduced
DAP3 expression (Murata et al, 2006).

In this study, we explored the function of DAP3 in mitochon-
drial translation analysing multi-source microarrays and genomic
data to identify potential coregulated genes and regulators of the
DAP3 gene. We choose to investigate the thyroid tumours on the
basis of their various mitochondrial content, and, in particular, the
thyroid oncocytoma, a mitochondrial-rich thyroid tumour char-
acterised by an oxidative metabolism (Savagner et al, 2003; Baris
et al, 2004). In oncocytoma, the large majority of the cells show
extensive mitochondrial biogenesis; these tumours thereby con-
stitute an interesting model for the study of the expression and
localisation of DAP3, as well as its function in the mitochondrial
ribosome. We studied the expression of the DAP3 mRNA and
protein in thyroid tumours using quantitative real-time poly-
merase chain reaction (qRT–PCR) and immunohistochemistry
(IHC) techniques. Our results suggest that the DAP3 gene is
modulated by major transcriptional regulators of mitochondrial
biogenesis, and coregulated with genes of the small subunit of the
mitochondrial ribosome.

MATERIALS AND METHODS

Materials

All the tissue samples studied belong either to the tumours
collection of the Laboratoire d’anatomie pathologique, Centre
Hospitalier Universitaire d’Angers, France or of the Laboratoire
d’Anatomie Pathologique, Hôpital Ambroise Paré (APHP),
Boulogne, France. For the first analysis by quantitative PCR
(qPCR), 40 thyroid samples were used representing normal
thyroid (NT, 10 samples) and three types of thyroid tumours (10
follicular thyroid adenomas (FTA), 10 papillary thyroid carcinoma
(PTC) and 10 oncocytic thyroid tumours (OTT)). A second
analysis was carried out on samples from 17 other patients
with oncocytic thyroid adenomas (OTA, 12) or oncocytic thyroid
carcinomas (OTC, 5). The tumours were diagnosed according
to the WHO classification (DeLellis et al, 2004). The normal
paired thyroid samples, taken at a distance from the tumours,
were examined in the histology laboratory before being
adopted for controls. All the samples rendered anonymous, that
is, with patient identifiers deleted before the study, were deep-
frozen in liquid nitrogen immediately after surgery and conserved
at �80 1C.

The IHC studies carried out on formalin-fixed, paraffin-
embedded tissue sections concerns 100 thyroid tumour samples
and 61 normal counterparts. The cases enroled in the study were
distinct from the groups participating in the qPCR analyses. The
tumours were classified as nine OTC, thirty-four PTC, four poorly
differentiated carcinomas, five follicular thyroid carcinomas
(FTC), three non-medullary thyroid tumours of uncertain
malignancy potential (TUMP), thirty-seven OTA and eight FTA.

Bioinformatic analysis

We queried the TMM web server (www.bioinformatics.ubc.ca/
tmm) for significantly correlated DAP3 coexpressed genes, that is,
the genes that were correlated in at least three out of 100
microarray data sets (Lee et al, 2004). We also used the 85
mitoribosomal genes for sequence analysis. Gene promoter
sequences were extracted by the Promoser web server from
�1000 to þ 1000 nucleotides starting from the transcription
start site (TSS) (Halees et al, 2003). Promoser retrieved 69
out of 331 sequences of the DAP3 coexpressed genes, and 71 out of
85 sequences of the mitoribosomal genes. We collected 123
transcription factor binding sites (TFBS) motifs from the Jaspar
database (Sandelin et al, 2004). We added two position– weight
matrices to this collection: for the transcriptional factor
nuclear respiratory factor-1 (NRF-1), we aligned nine sequences
of known NRF-1 binding sites (Au and Scheffler, 1998;
Elbehti-Green et al, 1998; de Sury et al, 1998; Hirawake et al,
1999); for the estrogen-related receptor alpha (ESRRA), the
position–weight matrix was described by Sladek et al (1997)
(Figure 1).

