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Abstract

Instrumentation used in infrared microspectroscopy (IR-MSP) permits the acquisition of spectra from
samples as small as 100 pg (10719 g), and as small as 1 pg for Raman microspectroscopy (RA-MSP).
This, in turn, allows the acquisition of spectral data from objects as small as fractions of human cells,
and of small regions of microtome tissue sections. Since vibrational spectroscopy is exquisitely
sensitive to the biochemical composition of the sample, and variations therein, it is possible to monitor
metabolic processes in tissue and cells, and to construct spectral maps based on thousands of IR
spectra collected from pixels of tissue. These images, in turn, reveal information on tissue structure,
distribution of cellular components, metabolic activity and state of health of cells and tissue.

Introduction

This paper presents a review of the first decade of vibrational micro-spectral imaging of human
cells and tissue. Efforts to analyze tissue spectroscopically, with the aim of detecting disease,
date back over 50 years. These earliest efforts by Blout and Mellors,L and Woernley,2 who
investigated IR spectra of tissue homogenates in search for indicators of disease, were carried
out using single beam, manually scanned instruments, which required milligram quantities of
sample, and exhibited poor sensitivity and reproducibility. Furthermore, since the framework
for interpreting the observed spectra had not been developed, the field was abandoned.

The 1950’s and 1960°’s saw enormous advances in instrumentation for vibrational
spectroscopy, and acceptance of these methods in analytical laboratories. In addition, methods
for the interpretation of vibrational spectra of model bio-molecules (peptides, proteins, nucleic
acids and phospholipids) were developed, and detailed studies on structure—spectra correlation
in both infrared and Raman spectroscopy were reported. These exciting decades resulted in
thousands of papers on bio-vibrational spectroscopy, establishing vibrational spectroscopy as
a sensitive method to probe secondary structure, dynamics and solvation of biomolecules, and
the interactions between them. These results are summarized in a number of extensive
monographs, and have spawned several international conferences on this subject.3‘5

Armed with this knowledge, and the general acceptance of Fourier transform (FT)
methodology into the field of IR spectroscopy, researchers in the late 1980’s started
investigations on living systems again.6 The goal of these early studies was to develop a
spectroscopic system for classification and identification of bacterial and fungal pathogens.
The combination of modern FT-IR instrumentation, which allowed high quality spectra to be
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obtained from macroscopic samples of bacteria, and sophisticated methods of multivariate
statistics to analyze the spectra, created a method capable of distinguishing bacteria to the strain
level. Furthermore, distinction of gram positive from gram negative bacteria, and of drug
sensitive and drug resistant strains of the same species, is possible.

By the early 1990’s, research aimed at detecting disease in human cells and tissue was started
by Wong at the NRC in Ottawa. These efforts were based on macroscopic acquisition of
spectral data from pellets of cells containing in excess of 106 cells. Since homogeneity of the
cellular samples was not assured, many of the results reported were spurious.7 Similarly, for
the analysis of tissue sections, data were collected for areas of several square millimeters. Thus,
the focal character of early cancerous disease was not accounted for, and an accurate correlation
between the histopathology of the area sampled and the corresponding spectra was not possible.
Therefore, some of the early tissue results were spurious as well .8

The chances of identifying spectral indicators of disease are much more favourable when
micro-spectroscopic methods (IR-MSP and RA-MSP) are used. In these methods, spectra are
collected through a microscope, along with high quality visual images of the exact spot from
which spectra were acquired. Thus, a detailed histopathological correlation between spectra
and disease stage is possible. These micro-spectroscopic methods, which are barely ten years
old at this point in time, bypass the aforementioned issue of tissue heterogeneity.9

Maximal information for cells and tissue can be obtained by sampling spectral data in a
mapping or imaging approach in which 1000°s or 10,000’s of spectra are collected for
individual “pixels” (spatial elements). Analysis of such spectral “hypercubes” (consisting of
pixel coordinates, wavelength and intensity informationf yields astounding information on
tissue architecture, and presence/absence of disease.10:11 such tissue maps permit a direct
correlation between the spectral map and the sample histopathology; in fact, spectral imaging
(or mapping) reproduces the tissue architecture in both normal and diseased tissue samples.
An example of a very early tissue map of a section of cervical epithelium, collected manually
in 1997 with a spatial resolution of about 80 um, is shown in Fig. 1. The data contained in this
figure, although primitive by today’s standard, refuted earlier mis-interpretations of spectral
changes observed in the detection of cervical disease, and pointed out the necessity of collecting
data in a spatially resolved mode.

