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Abstract

MicroRNAs (miRNAs) interact with target sites located in 3' untranslated regions (3'UTR) of 

mRNAs to down-regulate their expression when the appropriate miRNA is bound to target 

mRNA. To establish the functional importance of target localization in the 3' UTR, we modified 

the stop codon to extend the coding region of the transgene reporter through the miRNA target 

sequence. As a result, the miRNAs lost their ability to inhibit translation but retained their ability 

to function as siRNAs in mammalian cells in culture and in vivo. The addition of rare but not 

optimal codons upstream of the extended opening reading frame (ORF) made the miRNA target 

more accessible and restored miRNA-induced translational knockdown. Taken together, these 

results suggest that active translation impedes miRNA-programmed RISC association with target 

mRNAs, and support a mechanistic explanation for the localization of most miRNA target sites in 

noncoding regions of mRNAs in mammals.

MiRNAs are a class of short, 20- to 22-nt-long regulatory RNAs expressed in plants and 

animals1,2. Up to 4% of the human genome is predicted to code for over 400 miRNAs, 

which are estimated to regulate at least 30% of all human genes3-5. Although the specific 

functions of very few have been well established, a growing body of evidence indicates 

miRNAs play important regulatory roles in a vast range of biological processes 6-8. In 

plants, the majority of miRNAs hybridize to target mRNA with a near-perfect 

complementarity, and mediate an endonucleolytic cleavage through a similar, if not 

identical, mechanism used by the siRNA pathway 9. In animals, with few exceptions, most 

of the known miRNAs form an imperfect duplex/hybrid, with sequences located solely in 

the 3'UTR region of target mRNA (base-pairing of a minimum 7 nucleotide seed sequence is 

required) 10-12. The central mismatch between miRNA-mRNA hybridization may be 
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responsible for the lack of RNAi-mediated mRNA cleavage events13,14. The association 

between miRNA-programmed RISC and target mRNA induces translational repression 

through a poorly understood mechanism. There is evidence supporting models in which 

translation repression occurs at the initiation stage or later steps, including elongation 

(reviewed in 15,16). Repressed mRNA and associated Ago proteins are enriched in 

Processing bodies (P-bodies), where endogenous cellular mRNAs are kept for storage and 

degradation17,18, which may partially explain why miRNA-mediated translational 

inhibition is often coupled with some RISC-independent target mRNA degradation 19.

In contrast to an siRNA which can target almost any part of an mRNA and be fully 

functional, almost all identified target sites for endogenous miRNA are located in the 3'UTR 

of target mRNAs in animals. This has been established by extensive bioinformatic sequence 

analyses as well as by experimental approaches 2. To further define the molecular events 

involved in miRNA-induced silencing, we cloned both the human mir-30 and Drosophila 

bantam miRNA target sites into the 3'UTR of the luciferase and GFP reporter genes so that 

by deleting one nucleotide in the stop codon, we were able to extend the ORF into the target 

site while maintaining the bioactivity of the protein. Using these reporter constructs as a 

starting point, in combination with the corresponding shRNA/miRNA expression cassettes, 

we provide experimental proof that there is a functional basis for the observed distribution 

of miRNA target sites in mammalian systems.

RESULTS

MiRNA-mediated repression is abolished in extended ORFs

To establish if miRNAs can retain their negative regulatory activity if their targets remain in 

the 3' UTR of an mRNA but become embedded within the coding sequence, we constructed 

luciferase expression plasmids that contained no miRNA target sites; or tandem mir-30 

target sites in the 3'UTR; or mir-30 target sites with an additional single base-insertion 

abolishing the stop-codon and extending the ORF through the mir-30 sites (Figure 1A). 