The TFBS overrepresentation in promoter sequences was
investigated with the Clover program (http://zlab.bu.edu/clover/)
using the 125 TFBS motifs and two background models (Frith et al,
2004). The first consisted of 6461 randomly chosen gene promoter
sequences of the human genome from �1000 to þ 1000
nucleotides starting from the TSS, and the second was composed
of 27 555 sequences from CpG island regions. The selected
threshold of significance was P p0.05 simultaneously with both
background sets.

The DAP3 gene promoter (�1000 to þ 1000 nucleotides starting
from the TSS) was also analysed using the collection of 125 TFBS
motifs, and the POSSUM program (http://zlab.bu.edu/~mfrith/
possum/).

We also used a public thyroid microarray normalised data set to
test the differential expression of DAP3 and its best candidate
regulator genes in ten FTA, seven OTA, eight OTC, fifty-one PTC
and four NT (Giordano et al, 2006). The log-expression values of
duplicate genes were averaged and the antilogarithm values were
used for plotting as presented by the authors. Significance of
difference between the tumour types and the NT tissues was
assessed by using Wilcoxon tests at 5% risk.
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Figure 1 Estrogen-related receptor alpha (ESRRA) and nuclear
respiratory factor-1 (NRF-1) position–weight matrices. The graphical
representation of the ESRRA and NRF-1 motifs visualised using the
WEBLOGO web server (http://weblogo.berkeley.edu/) shows a six-
position–weight matrix for ESRRA and a 12-position–weight matrix for
NRF-1 (x-axis). For each position, nucleotides are represented according to
their relative frequency, the overall height indicating the conservation of the
sequence (y-axis).
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Quantitative PCR

Quantification analyses were carried out using the Chromo4 Real
Time PCR Detector technology (Bio-Rad, Hercules, CA, USA) and
the iQ SYBR Green Supermix following the manufacturer’s
instructions (Bio-Rad). The standards were obtained by PCR
carried out on total cDNA of NT tissue as described elsewhere
(Jacques et al, 2006). The forward and reverse primers used were
as follow: for DAP3, 50-GCTGGGAAAGGAAGGATTTG-30 and
50-TTCGCGTTACTTAGGAACAG-30 (Tm: 57 1C); for ESRRA,
50-AAGACAGCAGCCCCAGTGAA-30 and 50-ACACCCAGCACCAG
CACCT-30 (Tm: 64 1C); for ELK1, 50-GGCTACGCAAGAACA
AGACC-30 and 50-TTTGGCATGGTGGAGGTAAC-30 (Tm: 61 1C);
for RUNX1, 50-TGTGATGGCTGGCAATGATG-30 and 50-GCCC
ATCCACTGTGATTTTG-30 (Tm: 60 1C); for actin, 50-CGACATG
GAGAAAATCTGGC-30 and 50-AGGTCCAGACGCAGGATGG-30

(57 1C). Gene expression for DAP3, ESRRA, ELK1 and RUNX1
was normalised by reference to the actin gene expression for each
sample.

Immunohistochemistry

Tumour samples (100) and normal conterparts (61) were used for
tissue array construction, where each sample were represented by
three spots (0.6 mm diameter); immunostaining was carried out
using the standard avidin–biotin peroxidase technique as
described earlier (Kononen et al, 1998; Jacques et al, 2005). The
primary antibody was either a monoclonal anti-DAP3 (Transduction
Laboratories, Lexington, UK; 1/50) or a monoclonal antibody
against a mitochondrial subunit of the respiratory chain complex
IV (clone 113-1, Biogenex laboratories, Inc., San Ramon, CA, USA;
dilution 1/50). Diaminobenzidin was used as the chromogen and
haematoxylin as the nuclear counterstain. Negative controls were
carried out by replacing the primary antibody with buffer. The
analysis takes into account the intensity of the signal and the
percentage of positive cells scored as 0 (no staining), 1 (o25%), 2
(25– 75%) and 3 (75% o). Overrepresentation of positive cells in
tumours compared with paired normal tissues was assessed by the
two-tailed Fisher’s exact test (Pp0.05). The correlation between
DAP3 expression and the mitochondrial antigen expression was
assessed by the Spearman’s test.

