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Abstract
A broad region of chromosome 10 (chr10) has engendered continued interest in the etiology of
late-onset Alzheimer Disease (LOAD) from both linkage and candidate gene studies. However,
there is a very extensive heterogeneity on chr10. We converged linkage analysis and gene
expression data using the concept of genomic convergence that suggests that genes showing
positive results across multiple different data types are more likely to be involved in AD. We
identified and examined 28 genes on chr10 for association with AD in a Caucasian case-control
dataset of 506 cases and 558 controls with substantial clinical information. The cases were all
LOAD (minimum age at onset ≥ 60 years). Both single marker and haplotypic associations were
tested in the overall dataset and 8 subsets defined by age, gender, ApoE and clinical status.
PTPLA showed allelic, genotypic and haplotypic association in the overall dataset. SORCS1 was
significant in the overall data sets (p=0.0025) and most significant in the female subset (allelic
association p=0.00002, a 3-locus haplotype had p=0.0005). Odds Ratio of SORCS1 in the female
subset was 1.7 (p<0.0001). SORCS1 is an interesting candidate gene involved in the Aβ pathway.
Therefore, genetic variations in PTPLA and SORCS1 may be associated and have modest effect to
the risk of AD by affecting Aβ pathway. The replication of the effect of these genes in different
study populations and search for susceptible variants and functional studies of these genes are
necessary to get a better understanding of the roles of the genes in Alzheimer disease.
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Introduction
Alzheimer disease (AD; MIM# 104300) is the leading cause of dementia in the elderly and
the most common form of dementia occurring after the age of 40 (Rocca et al., 1991;
Schoenberg et al., 1987). It is a devastating neurodegenerative disorder of later life with a
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largely unknown but complex etiology that includes a strong genetic component (Growden,
1995; Khachaturian, 1985). Understanding the genetics of AD is critical to developing new
treatments.

Genetic studies have identified three genes underlying early onset AD. This form can be
caused by over 120 mutations in genes encoding β-amyloid precursor protein (APP; MIM#
104760), presenilin 1 (PS1; MIM# 104311), and presenilin 2 (PS2; MIM# 600759) (Goate et
al., 1991; Levy-Lahad et al., 1995; Rocchi et al., 2003; Sherrington et al., 1995). To date,
five late-onset AD genome-wide linkage screens have been reported (Blacker et al., 2003;
Kehoe et al., 1999; Myers et al., 2002; Pericak-Vance et al., 1997; Pericak-Vance et al.,
1998; Pericak-Vance et al., 2000). In addition, numerous studies have tested hundreds of
candidate genes for involvement in AD (Bertram et al., 2007). However, no single method
can give us an answer in dissecting complex disease traits. A promising solution to the
growing data flood from the latest genomic technologies (e.g. genome-wide association) is
genomic convergence. Genomic convergence is a multifactor approach used in genetic
research that combines different data analysis results from independent types to identify and
prioritize susceptibility genes for a complex disease (Hauser et al., 2003). Examples include
genetic linkage data, association data, gene expression data, and biological function.

Our previous linkage and candidate gene studies suggested a more extensive heterogeneous
genetic background on chromosome 10 for AD than we previously appreciated (Liang et al.,
2007). Rare and common polymorphisms in multiple genes may be involved together with
non-genetic factors in this complex disease. Therefore, combining different sources of data
is important to selecting and prioritizing candidate genes.

In a recent study (Xu et al., 2007) gene expression levels were compared in the brain tissue
from AD patients and controls using the Serial Analysis of Gene Expression (SAGE)
method. SAGE is a powerful method for profiling transcripts expressed in a given tissue
(Velculescu et al., 1995) and provides expression data for thousands of gene products
without a priori knowledge of their function. Brain samples from AD cases (ApoE 4/4,
ApoE 3/4 and ApoE 3/3 genotypes) and controls (ApoE 3/3 genotypes) were chosen to
establish SAGE libraries to analyze the differential gene expression between AD cases and
controls as described elsewhere (Xu et al., 2007). We converged the previous genetic
linkage screen results with the SAGE gene expression data to identify a set of 28 genes that
reside under the linkage peak and are differentially expressed between patients and controls.
Numerous SNPs in these genes were genotyped and examined for association with AD.