Each plasmid was tested for miRNA-induced silencing in mammalian cells. Specifically, 

luciferase plasmids were co-transfected with plasmids that can direct the expression of 

miRNAs, such as sh-mir-30 (mismatch); sh-mir-30P (perfect complementarity); or sh-

Scramble (scrambled control) (Figure 1B,C). We first established that the mir-30 and 

mir-30P expressed from U6-driven cassettes were processed correctly and resulted in similar 

levels of the mature miRNA transcripts between transfection experiments (Figure 1C). As 

expected, co-transfection of plasmids expressing sh-mir-30, sh-mir-30P, or a scrambled 

shRNA with a Firefly luciferase (FF-luciferase) reporter construct without mir-30 target 

sites in HEK293 cells and NIH3T3 cells did not alter FF-luciferase expression, as measured 

by enzymatic activity in a dual-luciferase assay (Figure 1D, E). Moreover, this established 

there were no off-target effects using this reporter system from any of the U6-shRNA 

expressing constructs. Consistent with previous studies20, sh-mir-30 effectively down-

regulated FF-luciferase expression by more than 60%, while sh-mir-30P inhibited FF-

luciferase expression by >90% when tandem mir-30 target sites were present in the 3'UTR 

region (Figure 1D, E). Interestingly, when the same target sites were embedded within the 

extended coding region in both HEK293 cells and NIH3T3 cells (Figure 1D,E), sh-mir-30 
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9but not sh-mir30P)-induced repression was abolished (<3% for HEKs293 cells, and <15% 

for NIH3T3 cells).

The construct containing the tandem mir-30 target sites in the extended ORF was predicted 

to produce a FF-luciferase with extra amino acids at the C-terminal end. Although the 

luciferase activity from the extended ORF was in the linear range of the enzyme assay, it 

was about 100 times less active than the wild-type FF-luciferase (data not shown). A 

Western blot showed that, as expected, the ORF-extended protein migrated with a higher 

molecular weight and a signal intensity that was similar to the wild-type protein (Figure 1F). 

Importantly, relative changes in the protein band intensity for both the wild-type and 

extended ORF paralleled changes in luciferase activity measurements under all conditions 

when they were directly compared.

To confirm that both miRNA- and RNAi-mediated mechanisms were active, luciferase 

mRNA levels in transfected NIH3T3 cells were measured by ribonuclease protection assay. 

Co-expression of the sh-mir-30 and reporter containing the miRNA target in the 3'UTR 

resulted in 70% down-regulation of enzymatic activity and no detectable variation in 

mRNA, indicating that the reduction in protein level was primarily the result of translational 

repression, suggesting miRNA-mediated inhibition (Figure 1G). In contrast, the FF-

luciferase-extended ORF mRNA concentration did not change in the presence of mir-30 

expression, but was greatly reduced when mir-30P was co-expressed (Figure 1G). These 

results show that while miRNA-mediated translational inhibition was limited to targets in 

the untranslated region, RNAi-mediated activity directed against the same sequence 

remained functional, whether or not the site was within a coding sequence. This is consistent 

with a previous report 21 where only minor reductions of siRNA-mediated cleavage 

efficiency were observed when target sites were switched from an untranslated to translated 

region.

To establish that miRNA-mediated repression between target sites in the 3'UTR and coding 

region was not limited to a single reporter system or cell line, we placed the same miRNA 

targets into an EGFP reporter gene and co-expressed with the various miRNAs (Figure 1) in 

both NIH3T3 (Supplementary Fig. 1) and HEK 293 cells (not shown) and obtained similar 

results.

As a final test for fidelity, we replaced the mir-30 sequences with a bantam miRNA target 

and corresponding miRNA originally identified in Drosophila melanogaster and not 

believed to have a direct mammalian counterpart22. Co-transfection studies using U6-

bantam expression plasmids in mammalian cells (Supplementary Fig 2 A, B) gave virtually 

identical results as observed for the mir-30 constructs in both HEK293 cells and NIH3T3 

cells. The ability of bantam miRNA to repress translation was lost when the target was part 

of the extended ORF, while the RNAi activity induced by bantam-P was equally robust, 

whether or not the target was embedded into a coding region (Supplementary Fig 2 C,D). 

Moreover, to establish that accessibility and functionality of the miRNA target were 

functions of its placement in the 3'UTR rather than its specific position in the 3'UTR, we 

found that varying its location relative to the stop codon and poly-A signal with the insertion 
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of an irrelevant ~700 bp fragment had little effect on miRNA-induced silencing 

(Supplemental Fig 3).