RESULTS

Characterisation of DAP3-related genes

Using the TMM web server and a meta-analysis of 100 public
microarray data sets, we found 337 genes significantly correlated
with DAP3 (Supplementary Table 1). This gene collection included
more mitoribosomal genes (six genes, e.g., MRPL9, MRPL16,
MRPL3, MRPS18B, MRPS31 and MRPS17) than expected by chance
when considering 39 949 human genes from NCBI Gene database
(Fisher’s exact test, Po1.31E-04). To avoid redundancy in further
analyses, we included only the 331 non-mitoribosomal genes in
this gene set. Two other sets represent the large (44 out of 52
genes) and the small (27 out of 33 genes) mitoribosomal subunits,
respectively.

We analysed the gene promoter sequences for enrichment in
TFBS motifs in each set separately (Table 1). We found nine
transcriptional factors with significantly enriched motifs, some
motifs being common to gene sets. Transcription factor binding
site motifs for the two transcriptional activators of mitochondrial
biogenesis NRF-1 and GABPA were found in all the gene sets.
Transcription factor binding site motifs for ELK1 and ELK4 were
overrepresented in the 69 out of 331 non-mitoribosomal genes and
the mitoribosomal large subunit genes. These two proteins are
members of the Ets family of transcription factors and of the
ternary complex factor (TCF) subfamily proteins, which act in the
promoter of immediate early-class genes such as the c-fos proto-
oncogene (Yang et al, 2003). Transcription factor binding site
motifs for RUNX1 and HOX11-CTF1 were specific to the set of
non-mitoribosomal genes. The RUNX1 gene encodes an important
regulator of haematopoiesis and is the target of genetic alterations
during leukaemogenesis (Mikhail et al, 2006). The upregulation
and interaction of HOX11 and CTF1 is implicated in the
immortalisation of haematopoietic precursor cells (Zhang et al,
1999). Transcription factor binding site motifs for PPARG-RXRA
were specific to the mitoribosomal large subunit set. PPARG and
RXRA are respectively implicated in adipocyte differentiation and
lipogenesis (Metzger et al, 2005). Transcription factor binding site
motifs for ESRRA and TAL1 were specific to the small
mitoribosomal subunit set. Estrogen-related receptor alpha is a
regulator of b-oxidation implicated in PGC-1a-induced mitochon-
drial biogenesis (Scarpulla, 2006). TAL1 is required for normal

Table 1 Transcription factors involved in the regulation of DAP3-corelated genes, and MRP genes of the large and small subunits of the mitoribosome

P-values

Genes set Motif name Motif family Raw score Promoters Cpg

331 potential DAP3 correlated genes GABPA ETS 4.63 0.002 0
ELK1 ETS 1.37 0 0.012
NRF1 1.65 0.011 0.001
ELK4 ETS �1.31 0 0
RUNX1 RUNT �2.6 0.028 0.044
Hox11-CTF1 HOMEO/CAAT �2.97 0.031 0.02

Mitochondrial large subunit genes NRF1 9.91 0 0
ELK4 ETS 2.97 0 0
GABPA ETS 2.88 0.001 0.001
ELK1 ETS 1.99 0 0.005
PPARG-RXRA Nuclear receptor 0.598 0.042 0.003

Mitochondrial small subunit genes ESRRA 3.29 0 0.021
NRF1 3.14 0.002 0
TAL1-TCF3 bHLH 2.25 0 0.006
GABPA ETS 1.82 0.022 0.012

The exploration of the promoter region (�1000 to +1000 starting from the TSS) of 69 out of 331 non-mitoribosomal DAP3-related genes, 44 out of 52 MRP large subunit genes
and 27 out of 33 MRP small subunit genes, including DAP3 is recapitulated here. The name of the motif, when possible, the family, together with the raw score and the P-value
computed by the Clover program are indicated for each best-scoring sites presented. The relative frequencies of the motifs are compared with two background models, a set of
6461 human gene promoters (�1000 to +1000 from the TSS) and a set of 27 555 CpG island sequences.
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haematopoiesis; its aberrant expression leads to T-cell acute
lymphoblastic leukaemia (Palomero et al, 2006).