Common diseases are likely to have complex etiology. Multiple genes with multifaceted
interactions among genes and other risk factors undoubtedly play roles in the Alzheimer
disease process. Multifactor Dimensionality Reduction (MDR) is a computational data
reduction method that can identify gene-gene interactions without requiring very large
sample sizes. Since MDR is a nonparametric, genetic model-free method, no hypothesis
concerning any statistical parameter and no genetic inheritance model is assumed (Ritchie et
al., 2001). In the present study, we applied MDR to the 28 candidate genes to test for
potential gene-gene interactions involved in Alzheimer disease.

Materials and methods
Study populations

The case-control data set consisted of 1064 individuals (506 cases and 558 controls, Table 1)
with substantial clinical information. The samples were collected by the Center for Human
Genetics Research (CHGR) at Vanderbilt University and the Miami Institute for Human
Genomics (MIHG) at the University of Miami. AD was diagnosed according to the

Liang et al. Page 2

Hum Mutat. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



NINCDS-ADRDA criteria (McKhann et al., 1984). The cases were all late onset Alzheimer
disease (minimum age at onset (AAO) ≥ 60 years). There were no significant differences in
age at exam or gender between cases and controls (Table 1). All controls were ascertained in
the same catchment area as cases, and had results within the normal range in the Mini-
Mental State Exam (MMSE) or Modified Mini-Mental State Exam (3MS). To test the
potential for heterogeneity effects in the data set, the overall data set was subsetted
according to four variables: Gender, ApoE status, Age-of-Onset and Clinical status. The
distribution is shown in the Supp. Table S1. Written consent was obtained from all
participants in agreement with protocols approved by the institutional review board at each
contributing center.

We also used independent family-based data sets as the validation sets to confirm any
significant association identified in the case-control data set (Table 2). All individuals
included in this study were Caucasian late-onset AD (LOAD) patients. AD diagnosis criteria
were same as those for the case-control data set. Samples were ascertained by the following
centers: the NCRAD repository at Indiana University (NCRAD); the Collaborative
Alzheimer Project (CAP), including the University of Miami and Vanderbilt University and
University of California at Los Angeles; and the National Institute of Mental Health
repository (NIMH).

Following informed consent, blood samples were collected from each individual. Genomic
DNA was extracted from whole blood by use of the Puregene system (Gentra Systems,
Minneapolis, MN). All samples were coded and stored at 4°C until used.

Gene selection
The Serial Analysis of Gene Expression (SAGE) method was used to compare the gene
expression levels in the brain tissue from AD patients and controls as described elsewhere
(Velculescu et al., 1995; Li et al., 2006). Briefly, Six SAGE libraries were generated using
hippocampus collected in the Kathleen Price Bryan Brain Bank, at the Duke University
Alzheimer Disease Research Center, and the Brain Bank of the Center for Human Genetics
(CHG), Duke University Medical Center, following a rapid autopsy protocol (Hulette et al.,
1997). Four libraries were based on the short tag (14 bp, AD ApoE 4/4, ApoE 3/4, ApoE 3/3
and control ApoE 3/3). Two libraries were based on the long tag (21–22 bp, AD ApoE 3/3
and control ApoE 3/3). The number of times a tag observed in tissue was extracted from
each library and compared between the AD and control samples using eSAGE software to
form a compared ShortSAGE database. Chi-square and Fisher exact tests, as previously
described (Hauser et al., 2003), were used to test differences in expression levels between
AD and control for each tag in each compared SAGE data set. The SAGE tags were
compared to the UniGene to interpret the SAGE results. The false discovery rate (FDR) was
applied to the SAGE data to correct for multiple comparisons. p<10−10 was used as the
cutoff to select genes whose expression levels were highly significantly different between
AD cases and controls. Then the previous linkage study results for chromosome 10, shown
in Table 3, were converged with gene expression data so that only differentially expressed
genes that were also under linkage peaks in previous linkage screens were selected for the
next step association analysis.

