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Abstract

This communication describes the rational design and synthesis of a remarkably stable PdIV mono-
aryl fluoride complex (t-Bu-bpy)PdIV(p-FC6H4)(F)2(FHF) (t-Bu-bpy = 4,4′-di-tert-butyl-2,2′-
bipyridine). This and related complexes undergo Ar-F bond formation in the presence of “F+”
sources. This work serves as a foundation for the development of a PdII/IV catalyzed coupling
reactions to form aryl fluorides.

Aryl fluorides are important components of many biologically active molecules, including
pharmaceuticals, agrochemicals, and PET imaging agents.1,2 While a variety of synthetic
approaches are available for generating sp3 C–F bonds,2 there are relatively few general and
practical methods for the formation of aryl fluorides.2–4 To date, the most common routes to
these molecules involve fluorination of aryl diazonium salts (the Balz-Schiemann reaction)
3a and other nucleophilic aromatic substitution reactions with F−.3b,4 However, these
transformations have significant limitations (e.g., modest scope, the requirement for potentially
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explosive reagents, low yields, and long reaction times), and new synthetic methods are of
great current interest.

An attractive approach to address this challenge would be the development of a Pd-catalyzed
coupling reaction to produce aryl fluorides. As shown in eq 1, Ar–F bond-formation from a
Pd(Ar)(F) species would be a key step in these processes. Analogous Ar–X (X = Cl, Br, and
I) bond-forming reactions at PdII(Ar)(X) complexes are well-precedented; 5,6 however,
achieving Ar–F coupling from PdII(Ar)(F) adducts has proven extremely challenging. Instead,
these PdII complexes are prone to a variety of side reactions,4,7 and aryl fluorides have only
been obtained in low yields with a highly activated p-NO2-substituted aryl group.7

(1)

In contrast, several recent reports have shown that aryl fluorides can be formed by reacting
PdII–Ar complexes with electrophilic fluorinating reagents.8,9 For example, in 2006, our group
demonstrated the PdII-catalyzed ligand-directed fluorination of Ar–H bonds with N-
fluoropyridinium reagents.8 Subsequently, stoichiometric reactions of PdII σ-aryl species with
N-fluoropyridinium salts were shown to afford modest yields of aryl fluorides,9a and a related
stoichiometric reaction with Selectfluor was recently optimized.9b In all cases, mechanisms
involving C–F bond formation from transient PdIV(Ar)(F) intermediates were suggested;
however, until a recent report by Ritter,9c little evidence was available to support these
proposals.10,11 We report herein on the design, synthesis, and reactivity of an isolable
PdIV(Ar)(F) complex. This work provides a basis for the development of new PdII/IV-catalyzed
Ar–F coupling reactions.

Our goal was to design an observable PdIV(Ar)(F) species in order to study its reactivity towards
Ar–F bond-formation. Prior work suggested that such a PdIV complex should be stabilized by
rigid bidentate sp2 N-donor ligands such as 2,2′-bipyridine (bpy).11,12 We also reasoned that
multiple fluoride ligands would enhance the stability of the desired intermediate, as PdF4 was
one of the first reported compounds with Pd in the +4 oxidation state.13 Based on these
considerations, (t-Bu-bpy)PdIV(Ar)(F)3 (t-Bu-bpy = 4,4′-di-t-butyl- 2,2′-bipyridine) was
identified as our synthetic target.

The PdII precursor (t-Bu-bpy)PdII(p-FC6H4)(F) (2a) was prepared by sonication of (t-Bu-bpy)
PdII(p-FC6H4)(I) (1a) with AgF (eq 2).14a Analysis of 2a by 19F NMR spectroscopy showed
a characteristic broad resonance at −340.7 ppm (PdF) as well as a peak at −122.9 ppm (ArF)
in a 1 : 1 ratio. The 1H NMR spectrum of 2a contained signals indicative of an unsymmetrical
square planar PdII complex, with the 6- and 6’-protons of the t-Bu-bpy ligand appearing at 8.08
ppm and 8.74 ppm, respectively. X-ray crystallographic analysis provided further confirmation
of the structure of 2a (eq. 2).14b
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(2)

We next examined the reactivity of 2a with electrophillic fluorinating reagents. Gratifyingly,
the combination of 2a with 3 equiv of XeF2 in nitrobenzene at 90 °C for 1 h afforded 1,4-
difluorobenzene, 3a, in 57% yield (Table 1, entry 1). Notably, the biaryl species 4a was also
generated as a minor side product (7% yield). This C–F bond-forming reaction also proceeded
efficiently with electronically diverse Ar groups. For example, PdII(Ar)(F) complexes
containing electron withdrawing (2b) and donating (2c) substituents on the Ar rings also
reacted with XeF2 to afford aryl fluorides (3b and 3c) in comparable yields to 2a (Table 1).
15,16