ORFs are refractory to miRNA-mediated regulation in vivo

To establish that the regulatory miRNA circuit is biologically operative under physiological 

conditions in whole mammals, we examined the efficiency of the mir-30-Luciferase system 

(Figure 1) in mouse liver. We selected mir-30 because it is not believed to be highly 

expressed in mouse liver 23,24. Luciferase expression plasmids (Figure 1) were co-

transfected into mouse liver via a hydrodynamic tail vein infusion, a method known to 

transfect up to 30% of mouse hepatocytes in vivo25. Four days later, luciferase expression 

was determined (Figure 2A). To control for variation in transfection efficiencies between 

individual animals, the FF-luciferase expression data was normalized (Figure 2B) to an 

added control plasmid expressing a third unrelated transgene product (see Methods).

Data obtained from mouse liver was concordant with data from tissue culture cells. While 

RNAi-mediated knockdown activity was robust whether the target was in the 3'UTR or part 

of the extended coding region, miRNA-induced silencing was severely compromised when 

the target was included within the extended ORF.

Rare codons upstream of the ORF miRNA target rescues knockdown

Since our results suggested that active translation of mRNAs precludes miRNA-induced 

knockdown, we predicted that ribosome hindrance would interfere with the ability of 

miRNA and its associated machinery to attach to its target site. To test this, we introduced a 

cluster (9 amino acids) of rare codons upstream of miRNA target sites located in extended 

luciferase ORF (Figure 3A), an approach used to cause ribosome pausing in 

eukaryotes26,27. Since we could not measure ribosome translocation directly, we 

constructed a number of different control sequences for direct comparisons. We inserted the 

same 9 amino acids in the identical location using an optimized set of codons, or placed the 

rare codons downstream of the miRNA target. When the rare codons were upstream of the 

target, miRNA-induced silencing from sh-mir-30 was restored to a level close to what was 

observed (rescue >80% and 70% in 293 and NIH 3T3 cells, respectively), while replacing 

the rare with optimal codons or placing the rare codons downstream of the miRNA target 

was unable to rescue miRNA-induced silencing (Figures 3B-E). This confirmed that the 

additional nucleotides or the extra amino acids were not responsible for the differential 

activity of the miRNA target. To eliminate the possibility that adding the 27 nucleotides 

altered the local RNA folding structure -- and, hence, the accessibility and efficacy of 

miRNA target sites -- we inserted these sequences upstream of mir-30 target sites, which 

remain in the 3'UTR in the FF-luciferase reporter construct. MiRNA-mediated repression 

was not changed (Figure 3F). RNA analyses (Figure 3G) confirmed that the rare/optimal 

codon clusters had no substantial effect on the steady-state mRNA levels.

To further validate that the rescue of the miRNA repression was due to the brief translational 

pause mediated by rare codons26,27, we mapped the accessibility of sequences downstream 

of the rare and optimal codons using a DNA-oligo-RNase H approach 28 (Figure 4A). The 

sequences immediately downstream (~70 nucleotides - Oligos 1-3 in Figure 4) of the rare 
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codons were more accessible to RNase H-mediated cleavage compared to the same 

sequences in the mRNAs containing the optimal codons (Figure 4B). In contrast, sequences 

farther downstream of the rare/optimal codons in the 3'UTR were similar in their 

accessibility to RNase H cleavage (Oligos 4 and 5, Figure 4A), indicating that the difference 

in accessibility is specific to the region just downstream of the rare codon track (Figure 4B). 

In addition, and consistent with our prediction (Figure 4A), RNase H-mediated cleavage was 

equal or modestly less robust in sequences contained upstream of the rare vs. optimal codon 

mRNA sequences, suggesting a slight backup of ribosomes upstream of the rare-codon 

insertion (Supplementary Fig 4). Since the steady-state production of protein (Fig 3E) and 

the average density of ribosomes along the mRNA as determined by polysome gradient 

fractionation (supplementary Fig 5) was not substantially altered by the rare-codon insertion, 

the ribosomal pause during active translation over the specific region covered by oligos 1-3 

was likely quite brief.