SNP selection and genotyping
Several criteria were applied to select SNPs as genetic markers. We included 10kb of
flanking sequence on each side to include potential regulatory regions. Only tagSNPs were
selected with the restriction that the linkage disequilibrium, r2, between selected SNPs
should be less than 0.7. The web-based program, SNPselector (Xu et al., 2005), was used to
automatically search available SNPs through the Ensembl and UCSC databases. It
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prioritizes these SNPs on their tagging for linkage disequilibrium based on the LD bin
algorithm in LD select (Carlson et al., 2004) using HapMap data, SNP allele frequencies and
source, function, regulatory potential and repeat status. Because we used the Illumina
Goldengate genotyping method, we only selected SNPs with Illumina SNPscore greater than
0.6 to ensure the genotyping quality. A MAF greater than 20% was used as the cutoff for
selecting the intronic SNPs. SNPs in conserved regions of eight-genome alignment (Human/
chimp/mouse/rat/dog/chicken/fugu/zebra_fish, based on UCSC database), conserved
transcription factor binding sites (TFBSs) in the human/mouse/rat alignment, CpG island,
and microRNA genes were selected if the MAFs were greater than 10%. Coding SNPs were
selected when the MAF was greater than 1%. To further reduce the SNPs to a manageable
number, there were selected at the 1 SNP/10 kb spacing. Because TNFRSF6 showed
significant results in linkage, candidate gene studies and SAGE gene expression analysis
(Bertram et al., 2000; Feuk et al., 2000), more weight was given to it by genotyping one
SNP per five kilobases.

The final set of 667 SNPs on chr10 was genotyped using the Illumina GoldenGate Oligo
Pool Assay (OPA) on an Illumina BeadStation 500 GX (Illumina Inc., San Diego, CA).
DNA samples from cases and controls were randomly sorted, and duplicated samples were
implemented across plates for genotyping quality control.

We tested all SNPs for consistency with HWE in Haploview program (Barrett et al., 2005).
SNPs were excluded if HWE p<0.001. TagSNPs were selected at different linkage
disequilibrium levels using the Tagger option incorporated in Haploview for the future
haplotypic association tests and gene-gene interaction tests.

Statistical methods
Association analysis in case-control data set—In the case-control data set, allelic
association for single SNPs was tested using the χ2 test in Haploview (Barrett et al., 2005).
Genotypic association was assessed by a 2 × 3 contingency table likelihood ratio test in SAS
program (SAS Institute, 2003). Haplotypic association was analyzed using haplo.stats
(Schaid et al., 2002). To save calculation time and satisfy computer memory limits, small
genes (with less than 8 genotyped SNPs in the gene) were analyzed using individuals with
less than 50% missing genotypes. Genes of medium size (with 8 to 26 genotyped SNPs)
were analyzed using only individuals who had complete genotypes on all analyzed loci in
that gene. There are seven large genes that were genotyped for 38 to 124 SNPs. They were
analyzed on individuals without any missing genotypes and only tagSNPs with r2<0.5 were
used. In addition, the tagSNPs were separated into groups of 10 with 2 SNPs overlapping
across the groups. We estimated haplotype frequencies and tested association of each
haplotype with a frequency of at least 1% in our case-control data set with age and gender
adjusted score statistics. Haplotype logistic regression was modeled using a GLM algorithm
including age and gender as covariates. The most frequent haplotype occurring in the similar
percentage of cases and controls was selected as the referent haplotype. To evaluate the
association of subsets of alleles from the full haplotype, a sliding window of three SNPs was
used and the global score statistics were calculated.

Conditional analyses were conducted by dividing the case-control data set by known risk
factors including age, gender and ApoE status. The difference in allele frequency between
cases and controls was tested by a χ2 test or Fisher’s exact test when applicable (e.g. cell size
<5). We also applied logistic regression to estimate the effects of the SNPs showing the
most significant results across different analyses after controlling for age, gender and ApoE
status. Nominal significance was declared at p=0.05 and FDR was used to correct multiple
testing. Haploview and SAS (SAS institute, Cary, NC) programs were used for the analyses.
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Association analysis in family data set—Family based association analysis was used
to follow up the SNP with the strongest association in the female subset. The allelic
association analyses were conducted using the association in the presence of linkage (APL)
analysis (Martin et al., 2003b) and the pedigree disequilibrium test (PDT) (Martin et al.,
2000). APL and PDT each have distinct advantages. APL can correctly infer missing
parental genotypes in regions of linkage by estimating identity-by-descent (IBD) parameters
and is a more powerful test under those conditions than PDT. However, APL only uses
nuclear families for the association test. PDT can use data from extended pedigrees and
gains power substantially when extended pedigree data are available. Genotype-PDT
(GenoPDT) is an extension of PDT and was used to assess association between genotypes
and risk of AD in the family data (Martin et al., 2003a).