We analysed the DAP3 gene promoter with the POSSUM program
and the collection of 125 TFBS motifs. The motifs showing the
highest-scoring TFBS detached from the background concerned the
nine transcriptional factors (or combinations of transcriptional
factors) extracted earlier with the analysis of gene promoters. These
best-scoring sites, depicted in Table 2, were distributed in the
promoter region covering �736 to þ 946 on both strands.

mRNA expression of DAP3 and associated transcription
factors

A publicly available thyroid microarray data set (Giordano et al,
2006) showed overexpression of DAP3, ESRRA, ELK1 and RUNX1
genes in 15 OTT samples when compared with four NT samples
(Po0.05, two-sided Wilcoxon test; Figure 2A). Death-associated
protein 3 and ELK1 were also differentially expressed in 10 FTA
and 51 PTC samples, and ESRRA in PTC.

Overexpression of these four genes was further evaluated by qPCR
in 10 OTT, 10 PTC, 10 FTA and 10 control tissue samples
(Figure 2A). DAP 3, ELK1 and ESRRA were confirmed to be
significantly overexpressed in OTT (Po0.05, one-sided Wilcoxon
test). Death-associated protein 3 overexpression in FTA and PTC was
also validated (Po0.05). For RUNX1, the gene expression was not
significantly changed for the OTT but significant differences were
shown for the FTA and the PTC (Po0.05).

The DAP3 gene expression was also explored in an independent
qPCR analysis with 12 OTA and five OTC samples paired with
unaffected surrounding tissue and compared with the seven OTA
and eight OTC samples from the microarray data set (Figure 2B).
The DAP3 overexpression was confirmed in both data sets for OTA
and OTC compared with the NT tissue (Po0.05, one-sided
Wilcoxon test).

Immunohistochemistry

The DAP3 expression was negative for most of the NT samples
(52 out of 61), poorly differentiated carcinomas (two out of four;

not significant), FTC (five out of five), TUMP (three out of three)
and FTA (eight out of eight). A significant overexpression of DAP3
was detected in OTC (seven out of nine), OTA (26 out of 37) and
PTC (16 out of 34) compared with normal tissue (Po0.05). The
distribution of percentage of positive cells for DAP3 and for the
mitochondrial antigen in the 161 samples is represented in
Figure 3A. The analysis of correlated expression, relative distribu-
tion, divergent cases and correlated cases are shown in Figure 3B.
The Spearman’s test gave a positive and significant correlation
between the expression of the mitochondrial antigen and the
expression of DAP3 (r¼ 0.65, Po0.01). The DAP3 staining and the
mitochondrial antigen staining were both localised in the
cytoplasm with a granular aspect, sometimes more intense close
to the nucleus. In PTC, the staining was sometimes concentrated in
both apical and basal region (data not shown).

DISCUSSION

One of the main functions ascribed to human DAP3 concerns its
implication in the extrinsic pathway of apoptotis (Kissil et al, 1995;
Mukamel and Kimchi, 2004). However, the suppression of DAP3
in vivo has also shown its role in the efficacy of mitochondrial
translation and respiration (Kim et al, 2007).