Repressed reporter mRNAs are associated with polyribosomes

Our data was consistent with the requirement of a stable association between miRNA-RISC 

and target mRNA for miRNA-induced translation repression. We next investigated whether 

this association results in exclusion of the target mRNA from the translational machinery by 

analyzing the polysome profiles of repressed target mRNAs. Whole cell extracts were 

prepared from NIH3T3 cells transfected with either a luciferase or an EGFP reporter gene 

containing tandem mir-30 target sequence in either 3'UTR or ORF, as well as plasmids 

expressing sh-mir-30 or sh-scramble. Polysome sedimentation profiles of luciferase reporter 

mRNA and control RL-luciferase mRNA were measured by RPA (Supplementary Fig 6), 

while EGFP mRNA and actively translated β-actin mRNA were determined by Northern 

blot (Supplementary Fig 7). Importantly, reporter mRNAs containing target sequences in 

their 3'UTRs or in the extended ORF and co-expressed with sh-scramble or sh-mir-30, 

displayed distribution profiles similar to actively translated mRNA (RL-luciferase or actin) 

(Supplementary Fig 6B and Supplementary Fig 7 A-E). To establish that these mRNAs were 

actually associated with polyribosomes, we performed polysome gradient analyses after 

treatment with puromycin or EDTA, both of which release polysomes. As shown in 

Supplementary Figs. 6 and 7, the miRNA-repressed mRNAs shifted to the slow-sedimenting 

part of the gradient to the same degree as actively translated mRNA after puromycin 

(Supplementary Fig 6C and Supplementary Fig 7F and H) or EDTA treatment 

(Supplementary Fig 6D and Supplementary Fig 7G and I). These results strongly favor a 

model where miRNA-targeted mRNAs remain associated with the polyribosome. At first 

consideration, these results appear concordant with some studies 29-33 but contrast with 

other studies where miRNA-repressed mRNAs were found in the fast-sedimenting34,35 or 

puromycin-resistant, slow-sedimenting pseudopolysomal fractions 36.

Discussion

Taken together, our studies, using multiple expression systems, cells, and miRNA targets, 

are in good concordance. While our results suggest that location within the 3'UTR may not 

cause a large functional difference, there does appear to be a functional reason for the 

localization of miRNA targets in the 3'UTR. We propose that these functional constraints 
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may be the primary explanation for the observed miRNA target distribution pattern found in 

mammalian cells. However, other studies have reported that artificially designed, 

mismatched siRNA or shRNA co-delivery studies can result in some translational repression 

when mRNAs contained target sequences in the coding regions 37,38. The source of these 

contradictions is not completely clear, but in several studies, the mismatched synthetic 

siRNAs were provided in very high concentrations. Other factors possibly contributing to 

the degree of repression between miRNAs and their corresponding targets may include 

sequence composition 4, number of target sites 39, local RNA structure40 and distance 

between target sites41. Adding or removing miRNA target sites in coding regions may not 

elucidate the true natural functional differences between a target site residing in the coding 

region and 3'UTR. In our study, we carefully designed our reporter constructs such that there 

was only one nucleotide difference between the mRNA sequences we directly compared. 

Therefore, the abolishment of miRNA-induced gene repression should be a direct result of 

changing the 3'UTR to ORF without making major alterations in the mRNA sequence.

Our data support a model whereby miRNA-programmed RISC is required to remain 

attached to the target mRNA to effectively silence translation in cis. Moreover, when target 

sites remain in the same site of the mRNA but become part of the coding region, ribosomal 

complexes override and inhibit the miRNA-programmed RISC from attaching to the target 

site. If the translational process is slowed, we speculate there is less physical constraint by 

the ribosomes, thus allowing miRNA-programmed RISC to attach to the target.

This process seems to be functionally distinct from RISC RNAi-mediated RNA degradation, 

since converting the miRNA to give it perfect complementarity to the target still resulted in 

loss of the mRNA, presumably through the RNAi pathway whether the miRNA target was 

part of the extended coding sequence or in the 3'UTR. This is consistent with the finding 

that, unlike in mammals, miRNA target sites in plants are widely distributed across coding 

regions, since nearly all of them have perfect complementarity with their target sequences 

and function through an RNAi-mediated degradation pathway. Curiously, the only known 

mammalian miRNA which targets the coding region in the mRNA has perfect 

complementarity with its targets and also functions through RISC-mediated cleavage42. 