Test for gene-gene interaction—TagSNPs were selected using r2>0.5 as a threshold to
exclude SNPs from the interaction analysis that were in high LD by the Tagger option in
Haploview. Potential gene-gene interactions were identified using Multiple Dimensionality
Reduction. MDR performs an exhaustive search of all possible single-locus through k-locus
interactions to evaluate all possible high/low risk models of disease (Ritchie and Motsinger,
2005). The statistical significance of the final best model was determined through
permutation testing with 1000 permuted data sets. The significance of the final model was
determined by comparing the prediction error and cross validation consistency of the final
model with the distribution. A p value was extracted for the model by its theoretical location
in the permutation distribution (Motsinger et al., 2006). In considering the possible
unbalanced ratio of cases to controls in the data set, a balanced accuracy approach was used
to evaluate the performance of the models (Velez et al., 2007).

In the present study, 1, 2, and 3 locus combinations were run and logistic regression (SAS
program) was used to verify the interaction between genes in the identified model.

Results
Genomic convergence identified genes and genotyped SNPs

SAGE analysis revealed 41 genes on chromosome 10 that were differentially expressed
between AD cases and controls with p<10−10. 28 of those genes were also under previously
identified linkage peaks (Bertram et al., 2000; Myers et al., 2002; Pericak-Vance et al.,
2000; Zubenko et al., 1998), (Liang et al., 2007) and thus considered for detailed analysis.
The genomic size of the genes ranged from 10 kb to 1.3 Mb. The number of exons ranged
from 2 to 38. Depending on the size of the gene, we genotyped 2–124 SNPs in the genes to
for an average spacing of 1 SNP/10kb. The gene description, size and number of genotyped
SNPs were summarized in the Supp. Table S2.

Of the 667 genotyped SNPs 70 SNPs were dropped from the analysis because of
monomorphism, being out of HWE, or assay problems. Specifically, 58 SNPs failed
Illumina quality control criteria, 10 SNPs were monomorphic and 2 SNPs were out of HWE
in controls at p<10−5 (Bonferroni correction for 667 markers at p=0.05). In total, there were
597 SNPs that remained in the final analyses. 80% of those were intronic SNPs, 17% were
functional SNPs (exon, promoter, UTR, exon/intron boundary, et al.) and the other 3% were
from the 5’-upstream and 3’-downstream regions (Supp.Figure S1).

Association analysis
The allelic association of 597 genotyped SNPs was analyzed on the overall data set and
eight subsets. Twenty-four SNPs in eight genes (PTPLA; MIM# 610467, SORCS1; MIM#
606283, PRKG1; MIM# 176894, SVIL; MIM# 604126, ACTR1A; MIM# 605143,
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BA108L7.2, CAMK1D; MIM# 607957, and PDZK7 (approved symbol PDZD7)) showed
association with AD at nominal p<0.05 (Figure 1). After we applied FDR (q=20%) based on
the number of genotyped SNPs in each gene to correct for multiple testing, two SNPs in two
genes remained significant. The first SNP was rs10508533 in PTPLA with p=0.0022; the
second is rs17277986 in SORCS1 gene with p=0.0025 (Figure 1). There were additional
SNPs showing significant results in each subset defined by age, gender, ApoE status and
clinical status. Five out of eight associated genes in the overall data set showed association
in three or more subsets (Supp. Table S3). These five genes were PTPLA, SORCS1, SVIL,
PRKG1 and PDZK7 (approved symbol PDZD7). The female subset had the most significant
result (Supp. Table S3): p=0.00002 for a SNP (rs172777986) in SORCS1 (Figure 2). Close
to rs17277986, four tag SNPs (rs2900717, rs10884399, rs11193170, rs4918280) were also
significant at p<0.05. rs17277986 remained significant after FDR correction for multiple
testing. The odds ratio (OR) of having the risk allele vs. not having risk allele was 1.34
(95% CI=1.11–1.63, p=0.003) in the overall data set. In the female subset, the OR was 1.70
with 95% CI of 1.33–2.19, and the p value was very significant (p<0.0001). The OR was
also significant after the adjustment for age, gender and ApoE status (data not shown). SNP
rs6480499 in PRKG1 was also significant in the female subset after FDR correction (Figure
2).