Materials and methods

1. Experimental methods

The infrared spectral results for tissues and cells reported in this review were collected using
one of three IR-MSP instrument in the authors’ laboratory: a Bruker (Billerica, MA) IRScope
Il coupled to a Vector22 FT-IR bench, a Perkin-Elmer (Shelton, CT) Spectrum One/Spotlight
300 imaging system, or a SensIR (Danbury, CT) IlluminatIR instrument. Details of all three
spectrometers can be obtained from the manufacturers, and from published literature.12 Raman
spectral maps were collected using a LabRam (JY Horiba, Edison, NJ) system equipped with
a HeNe laser and a computer controlled microscope stage.

IR-MSP data can be collected in transmission or in reflection microscopy. In the former case,
samples are mounted on IR-transparent microscope slides made from materials such as
CaF,, BaF, or ZnSe. These slides are transparent in the visible range as well, and can be used
for standard histopathology. However, these sample substrates are expensive, and may have
undesirable mechanical and optical properties. For reflection measurements, glass slides coated
with a thin layer of silver atoms, and overcoated with tin oxide, can be used (Kevley
Technologies, Chesterland, OH). These slides are sufficiently transparent in the visible range
to allow standard histopathology, and give excellent “reflection—absorption” spectra. This term
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was coined to describe the fact that the signal arises from a double pass (after reflection from
the silver surface) of the beam through the sample. Raman maps were collected from cells
grown onto CaF; slides.

2. Sample preparation

Tissue sections are typically cut from fixed, paraffin-embedded tissue blocks using a
microtome, and mounted on the optical windows described above. The tissue sections were
reconstituted by a process of washing in solvents of increasing polarity, ending with water.
Tissue sections between 5 and 6 um thick were used. Tissue sections can be stained
(hematoxylin and eosin, H&E, or more specific stains) after infrared data acquisition for visual
imaging and pathological examination.

Single cells, grown under standard cell culture protocol, can be grown directly onto the sample
substrate, or can be transferred from the cell culture, after appropriate washing steps, onto a
substrate as suspensions in buffered saline (BSS). Generally, the cells and tissue sections adhere
so strongly to the substrate that the entire microscope slide can be treated chemically to remove
certain components to facilitate the assignment of certain spectral components.

3. Computational procedures

For the analysis of spectral mapping data sets, which may contain up to 40,000 spectra and
may be as large as 400 MB, novel methods of spectral interpretation were employed. We
utilized unsupervised, hierarchical cluster analysis (HCA), which had previously been applied
very successfully for the spectral identification of micro—organisms,6 to analyze the spectral
data sets. HCA determines the similarity of spectra in a data set by well-established algebraic
methods of spectral recognition (see below), and assigns “cluster membership” based on this
similarity. The pseudo-color maps, based on the spectral similarity only, do not require any a
priori knowledge of tissue type, state of disease, or composition. Hence, HCA is referred to as
an “unsupervised” method.