Nonetheless, we cannot exclude the possibility that some functional miRNA targets exist in 

coding regions. If such sites are identified, it will be of great interest to determine if they are 

preceded by rare codons. In fact, Agami and colleagues provide evidence for a functional 

miRNA target in the coding region of an endogenous mammalian gene.43 The mRNA was 

active when it had an extensive 17bp but not the more classical 7bp 5' seed match with the 

mRNA sequence. This suggests that the down-regulation may have been mediated by RNAi 

cleavage rather than translational down-regulation44.

Also of interest in future studies is determining when functional miRISC-mRNA complexes 

can be assembled in the post-transcriptional life of an mRNA . Our results show that if 

translocation of ribosome is slow, miRISC complexes can still form after translational 

initiation begins. We favor a model where miRNA-RISC biding to actively translating 

mRNAs result in reduced translational elongation/termination concordant with a reduction 

in ribosomal initiation and possible nascent peptide destabilization.32,33
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While we provide evidence for why endogenous miRNA target sites are found in non-

coding regions, it is logical to ask why relatively few miRNA targets are localized in the 

5'UTR. When the translation initiation complex forms around the cap structure, the 40S 

subunit of ribosome will scan the 5'UTR until identifying the first AUG where the 60S 

subunit joins to form an 80S ribosome. It is possible that the scanning process impairs the 

formation of miRNA-RISC complexes in some 5'UTRs depending on its structure, which 

can be quite complex. Our preliminary studies were consistent with this because we found a 

great degree of discordance between different miRNA target 5'UTR insertions and the 

degree of translational repression (Gu and Kay, unpublished data). Nonetheless, there are 

examples of miRNAs that do function with 5'UTR targets. While one study shows that the 

mir-122 target sites located in the 5'UTR region of HCV are important to maintain robust 

viral replication 45, another reports that the mRNA-bearing miRNA target sites in the 

5'UTR can be repressed as effectively as those having miRNA target sites in the 3'UTR46. 

Further studies are needed to establish the extent to which functional miRNA targets are 

present in these non-coding regions.

METHODS

Plasmid constructions

Both strands of 2XMir30 target sites were chemically synthesized (sense strand: 5'-

AATTCGCTGCAAACAAAGACTGAAAGAACTAGTGCGCTGCAAACAAAGAC 

TGAAAGCTGCA;antisense strand5'-GCTTTCAGTCTTTGTTTGCAGCGCACTA 

GTTCTTTCAGTCTTTGTTTGCAGCG:), annealed, purified, and inserted between EcoRI 

and PstI sites 67 bp downstream of FF-luciferase coding region in pGL3 construct with 

modified 3'UTR sequences. PCR-based point mutagenesis approaches were used to create a 

single-point insertion to disrupt stop codon of the FF-luciferase gene. A similar approach 

was used to generate the GFP reporter system and FF-luciferase reporter system with 

bantam target sequences. An ~700 bp long sequence in the middle of a kanamycin-resistant 

gene coding region was PCR amplified, then inserted into various cloning sites upstream or 

downstream of miRNA target sites to reposition the miRNA targets within different regions 

of the 3'UTR.

Rare codon sequences (5'- GCG CCG GTA ACG GTA CCG GCG ACG GCG -3') or 

optimal codon sequences (5'- GCC CCC GTC ACC GTC CCC GCC ACC GCC-3') were 

inserted either 53bp upstream or immediately downstream of mir-30 target sites. Mir-30/

mir-30P or bantam/bantam-P shRNAs were designed as a passenger strand, followed by 

mir-22 loop sequence (CCTGACCCA) followed by the guiding strand sequence. These 

were cloned downstream of U6 Pol III promoter.