Twenty-seven SNPs in twelve genes (CACNB2; MIM# 600003, PTPLA, SORCS1, SVIL,
SORBS1; MIM# 605264, PRKG1, CAMK1D, CNNM2; MIM# 607803, PDZK7 (approved
symbol PDZD7), TCF7L2; MIM# 602228, TNFRSF6; MIM# 134637, and NT5C2; MIM#
600417) showed association with AD at nominal p<0.05 in the genotypic analysis (Supp.
Figure S2). SNPs in CACNB2 and PTPLA were significant after FDR correction (q=0.2) for
multiple testing (p value of 0.0030 and 0.0036 for rs1277738 in CACNB2 and rs10508533
in PTPLA, respectively). Supp. Table S4 shows genotypic association in subsets for SNPs
having genotypic association with AD at p<0.05 in the overall data set. Similar to allelic
association, there were additional SNPs showing significant results in each subset. The
female subset had the most significant results. The SNP rs17277986 in SORCS1 showed
genotypic association after FDR correction (Supp. Figure S3) in this subset (p=0.0002).

Haplotypic association analysis for each gene was done on the overall data set. Global p
values for score statistics are shown in Supp. Table S5. The haplotype in PTPLA had the
most significant p value of 0.009. A haplotype containing ten tagSNPs in SVIL gene was
marginally associated with AD (p=0.049). Since a SNP in SORCS1 was strongly associated
with AD in the female subset, it was also analyzed for haplotypic association in the female
subset only. The global p value was 0.15, which was not significant (Supp. Table S5).
However, the three 3-SNP sliding window haplotypes were highly significant (smallest
p=0.0005, Figure 3). All these three haplotypes contained rs17277986, which showed the
most significant single SNP allelic association in the same data set.

Analytical convergence of the genetic association tests
Across all the association analyses including allelic, genotypic and haplotypic association
tests, several genes showed association. After we applied FDR to correct for multiple testing
for allelic and genotypic association tests, only five genes showed association in at least one
of the analyses. SNPs in PTPLA were significant in the overall data set across all three
association tests. SNPs in SORCS1 had a significant allelic effect in the overall data set, and
it was highly significant in the female subset across all three association tests. Although
SNPs in CACNB2 did not show allelic association in the overall data set, SNP rs1277738 in
CACNB2 had the strongest genotypic effect in overall data set, and showed genotypic
association at nominal p<0.05 in four subsets (Age-of-onset between 60 and 75, ApoE-
negative, female and possible AD). SNPs in SVIL were marginally significant in the
haplotypic association test in the overall data set.

Liang et al. Page 6

Hum Mutat. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Follow up of SNPs in SORCS1 and PTPLA genes
To confirm the effect of SORCS1, we genotyped the most significant SNP (rs17277986) in
our validation data sets. When we analyzed female and male individuals together, none of
the datasets showed significant results at p<0.05. When we analyzed females only, the
overall data set was not significant (APL p=0.06) (Table 4). The results in family data sets
were similar to the population based case-controls data set, but not significant after
correction for multiple comparisons.

The two SNPs genotyped in PTPLA were significant across all the previous association
analyses (rs10508533 had OR=1.34 with p=0.003; rs4453117 had OR=1.31 with p=0.003).
This gene is small, spanning only 27 kb. We followed up the results by genotyping seven
more SNPs in the case-control data set to give this gene a better coverage. The linkage
disequilibrium between all genotyped SNPs in cases is shown in the Supp. Figure S4. Most
of the SNPs were significant in allelic and genotypic association test (Table 5). The overall
haplotypic association test considering all SNPs in the gene was significant with global
score statistic p value = 0.03. The 3-SNP sliding window haplotypic association test was
significant for all haplotypes (Supp. Figure S5).