A uniform data pre-processing protocol was used for all computational procedures. First, the
data set is cropped in both spatial and spectral dimension (typically between 1800-800
cm™1). Next, pixels with too high or too low absorbance values, or with poor signal/noise ratio,
are removed from the data set. The remaining spectra are then smoothed/derivatized using a
Savitsky—Golay algorithm, and base line corrected within this region. Finally, all spectra were
vector normalized between 1800 and 800 cm™1.,

After preprocessing, the covariance matrix Cy is calculated for all spectra in the data set. This
matrix, defined by eqgn. (1),

N __ N -
D SE=8HY s - 5)
i=1 i=1
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i=1 i=1

c

(1)

expresses the similarity, or “distance”, between each spectrum and all other spectra of the data.
Each element of the covariance matrix (also known as the correlation coefficient between the
spectra) is obtained by forming the inner product of two normalized spectral vectors L and M,
which are represented by 1-dimensional columns of N absorbance (or derivative) values. The
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symbols g and g represent the mean values for each spectral vector. Since all spectra are
normalized, identical spectra exhibit a correlation coefficient of unity.

The resulting covariance matrix C| y contains P2 entries, where P is the total number of spectra
within the data set. However, since the matrix is symmetric, only P(P — 1)/2 spectral distance
elements Cy 4 need to be computed. Nevertheless, for large data sets, the size of the covariance
matrix may exceed the address space of Pentium IV-class processors, and the computational
problems to be described next are rather unyielding.

Subsequently, the two most similar spectra in the hypercube, i.e., the spectra whose correlation
factor is closest to unity, are merged into a new object. A new column of the covariance matrix
column is calculated for the new object and all existing spectra. The process of merging spectra
or clusters into new clusters is repeated, and the C| 4 matrix is re-calculated, until all spectra
have been combined into a few clusters. This process combines the most similar spectra into
the same cluster, while keeping track of which spectra have been incorporated into each cluster
(cluster membership).

Subsequently, pseudo-color maps based on cluster membership are constructed by assigning
a color to each spectral cluster, and displaying this color at the coordinates at which each
spectrum was collected. Thus, all pixels in a pseudo-color map that have the same color are
from closely related spectra. The number of clusters is adjusted such that good correspondence
with the pathological images are obtained. The mean cluster spectra can be extracted and used
for the interpretation of the chemical or biochemical differences between clusters

A signal-to-noise (S/N) level of better than 500:1 is preferable for good clustering, but data
with somewhat higher noise (S/N ~ 100) still produce good spectral images. In this respect,
cluster analysis is more stable than other methods of multivariate analysis such as principal
component analysis (PCA), in which an increasing amount of noise is accumulated in higher-
numbered principal components.

Cluster analysis was performed by importing data hypercubes in native instrument data format
into the CytoSpec™ FTIR imaging software pemckage.13 The maps were processed on personal
computers equipped with 2.4 GHz Pentium IV processors, or on a workstation built around a
2.2 GHz Athlon 64-hit processor and 8 GB of RAM.

Results and discussion

1. Tissue

We shall present a number of examples of tissue spectral maps, which demonstrate the progress
on both experimental as well as interpretational fronts. We believe that spectral imaging
methods are on the verge of being introduced into medical arenas for fast screening of tissue
biopsies.

Fig. 2 shows results collected for cervical epithelium. We include this result since it
demonstrates the sensitivity of IR-MSP toward different tissue types normally found in a
biopsy, and since it refutes the approach taken by a number of researchers for the interpretation
of exfoliated cervical cells.”14

Epithelial tissue is particularly important in histopathology, since many common forms of
cancer (breast, colon, prostate, cervix, skin, etc) are either adenocarcinomas of glandular
epithelium, or carcinomas of squamous epithelium such as basal cell carcinomas. Since
epithelial tissue covers the surface of organs, and therefore, is exposed to a broad range of
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aggressive chemical or physical conditions, adenocarcinomas and squamous carcinomas are
among the most common forms of cancer.