The comparison of the promoter sequence of the DAP3 gene
with that of other genes could be expected to contribute to the
exploration of the mitoribosomal function of DAP3. The analysis
of gene correlations in 100 microarray data sets showed 337
genes potentially coexpressed with the DAP3 gene (Supplementary
Table 1). These genes were mainly related to nucleic acid
metabolism, transcription and RNA processing, protein metabo-
lism and mitochondrial function (data not shown). Using 125
TFBS position–weight matrices, we found six transcriptional
factors potentially involved in the regulation of the 69 out of 331
non-mitochondrial DAP3 coexpressed genes. The analysis of the
two mitoribosomal subunits proteins showed three supplementary
transcriptional factors related to the potential regulation of the
majority of both large and small mitoribosomal constituents
(Table 1). These factors are known to be implicated in

Table 2 Potential target-binding sites for regulators in the DAP3 gene promoter

Motif Sequence Start position End position Strand Score

ELK1 CTTACGGAAA �458 �449 + 5.92
TTTCCCCTCG 345 354 � 5.51
TGTCAGGGAC �79 �70 � 5.49

ELK4 TCCGGGAGT �93 �85 + 4.87
ACTGGAATT 938 946 + 4.64
GTTTCCCCT 344 352 � 4.17

ERR-a TGTCCTCGA �232 �224 � 7.48
AGACCTTGT �270 �262 � 6.41
TGACATTTA �345 �337 � 5.8
TCAGGGACA �77 �69 + 5.02

GABPA AGAGGAAGGG 898 907 + 7.18
CTCCTCCGCT 185 194 � 6.99
CCCTCCCGCT 215 224 � 6.56
CGCGGCAGGG �287 �278 + 6.44

Hox11-CTF1 AGGGAGGGAGCTAA 418 431 + 3.27
TTTCCCCTCGCAAA 345 358 + 3.11

NRF1 CGCGCGTGCGCC 833 844 + 5.57
CGCGCGTGCGCC 833 844 � 5.49
AGCGCAGGCCCT 690 701 � 4.75

RUNX1 GACCACAAC �679 �671 � 6.05
CACCACAGA �276 �268 � 4.74

TAL1-TCF3 AGACCATCTGTC �399 �388 + 9.93
ACCATCTGTCTG �397 �386 � 7.18

PPARG-RXRA TTTTGGCCCTTCACATTTAC �736 �717 � 2.6

The POSSUM program and 125 TFBS motifs were used to analyse the DAP3 gene promoter region (�1000 to +1000 nucleotides around the TSS). The table shows the
sequence, start and end positions of the motifs, the strand on the chromosome and the computed score for the highest-scoring TFBS motifs.
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mitochondrial biogenesis (GABPA, NRF-1, PPARG-RXRA and
ESRRA) or in tumourigenesis (ELK1, ELK4, HOX11-CTF1, RUNX1
and TAL1-TCF3). The results obtained using here a highly selective
process, are reinforced by the overexpression of ELK1, RUNX1 and
ESRRA, observed in oncocytic tumours described by Giordano
et al. (Giordano et al, 2006) (Figure 2A).

Screening the human death-associated protein 3 (hDAP3) gene
promoter with the 125 TFBS motifs, these nine transcriptional
factors presented the highest-scoring sites (Table 2). Then hDAP3
may be associated with tumourigenesis and mitochondrial
biogenesis through a mechanism of coregulation at the transcrip-
tional level. Our in silico findings are compatible with the
published reports concerning the implication of hDAP3 in
tumourigenesis or aggressive cellular processes and in the efficacy
of mitochondrial translation (Mariani et al, 2001; Sasaki et al,
2004). However, the mechanism of DAP3 gene regulation needs
further experimental investigation.

In NT tissue, apoptotic cell death is a rare event; the
apoptotic process is blocked at the step of activation of pro-
caspase 3 (Mezosi et al, 2005). In the thyroid carcinomas, the
induction of apoptosis by the Fas ligand is stopped before
the activation of caspase 8 (Mitsiades et al, 2000). In our
laboratory, a microarray analysis of 93 follicular thyroid
tumours showed significant downregulation of caspase 3 expres-
sion in the 34 oncocytic tumours studied (data not shown)
(Fontaine et al, 2008).