Gene-gene interaction among genes on chromosome 10
Overall data set—To reduce the computational burden and to eliminate highly redundant
data, 300 tagSNPs were selected to represent the 597 SNPs at an r2>0.5 threshold to test for
gene-gene interaction in MDR (Table 6). The single best model was found between two
SNPs in CACNB2. This 2-locus model involves rs1277738 and rs10741083. The average
prediction accuracy was 51.43% and the cross-validation consistency was 40%, using 5-fold
cross-validation. Because other models outperformed this model in other cross validation
intervals, the p value was not significant in the permutation test (p=0.37). However, this
model is in the top 10 models in 3 out 5 of the cross-validation intervals, being the top
model 67% of the time.

When we eliminate noise by using the “FORCELOCI” function in MDR and let the program
do the permutation only on the two SNPs in the best 2-locus model, the permutation p value
was significant (p=0.003). The result was confirmed in logistic regression when including
the interaction term. The interaction was significant with p=0.004 in the model. Table 6
shows that SNP rs1277738 in CACNB2 was consistently identified across 1-, 2-, 3-locus
models in MDR. It showed a main effect (best 1-locus model) in the MDR analysis. This
SNP also had strongest genotypic effect in single marker association test (p=0.003).

Because several models may perform almost equally in different cross validation intervals,
looking at only the top model might not be sufficient to identify important genes in this
complex disease. Therefore, we considered the frequency of each gene in the top ten MDR
models ranked by prediction accuracy. Table 7 shows the three most frequently identified
genes in the top 10 MDR models. CACNB2 was in the top 10 models among all cross-
validation intervals in the 1-, 3-locus models, and in 80% of cross-validations for 2-locus
model. In more than 60% of cross validation intervals, PTPLA was in the top 10 MDR
models. SORCS1 was in top 10 models among 40% of cross-validation intervals.

Female subset—Our previous analysis showed a strong effect of SORCS1 in the female
subset, so we performed MDR in this subset as well (Table 8). The single SNP rs17277986
in SORCS1 was identified as the single best model with prediction accuracy of 54.74% and
80% cross-validation consistency (p=0.10). This SNP was the one showing the strongest
single marker allelic effect in the female data set. No 2-locus model had a prediction
accuracy greater than 50%. The 3-locus model contains rs17277986 in SORCS1 and two
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SNPs (rs1409207 and rs2482100) in CACNB2 with 52.49% prediction accuracy and 40%
cross-validation consistency. Although the permutation p was not significant at p<0.05, the
SORCS1 gene was always in the top 10 MDR models among all cross-validation intervals
for 1-, 2- locus models. CACNB2 was in the top 10 1-locus models among all cross-
validation intervals and 40% of the cross-validation intervals for 2-, 3-locus models (Table
7).

Discussion
While both linkage and expression analyses are powerful methods when applied
individually, the number of possible genes they present as candidates for Alzheimer disease
or any complex disorder remains extremely large. Thus, focusing and prioritizing effort on
jointly identified candidate genes is a key to success using these techniques (Hauser et al.,
2003). Our previous study (Liang et al., 2007) suggested more extensive locus heterogeneity
in AD than was previously suspected. We designed the current study to converge all
available data (linkage, candidate gene, and gene expression data) to identify susceptibility
genes altering AD risk.

Gene expression data were from Serial Analysis of Gene Expression (SAGE) analysis. The
gene expression levels of forty-one genes were highly significantly different at p<10−10.
Interestingly, when we compared the direction of gene expression between AD and controls,
we found that all but one gene was up-regulated in AD the ApoE 4/4 and ApoE 3/4 samples
compared to the ApoE 3/3 samples. It is possible that the ApoE ε4 allele elevates the
expression of other genes. The only down-regulated gene was BA108L7.2 encoding
sideroflexin 3. The difference for this gene was found when we compared the long tag
SAGE library for AD to control ApoE 3/3 samples.

Given the assumption that genes showing positive association in multiple tests have higher
likelihood of being important in the disease process, we performed an analytical
convergence on the results from allelic, genotypic and haplotypic association tests. The most
consistently associated SNPs across the three analyses are rs10508533 in PTPLA in the
overall data set (allelic association p=0.0022) and rs17277986 in SORCS1 in the female
subset (allelic association p=0.00002).