In the human cervix, for example, a ca. 0.2 mm thick layer of squamous epithelium covers the
connective tissue of the ectocervix. The squamous epithelium is constantly being renewed in
a process in which new cells are created by cell division of an innermost (basal) layer of the
squamous tissue. The resulting daughter cells differentiate and migrate to the surface of the
squamous tissue, where they will eventually die and be shed off. We have demonstrated that
this maturation process can be monitored by IR-Msp.15-17

Fig. 2A shows a photomicrograph of a H & E stained section, 500 um x 500 um in size, of the
ectocervical and endocervical epithelium and the squamo-columnar junction (SCJ) along with
red blood cells underlying the epithelium. Fig. 2B shows a pseudo-color map based on
unsupervised hierarchical cluster analysis of the same tissue section, acquired before staining
the tissue section. An inspection of Fig. 2 reveals excellent agreement between the cluster
demarcations, and the visually observable tissue features, including the superficial layer of
squamous epithelium shown in red, the intermediate layer (green) and the basal/parabasal layer
(dark blue), as well as columnar cells (orange). The medium blue regions correspond to stromal
(connective) tissue, and the light blue areas to red blood cells. Fig. 2C shows three of the mean
cluster spectra extracted from the analysis. The red and green traces are for intermediate
squamous and glandular epithelium, respectively. Similar spectra were reported earlier in
single-point IR-MSP measurements for cervical tissue. The triad of peaks in the red trace at
1151, 1078 and 1028 cm ™1 have been assigned to glycogen peaks (see below), whereas the
two peaks at 1081 and 1049 cm™1 have been assigned to glycoproteins typically found in mucin-
producing glandular cells. The blue trace in Fig. 2C is that of basal cells in the squamous tissue.

The next example is from a lymph node excised during colon cancer surgery, which contains
metastatic colon adenocarcinoma cells. However, the section used to obtain the infrared image
did not contain any abnormal cells, and is presented here to illustrate the ability of this technique
to differentiate tissue architecture and morphological features. Fig. 3, Panel A, shows the visual
image of the undisturbed part of the lymph node, about 4.5 mm x 1.6 mm in size. This visual
and infrared images were acquired using the Perkin Elmer instrument, by quilting together
about 70 individual, rectangular 400 x 300 pm?2 microscopic exposures through the CCD
camera. Portions of the capsule of the lymph node, the medullary cords and secondary cortical
follicles are clearly visible.

Fig. 3B shows a pseudo-color spectral map collected from of an adjacent section of the same
lymph node, obtained from ca. 11,500 individual infrared spectra by using hierarchical cluster
analysis. The two lymph node sections shown in Fig. 3A and 3B are aligned slightly differently
on the slides; consequently, the two sections shown in Fig. 3 are rotated with respect to each
other by a few degrees. Nevertheless, the corresponding anatomical features are easily
recognizable.

The spectral hypercube was analyzed as described before for the cervical tissue sections: the
spectral range was restricted to 850 to 1900 cm™1, 2nd derivatives were calculated and the
spectra were vector-normalized. At this point, univariate intensity maps are totally nondescript,
since factors such as sample thickness are eliminated. Next, the data were subject to hierarchical
cluster analysis (HCA). In the 7-cluster pseudo-color map (Fig. 3B) obtained for this tissue
section, the light blue, yellow and yellowish-green regions correspond to the primary and
secondary lymphoid follicles of the cortex. The paracortex is shown as the dark blue regions.
The medullary cords, separating the lymphoid follicles, appear in red, whereas the residue of
the fibrous capsule, which in this sample contained fatty tissue, is clearly discernible. Fig. 3C,
shows the dendrogram from the cluster analysis. This display shows that distinctive features
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exist between the spectra, and that seven clusters represents a reasonable endpoint of the
clustering process.

The differentiation between lymphoid follicles and cortical areas by unsupervised HCA is
particularly impressive, since these regions contain mostly B and T cells, respectively.
Furthermore, the spectra suggest that activated and non-activated lymphocytes can be
distinguished. For individual cells, such differences within the lymphoid system have not yet
been reported, but the preliminary results shown here suggest that such a distinction may be
possible. This may eventually lead to spectral diagnostic methods to determine the abundance
of different leukocytes and lymphocytes in smears of peripheral blood for screening purposes.

Finally, we show in Fig. 3D some of the mean cluster spectra extracted from the imaging data.
These spectra are shown as 2nd derivative traces, since the spectral differences in the original
absorbance spectra are too small to be detectable by eye. However, the 2nd derivative spectra
show clear differences between connective tissue of the capsule and medullary cords;
furthermore, we see small differences due to B- and T-lymphocytes.