In this publication, we show a significant overexpression of
DAP3 mRNA in three types of thyroid tumour (FTA, PTC and
OTT) compared with their NT tissue counterparts (Figure 2A). The
IHC staining of the DAP3 protein was similar to the one observed
for a mitochondrial antigen, suggesting that the major pool of
DAP3 is localised in the mitochondrion. The number of samples
used here in each type of tumours avoids trying to subdivide the
tumour types on the basis of DAP3 expression, as this would
reduce drastically the power of the statistical analysis for subtypes.
Rather, searching for a link between the expression of DAP3 and
the mitochondrial biogenesis, we show that, when thyroid tumours
have a rich mitochondrial content, whether they belong to the
oxyphilic tumour categories, to the papillary carcinomas or UMP
type, DAP3 overexpression is dependent on the cell mitochondrial
content (Figure 3). These data suggest that DAP3 may be necessary
for an increased mitochondrial biogenesis.

In an earlier microarray analysis carried out on thyroid
tumours, we found that oncocytomas overexpress 126 genes
compared with other tumours. Among these 126 genes, the
Mitochondrial Ribosomal Protein Large subunit 49 (MRPL49) and
13 genes coding for subunits of the OXPHOS complexes were
represented (Baris et al, 2004). A two-step study on the basis of
differential display and macroarray analysis of six oncocytic
thyroid adenoma samples showed that 12 of the 30 genes
upregulated at least two-fold in the tumours were mtDNA-encoded
genes (Jacques et al, 2005). Similarly to the data in renal and
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Figure 2 (A) Differential expression of DAP3, ELK1, ESRRA and RUNX1 in tumours and normal thyroid (NT) samples. We used a public microarray data
set (Giordano et al, 2006) containing data for 10 follicular thyroid adenomas (FTA), four NT, 15 oncocytic thyroid tumours (OTT) and 51 papillary thyroid
carcinomas (PTC). We considered differential expression with two-sided Wilcoxon test (* for Po0.05; ** for Po0.005). The box-plot representation
shows the median value of mRNA expression (bold line), the lower and upper limits of each box representing the first and third quartiles, respectively.
Whiskers represent the limits of extreme measurements. P-values are shown in brackets. A set of 40 thyroid samples (10 FTA, 10 NT, 10 OTT and 10 PTC)
was analysed by quantitative PCR (qPCR). Each expression level is normalised with respect to the normal tissue, the unit value representing isoexpression.
We considered overexpression with one-sided Wilcoxon test (* for Po0.05; ** for Po0.005). (B) DAP3 mRNA expression levels in oncocytic thyroid
adenomas (OTA) and oncocytic thyroid carcinomas (OTC). A set of twelve OTA and five OTC samples paired with normal tissue was analysed by qPCR
(bottom plot). DAP3 expression levels in tumours are subtracted by paired normal levels. DAP3 gene expression is shown in seven OTA, eight OTC and
four NT samples from the microarray data set (top plot). We considered overexpression with one-sided Wilcoxon test (* for Po0.05). The box-plot
representations for microarray and qPCR results are as in A.
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salivary oncocytomas, these analyses on thyroid oncocytoma
suggest a coordinated regulation of the nuclear and mtDNA genes
(Heddi et al, 1996; Baris et al, 2005). Functional analyses of the
thyroid oncocytic tumours also showed that overrepresented
OXPHOS complexes are functional (Savagner et al, 2001a,b).
These findings are in favour of efficacious mitochondrial
translation in these tumours. In the thyroid oncocytoma, the
upregulation of hDAP3 is also associated with low apoptosis. These
tumours may then be a good model to study specifically the
function of DAP3 in the efficacy or fidelity of mitochondrial
translation.

The results of our study taken together with the implication of
DAP3 in the composition of the small subunit of the mitochondrial
ribosome, suggest that the protein may serve as an actor or
regulator of mitochondrial protein synthesis. DAP3 could thus
play a role in maintaining mitochondrial homoeostasis on one
hand, and participate in the process of tumourigenesis on the

other. Furthermore, if the tumourigenetic process calls for
increased mitochondrial biogenesis, a defect in even one of the
proteins of the mitochondrial ribosome, such as DAP3, could lead
to cell apoptosis.
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