PTPLA is protein tyrosine phosphatase-like, member A. Little is known about its function,
but it could be involved in the protein phosphorylation process that is important for the
function of some proteins in the AD pathology. Among all nine genotyped SNPs in PTPLA,
seven showed allelic association and six showed genotypic association. Three of those six
SNPs are functional SNPs. This gene is not in the same LD block with any nearby genes
based on HapMap data. Therefore, the three functional SNPs could have potential roles in
the biological function of PTPLA gene or are in LD with a susceptible SNP affecting
PTPLA function, but are unlikely to be in LD with susceptibility SNPs in another gene.

SORCS1 encodes sortilin-related VPS10p domain containing type 1 receptor. It contains a
leucine-rich domain and mediates intracellular sorting and trafficking functions. It is highly
expressed in the brain (Hermey et al., 1999) and neuronal activity can differentially affect its
expression (Hermey et al., 2004). SORCS1 is a substrate of γ-secretase, and γ-secretase cuts
amyloid precursor protein (APP) and generates amyloid β peptide (Aβ), one of the hallmarks
of Alzheimer disease. rs17277986 in SORCS1 was significant in the overall, age-of-onset
greater than 76 year old, ApoE 4-positive, and definite/probAD data sets, with p=0.0025,
0.0178, 0.0073, and 0.0034 respectively. It was most significant in the female subset
(p=0.00002). It survived not only an FDR multiple testing correction, but also a more
conservative Bonferroni correction. Four nearby tagSNPs (r2<0.8) were also significant in
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the female subset (p=0.0008, 0.002, 0.0064, 0.0018 for rs2900717, rs10884399, rs11193170
and rs4918280, respectively). Another SNP (rs12571141) had a p=0.00006 in this subset,
but it was in high LD with rs17277986 (r2=0.97), suggesting it was measuring the same
effect. Haplotypes containing the most significant SNP (rs17277986) were all significant
with the smallest p value = 0.0005.

All the interesting SNPs are in intron 1 of SORCS1. This gene is 590kb and intron 1 itself is
207kb and the largest intron in the gene. Most of the regions in intron 1 are conserved
(>70% identity) over the 100bp calculation window among mammalians (data not shown).
Thus, this region may be important as a functional element in the gene.

Grupe et al. (Grupe et al., 2006) found an association between SNP rs600879 (164 bp away
from rs17277986) in SORCS1 and Alzheimer disease with a p=0.0043 in their combined
data set. SNP rs600879 (108,913,108 bp) is 608 bp away from the first intron/exon
boundary. However, it was not consistently replicated in all of their individual datasets as it
was significant in only two of them (p=0.017 and 0.040). However, the sample size of the
homozygotes with the minor allele was small (between 4 and 9 samples for cases and
controls) because the minor allele frequency of this SNP was 11.2% and 8.5% for cases and
controls, respectively. The SNP was not significant in the other two data sets.

In our study, SNP rs17277986 in SORCS1 was significantly associated with AD in females
in the case-control and independent family-based data sets. There are several possible
hypotheses for the role of SORCS1 in AD.

First, it could be due to the estrogen effect. Studies on the estrogen-replacement therapy in
Alzheimer disease suggested that estrogen may provide some protection against memory
loss and lower the risk of developing AD (Burns and Murphy, 1996; Tang et al., 1996;
Wickelgren, 2003). Second, this variant may be in or near intronic regulatory sequences that
might govern cell type-specific or tissue-specific expression of SORCS1. Third, genomic
imprinting may also play a role for the significant difference of the alleles between AD cases
and controls, where differential gene expression depends upon whether the inheritance is
through the mother or father (Hall, 1990). Methylation has been proposed as a mechanism of
imprinting (Holliday, 1989) and is supported by the findings of the increased number of
unmethylated sites in AD patients in comparison to controls (Payao et al., 1998). Fourth,
there may be interaction between mitochondrial DNA mutations and this autosomal locus
such that a particular mitochondrial genotype is required for individuals carrying this
autosomal risk variant to express disease. It was suggested that mitochondria are involved in
apoptosis and there is evidence of oxidative damage to mitochondrial DNA in AD cases
(Mecocci et al., 1994; Green and Reed, 1998). Although there is not evidence that any of
these possible explanations are in fact correct, they provide plausible areas for further
research.