Cell culture and Transfections

Adherent HEK293 and NIH3T3 cells were grown in Dulbecco's modified Eagle's medium 

(DMEM; Gibco-BRL) with L-glutamine and 10% heat-inactivated fetal bovine serum with 

antibiotics. All transfection assays were done using Lipofectamine 2000 (Invitrogen) 

following the manufacturer's protocol. HEK293 and NIH3T3 cells at 90% confluency were 

transfected in 24-well plates with 50ng FF-luciferase or EGFP reporter DNA, 50ng shRNA 
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expression DNA, and 5ng RL-luciferase DNA, unless specified otherwise. Unless indicated, 

cells were assayed 36hrs after transfection.

Dual-Luciferase Assay

FF-luciferase and RL-luciferase were measured using Promega's dual-luciferase kit (cat 

E1980) protocol and detected by a Modulus Microplate Luminometer (Turner BioSystems).

Western Blots

NIH3T3 cells (36h post-transfection) were lysed with mammalian protein extraction reagent 

from M-PER (PIERCE cat #78501) with protease Inhibitors (Roche cat #11836153001). 

The samples were denatured in Laemmli sample buffer (Bio-RAD #161-0737) for 5 minutes 

at 95°C and separated in 10% (w/v) SDS-PAGE gels. The denatured proteins were then 

electro-transferred onto a PVDF membrane blocked with 5% (w/v) fat-free milk powder in 

PBS and 0.5% (v/v) Tween 20 for 1hr. Either an anti-FF-luciferase antibody (diluted 1:5000, 

Abcam), anti-GFP antibody (diluted 1:1000, Abcam), or anti-β-actin antibody (diluted 

1:8000, Sigma) was used. Following three washes in PBS for 5 minutes, a secondary 

antibody (HRP-anti-mouse IgG, Sigma, dilution 1:10000) was added for 1h at room 

temperature, followed by three 5-minute washes in PBS. Antibody-bound proteins were 

visualized using the ECL Western blotting analysis system (Amersham, RPN2109).

Northern Blots and RPA

Total RNA was isolated using Trizol (Invitrogen). The DNA-free kit (Ambion Cat #1906) 

was used to purify total RNA from contaminating DNAs. Ten-20 ug of total RNA was 

electrophoresed on 1% (w/v) agarose gel. After transfer onto Hybond-N1 membrane 

(Amersham Pharmacia Biotech), target mRNAs were detected using P32-labeled full-length 

cDNA probes.

RPA assays were carried out according to Ambion PRA III kit (cat # AM1414). P32-labled 

antisense RNA probes against either FF-luciferase or RL-luciferase were generated by in 

vitro transcription (Ambion MAXIscript Kit, Cat #AM1308). DNA templates were 

produced by PCR using primer sets (FF-luc: ATCCATCTTGCTCCAACACC and 

TTTTCCGTCATCGTCTTTCC; RL: GATAACTGGTCCGCAGTGGT and 

ATTTGCCTGATTTGCCCATA). Total RNA from NIH3T3 cells were isolated by Trizol 

(Invitrogen) 36hrs after transfection and purified using a DNA-free kit (Ambion Cat #1906). 

Hybridization reactions were at 55°C overnight and RNase digestion was at 37°C for 30 

minutes using the RNase A/T1 cocktail provided in the RPA III kit.

Hydrodynamic tail injection and luciferase imaging

Animals studies were done in concordance with NIH guidelines and the Stanford Animal 

Care Committee. Female BALB/c mice, 6-8 weeks of age (Jackson Laboratory, Bar Harbor, 

Maine) were hydrodynamically infused with a mixture of 2 ug FF-luciferase DNA, 2 ug of 

the appropriate shRNA plasmid, 2ug of an RSV-hAAT expression cassette DNA , and 34 ug 

pBluescript plasmid DNA (Stratagene), and were then imaged for luciferase. As described 

47, raw light values were reported as relative detected light photon per minute, and 

normalized serum hAAT expression
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Polyribosome Fractionation

Polysomal mRNA was prepared based on the method described previously 48. Briefly, 

before being harvested, cells were incubated with 0.1 mg ml-1 cycloheximide for 3 minutes 

at 37°C. NIH3T3 cells were harvested directly on their culture dish in lysis buffer (15 mM 