At this point, it is clear that IR-MSP is exquisitely sensitive to small differences in spectral
properties of the tissue types found in the sample section. It is also obvious that a database of
tissue spectra can be constructed that permits the unsupervised analysis of tissue types.
Differences between normal and abnormal (cancerous) tissue types in a sample are about the
same magnitude as are differences between different tissue types;-° thus, the notion of utilizing
IR-MSP as an unsupervised methods for diagnosis seems well justified.

In our laboratory, the biochemical reason for the discriminatory power of IR-MSP has been a
major research focus. To this end, we have used two different approaches. First, biochemical
digestion methods were employed to selectively remove certain components from the tissue
samples, and monitoring the spectral changes associated with these digestions. To our
knowledge, we reported the first spectroscopic results of such digestions in human tissue and
cells.19 These studies, in turn, have explained the biochemical reasons underlying the spectral
differentiation between normal and diseased tissue. Second, we have investigated the spectral
characteristics of individual cells in order to interpret the spectral changes in tissue.

Next we shall briefly summarize the results of the digestion studies. Details can be found in
the original literature. 19 Originally we concentrated our efforts to identify the spectral
contributions of nucleic acids in samples of normal and cancerous tissue via enzyme digestions.
Previously, Benedetti20 reported enhanced symmetric and antisymmetric phosphate vibrations
of nucleic acids (1080 and 1230 cm™1) for cancerous samples. We demonstrated that this
increase is largely due to DNA vibrations through successive RNAse and DNAse digestion of
cancerous liver and cervical tissues. Secondly, we studied the digestion of glycogen from
tissues, such as liver and mature cervical squamous epithelium. The spectrum of pure glycogen
can be easily identified by peaks at 1151, 1078 and 1028 cm™1 (cf. Fig. 2C) due to coupled C—
O and C-C stretching and C—O-H deformations motions. When glycogen-containing tissue is
treated with a-amylase, this triad of peaks disappears, and this disappearance was correlated
with a decrease in intensity of glycogen-specific stains used in standard histopathology. The
advantage of IR microspectroscopy, however, is the inherent quantitative nature of the method
and the ability to measure the disappearance quantitatively, without the use of any stains.21

Large variations in glycogen content of cervical cells were reported early in efforts of utilizing
IR microspectroscopy as a screening tool for cervical disease.1° Although the absence of
glycogen is frequently found in dysplastic or cancerous samples of cervical cells, this glycogen
depletion is non-specific: many normal, superficial squamous cells in the final stage of their
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life cycle completely deplete their glycogen storage, but rapidly proliferating cells also deplete
their glycogen. Thus, the glycogen content should not be used as an indicator for disease.

Efforts to observe vibrational spectra of individual cells date back to the mid-1990s when the
sensitivity of IR-MSP spectrometers was sufficient to provide results in a few minutes of
acquisition time.22 Using present (non-synchrotron) instrumentation, the spectra of nuclear
and cytoplasmic regions of a cell can be collected in a few seconds at about 10 um spatial
resolution.

We demonstrated previously that the IR spectra of the nucleus and the cytoplasm of a cell are
nearly identical in inactive cells with pyknotic nuclei.23 Furthermore, we found that these
spectra are nearly completely dominated by protein features, and virtually no DNA signal was
observed from the nuclear region. In actively dividing, or otherwise metabolically active cells,
RNA spectral features, due most likely to ribosomal RNA, were found in the cytoplasm. These
RNA signals can vary enormously, depending on the cell’s activity. As expected, these signals
disappeared upon RNAse digestion, which demonstrates unambiguously that the signals are
due to RNA, and not due to DNA or phospholipids.

Although DNA signatures are absent in metabolically inactive, non-proliferating cells, actively
dividing or metabolically active cells show DNA features in the nuclei. In these cells, DNA
Biaks at 1080 and 1250 cm™1 were observed from the nuclear regions after RNAse digestion.