The fluorination of 2a was monitored at lower temperatures in an effort to observe a reactive
intermediate. We were delighted to find that stirring 2a with XeF2 at 70 °C for 2.5 min afforded
a new organometallic species (5a), which was isolated in 38% yield by recrystallization from
THF/pentanes. The 19F NMR spectrum of 5a at 25 °C showed three broad resonances in a 1 :
1 : 2 ratio at −117.2 (ArF), −206.3 (PdF), and −257.4 (PdF) ppm, respectively. When this
solution was cooled to −70 °C, a fourth resonance was observed as a doublet of doublets at
−177.6 ppm; furthermore, the Pd–F peaks sharpened considerably and appeared as a multiplet
(−204.4 ppm) and a doublet (−256.9 ppm). This spectroscopic data, along with a doublet of
doublets at 12.7 ppm in the low temperature 1H NMR spectrum, is consistent with the
formulation of 5a as (t-Bu-bpy)PdIV(Ar)(F)2(FHF).17 This structure was confirmed by X-ray
crystallography (eq. 3). The HF in this system is likely due to the reaction of XeF2 with
adventitious water.18 Notably, this is the first reported example of a PdIV bifluoride. In
addition, 5a is, to our knowledge, the only isolable mono-aryl PdIV species where the σ-aryl
ligand is not stabilized by a chelating ortho-substituent.19
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(3)

We next investigated the reactivity of 5a towards Ar–F bond-forming reductive elimination.
Intriguingly, heating this complex at 80 °C for 1 h in nitrobenzene led to only traces of aryl
fluoride 3a. Instead, significant quantities (35%) of biaryl 4a were observed (Table 2, entry
1).20 This is in surprising contrast to a related PdIV aryl fluoride, which underwent quantitative
C–F bond-forming reductive elimination upon thermolysis.9c This result suggests that direct
C–F coupling at 5a is slow relative to σ-aryl exchange between Pd centers (which is the likely
pathway to Ar–Ar coupling).21 The aryl exchange process is likely facilitated in this system
because the σ-aryl group is not stabilized by a chelating group.9c,21

We noted that the stoichiometric reaction in Table 1 (as well as any catalytic C–F bond-forming
reaction of this type) involves an excess of electrophilic fluorinating reagent relative to the
PdIV(Ar)(F) intermediate. As such, we next investigated the thermolysis of 5a in the presence
of XeF2, 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate, and N-fluorosulfanamide. We
were delighted to find that under these conditions, the C–F coupled product 3a was obtained
in good to excellent yield, along with only traces (<5%) of 4a (Table 2). While the mechanism
of these transformations remains under investigation,22 this result serves as a model for Ar–
F formation from PdIV σ-aryl species in catalytic reactions.

The results presented herein are remarkable for several reasons. First, the facile formation of
5a suggests that the intermediacy of such PdIV bifluoride species should be considered in
catalytic C–F coupling processes, particularly where water has not been rigorously excluded.
Second, the fact that the σ-aryl ligand of 5a is not stabilized as part of a chelate makes this
complex directly relevant to the development of Pd-catalyzed coupling reactions to form
electronically diverse simple aryl fluorides. Third, the oxidant-promoted C–F coupling at 5a
demonstrates the viability of this step in stoichiometric9 and catalytic8 oxidative fluorination
reactions. The observed stability of 5a at room temperature also suggests that Ar–F formation
may be turnover-limiting in PdII/IV-catalyzed fluorinations. Finally, the similar reactivity of
electron rich and electron deficient Pd–Ar species provides further precedent for the generality
of these transformations.9b

In conclusion, this communication describes the synthesis of a stable PdIV(Ar)(F)2(FHF)
complex that undergoes Ar–F bond formation in the presence of “F+” sources. This work serves
as a foundation for the development of PdII/IV-catalyzed couplings between electrophilic
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fluorinating reagents and aryl stannanes, boronic acids, and/or silanes. The development of
such transformations is currently ongoing in our laboratory and will be reported in due course.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1
C–F Bond Formation with Electronically Diverse Ar Groups

entry X complex %3 %4

1 F 2a 57 7

2 CF3 2b 60 3

3 OMe 2c 45 6
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Table 2
C–F Bond-Forming Reactions of 5a.

entry "F+" 3a 4a

1 none trace 35%

2 XeF2 92% 4%

3 (PhSO2)2NF 83% <1%

4 50% 2%
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