Tris-Hcl, pH 7.4, 15 mM MgCl2, 0.3 M NaCl, 1% (v/v) Triton X-100, 0.1 mg ml-1 

cycloheximide, 1 mg ml-1 heparin), and loaded onto 10-50% (w/v) sucrose gradients 

composed of the same extraction buffer lacking Triton X-100. The gradients were 

sedimented at 35,000 rpm for 180 minutes in a SW41 rotor at 4°C. Fractions of equal 

volumes were collected from the top using an ISCO fraction collector system. RNAs were 

extracted by phenol/chloroform followed by isopropernol precipitation, 75% (v/v) ethanol 

washes, and re-suspended in DNase I reaction buffer (Turbo DNase, Ambion).

Mapping accessibility

This approach is modified from a previous publication49. HEK293 cells were transfected 

with plasmids expressing FF-luciferase reporter gene embedded with the cluster of rare or 

optimal codons along with a GFP control plasmid. Thirty-six hours post-transfection, cells 

were harvested after incubation with 0.1 mg ml-1 cycloheximide for 3 minutes at 37°C. 

After three washes with PBS, approximately 2×107 cells were pelleted and re-suspended in 

2x volume of the cell pellet in hypotonic swelling buffer (7 mM Tris-HCl pH7.5; 7 mM 

KCl; 1 mM MgCl2; 1 mM beta-mercaptoethanol). After a 10-minute incubation on ice, 

samples were Dounce homogenized (VWR, San Diego, CA) 40 times with a tight pestle B 

followed by addition of one tenth of the final volume of neutralizing buffer (21 mM Tris-

HCl pH 7.5; 116 mM KCl; 3.6 mM MgCl2; 6 mM beta-mercaptoethanol). After 

centrifugation of the homogenates at 20,000g for 10 minutes at 4°C, supernatants were 

collected. The RNase H-mediated-cleavage experiments were carried out in a total volume 

of 300 uL, containing 280 uL cell extracts, 1 mM dithiothreitol (DTT), 20-40 units RNase-

Inhibitor (Promega, Madison, WI) and 50 nM each of the defined sequence antisense 

deoxyribooligonucleotides (ODNs) (Supplementary Table 1). The ODNs were incubated in 

the extracts for 5 minutes at 37°C. Total RNA was extracted by phenol/chloroform 

extraction. After the RT reaction (Invitrogen RT kit, cat # 18080-051) with oligo dT primer, 

real time-PCR (Qiagen, QuantiTect SYBR green PCR kit) was performed with two primers 

flanking the cleavage sites. (upstream: AGGCCAAGAAGGGCGGAAAG or 

ACCGCGAAAAAGTTGCGCGG; downstream: TCACTGCATTCTAGTTGTGG). All 

results are obtained with R > 0.98). Each oligonucleotide was tested six times in two 

separate experiments. P values were calculated using the student's t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MiRNA-mediated repression is abolished in extended ORFs
The structure of the reporter constructs used in this study. pGL3-control containing no 

miRNA target sites; pGL3-3'UTR with two tandem mir-30 targets sites located in 3' 

untranslated region; and pGL3-ORF with upstream stop-codon abolished and mir-30 target 

sites covered by extended ORF. Grey box represents the ORF of FF-luciferase gene. Dark 

box represents the tandem mir-30 target sites with six base-pairs in between. Positions of 

upstream (original) stop-codon and downstream stop-codon are indicated by solid and dotted 

arrows, respectively.

(A) Schematic illustration of the interactions between mir-30 target sequence and guiding 

strand sequence of sh-mir-30 and sh-mir-30P, respectively. (C) NIH3T3 cells were co-

transfected with plasmids, as described above. Sh-RNA expressed from U6-driven cassette 

was detected by Northern blot using either a probe against mir-30 (Up) or a probe against 

mir-30P (Down). Due to sequence similarity, cross-hybridization was observed. Endogenous 

U6 snRNA was also detected as an internal control.