We have previously reported25 the effect of the stage of the division cycle on the spectra of
cells. This was accomplished by separation of cells by elutriation and established the phase by
flow cytometry. Here, we wish to report the first observations of maps, collected in both Raman
and infrared spectroscopy, of cells arrested in different sta%es of mitosis. High quality Raman
images of cells have been reported in the literature before. 6

Fig. 4 shows visible, IR and Raman spectral images of a cell in the metaphase of mitosis. At
this stage of the cell division, the genome has been completely duplicated, and the
chromosomes are lined up before separation occurs. Although the chromosomes contain the
entire nuclear DNA, they are also very high in protein (histones). This can be seen in Fig. 4B,
which shows an infrared spectral map based on the integrated intensity in the amide | band.
This panel, taken at the best spatial resolution (ca. 10 um at 1650 cm™1) available in the authors’
laboratory, shows the highest protein content (brown) at the location of the chromosomes, and
lower protein content in the nucleus and cytoplasm (red and light blue). The superior resolution
of the Raman images permits further distinction of the nuclear components. A map of the total
protein content is presented in Fig. 4D. This panel clearly shows that the protein content is
highest in the chromosomes (yellow), lower in the nucleus (red) and even lower in the
cytoplasm (light blue and green). When the intensity of spectral features due to protein (1650
cm~1) and DNA (780 cm™1) are ratioed, panel Fig. 4E is obtained, which shows in exquisite
detail the DNA of the chromosomes in the nucleus (pink). Although the signal-to-noise ratio
of the Raman spectra used to construct the maps in Panels 4D and E is significantly lower than
that of corresponding IR spectra, the better spatial resolution achievable with Raman imaging
makes this latter technique an excellent alternative for high resolution imaging studies of cells.

Conclusions

We demonstrate in this contribution that vibrational spectral imaging of cells and tissue has
made enormous progress over the past decade. In the case of tissue analysis, imaging
spectrometers that allow the acquisition of thousands of spectra in a few minutes, coupled with
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modern methods of data analysis, permit the mapping of large tissue sections and the
identification of tissue abnormalities. Single cells can be analyzed in both Raman and IR
mapping experiments, and the distribution and identification of biological components in the

ce

Il can be performed. These advances will undoubtedly propel vibrational imaging techniques

into biomedical and biological laboratories to provide valuable new insight into biochemical
processes, and detection of disease.
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Fig. 1.

Photomicrograph (A) and early tissue map (ca. 1997, B) of a section of cervical epithelium,
collected manually. Data acquisition: 80 um spatial resolution, >24 hours, ca. 350 pixels. Data
processing using a pattern recognition algorithm.
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Fig. 2.

(A) Photomicrograph of stained cervical tissue section containing the squamous-columnar
junction (SCJ). Section was stained after spectral data acquisition. (B) Spectral map of the
section shown in (A). Data acquisition: ca. 20 um spatial resolution, 6 h, ca. 3,000 pixels. Data
processing via hierarchical cluster analysis. (C) Means cluster spectra of three distinct tissue
types from the map in (B)
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Fig. 3.

(A) Photomicrograph of stained lymph node section, 5 x 1.5 mm?2. (B) Infrared spectral image
of section adjacent to that shown in (A). Data acquisition: 25 um spatial resolution, 40 min,
ca. 12,000 pixels. Data processing via hierarchical cluster analysis. (C) Dendrogram of
clustering process for the map shown in (B). (D) Mean 2nd derivative cluster spectra extracted
from the data set depicted in (B) for the follicular and paracortical areas (lymphocytes), and
different regions of connective tissue.
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Fig. 4.

Infrared and Raman spectral images of a HeLa cell in the metaphase of mitosis. (A) Visual
image taken through infrared microscope (B) infrared spectral map, based on amide | intensity
(6.25 um nominal spatial resolution), (C) visual image taken through Raman microscope, (D)
Raman spectral image based on amide | intensity, (E) Raman spectral image based on nucleic
acid intensity. Spatial resolution ca. 1 um.
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