(D)HEK293 cells and (E) NIH3T3 cells were co-transfected with different combinations of 

plasmids, and dual-luciferase assays were performed 36hr post-transfection. FF-luciferase 

activities were normalized with RL-luciferase, and the percentage of relative enzyme 

activity compared to the negative control (treated with sh-scramble) was plotted. Error bars 

represent the standard deviation from three independent experiments, each performed in 

triplicate.

(F) Protein analysis by Western blot was performed in transfected 3T3 cells. A protein band 

of β-actin was used as an internal control. Positions of the bands representing wild-type or 

mutant FF-luciferase were indicated by arrows. A non-specific band was indicated by an 

asterisk. (G) RNA levels of either FF-luciferase or RL-luciferase from transected 3T3 cells 
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were detected by ribonuclease protection assay (RPA). Full-length probes and protected 

bands were indicated in the figure. A band labeled with an asterisk is possibly due to a 

truncated RL probe and, therefore, corresponding to RL-luciferase mRNA level.
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Figure 2. MiRNA-mediated repression studies were concordant in mouse liver in vivo
(A) The plasmids described in Figure 1 were transfected into mice by hydrodynamic tail 

injection (N = 5 per group, except group 4, N = 4, one animal died after injection). Real-

time transgene expression was determined four days after injection. Levels of luciferase 

reporter activities were quantified as shown in each image.

(B) A control plasmid, RSV-hAAT was co-transfected within each sample as an internal 

control for transfection efficiency. The FF-luciferase activities were normalized to serum 

hAAT levels measured by ELISA. Percentage of relative luciferase activity compared to 

negative controls (treated with sh-scramble) was plotted. Error bars represent the standard 

deviation.
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Figure 3. Insertion of rare-codons upstream of the extended miRNA ORF rescues miRNA-
mediated knockdown
(A) The maps of the reporter constructs used in this study. Plasmids containing tandem 

mir-30 target sequence in either 3'UTR (a1) or ORF (a2) are the same as those described in 

Figure 1. A cluster of rare codons (represented as a dark box) were inserted either upstream 

(a3) or downstream (a4) of mir-30 target sequences. In another construct, the upstream rare 

codons (a3) were replaced with optimal-codon sequences that code for the same peptide 

sequence. The arrows and grey box represent the position of the miRNA target sequences.

(B) HEK293 cells and (C), (D) NIH3T3 cells were transfected with the reporter constructs 

illustrated in (A). Dual-luciferase assays were performed 36hrs post-transfection. FF-

luciferase activities were normalized with RL-luciferase, and the percentage of relative 

enzyme activity compared to the negative control (treated with sh-scramble) was plotted. 

Error bars represent standard deviation from three independent experiments, each performed 

in triplicate.

(E) Protein levels of reporter genes were analyzed by Western blot in transfected 3T3 cells.

(F) NIH3T3 cells were transfected with constructs as indicated in the figure. Insertion of 

rare-codon cluster (dark box) upstream of mir-30 targets sites in the 3'UTR did not 

substantially change the miRNA-induced repression.

(G) RNA levels of reporter genes were analyzed by Ribonuclease Protection Assay. The 

loading sequence of line 1 to 11 is same as noted in (E).
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Figure 4. Insertion of rare codons increases the accessibility of downstream sequences to RNase 
H-mediated cleavage
(A) Experimental strategy. Cells were transfected with the luciferase reporter constructs 

containing the cluster of rare or optimal codons (Figure 3A). After fixing the ribosomes on 

the mRNA by the addition of cycloheximide, one of six oligos corresponding to the region 

between rare/optimal codons and target 3'UTR was added into the cell extracts. The 

hybridization of DNA oligos at the target site within the mRNA results in cleavage mediated 

by the endogenous RNase H activity in the cell extracts. The extent of the cleavage 

represents the relative RNA accessibility, which was quantified by real-time RT-PCR using 

two primers flanking the cleavage sites. (B) Quantification of RNase H-mediated cleavage. 

The values are presented as the relative PCR signal compared to control samples treated 

with a scrambled oligonucleotide and normalized for a GFP mRNA obtained from a co-

transfected control plasmid.
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