Epistasis, or gene-gene interaction, is crucial in detecting polymorphisms associated with an
increased risk of disease (Moore, 2003; Thornton-Wells et al., 2004; Sing et al., 2004). In
the present study, we applied Multifactor Dimensionality Reduction to investigate the
potential associations between AD susceptibility and candidate genes coverged from
linkage, gene expression and association studies.

MDR identified two SNPs (rs1277738 and rs10741083) in CACNB2 as having an
interaction effect among genes on chromosome 10. These two SNPs were both intronic
SNPs, one was in intron 2 and the other was in intron 5. They are 216 kb apart and not in
linkage disequilibrium with each other (r2=0.002). One SNP, rs1277738, had a very strong
genotypic association (p=0.003) with AD and it was identified as having a main effect in
MDR analysis. Another SNP, rs10741083 did not show single marker association with AD.
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However, the interaction effect between this SNP and the main effect SNP had higher
prediction accuracy (Table 6), suggesting that the interaction effect was not absolutely
driven by rs1277738, which had the main effect.

CACNB2 encodes a voltage-dependent calcium channel beta 2 subunit. The beta 2 subunit
works as a complex with other subunit (e.g. alpha unit) and the protein complexes play
pivotal roles in signal transduction and homeostasis processes (Opatowsky et al., 2003). The
polymorphisms in the introns may affect the binding site that binds alpha unit. If the
interaction between the alpha and beta subunit is affected, the function of the whole protein
complex is subsequently affected.

Interpreting results is a challenge in exploring gene-gene interactions. MDR analysis on
genes on chromosome 10 had low cross-validation consistency on the best model (two SNPs
in CACNB2), although the interaction was significant in the logistic regression analysis
when noise was eliminated from the data set. It may be the case that multiple models are all
good predictors of disease risk. If a gene is always in the top MDR models, it also suggests
that the gene may have an effect. We discovered three genes (CACNB2, PTPLA, and
SORCS1) that showed consistent evidence of association with AD in our previous studies.
MDR identified CACNB2 as the single best model, but not PTPLA or SORCS1. By
considering the frequencies of specific models in the top ten MDR models, we were able to
find that these three genes were in the top ten MDR models most of the time. This is another
way to identify important effects in the disease pathology. The data suggest that each gene
has a modest effect and that an extensive epistasis or gene-gene interaction is underlying the
disease etiology.

Our genomic convergence study suggests that genetic variations in PTPLA, SORCS1 and
CACNB2 genes may be associated and have modest effect to the risk of AD. In Alzheimer
disease, the amyloid precursor protein (APP) is enzymatically cut to generate Amyloid-β.
Amyloid-β accumulates and aggregates to form an oligomer and cause apoptosis which can
cause AD (hardy and Higgins, 1992). The SORLA gene is associated with AD and it inhibits
the generation of Amyloid-β (Rogaeva et al., 2007). SORCS1 is a homolog of SORLA and
may have a similar function as SORLA to inhibit the generation of Aβ. CACNB2 is a
calcium channel protein and affects the calcium level which could cause mitochondrial
damage and then induce apoptosis (Finlin et al., 2006). PTPLA is a phosphatase, but
relatively little is known about its biological function. Base on its phosphatase function, we
can conjecture that it is involved in the phosphorylation of the Tau protein; phosphorylated
Tau forms neurofibrillary tangles, which is one of the hallmarks of AD. PTPLA might also
be involved in the phosphorylation of GSK-3β protein which binds β-catenin. β-catenin is
associated with elevated Aβ 42 (Prager et al., 2007; Shim et al., 2007). β-catenin can also
bind to transcription factors and induce unscheduled cell cycles, which is also hypothesized
to be related to AD (Figure 4). In conclusion, this study suggests that genetic variations in
PTPLA, SORCS1 and CACNB2 genes might alter the risk for Alzheimer disease by
affecting multiple pathways. The replication of the effect of these genes in different study
populations and search for susceptible variants and functional studies of these genes are
necessary to get a better understanding of the roles of the genes in Alzheimer disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Allelic association test in the overall data set
PTPLA and SORCS1 were associated with AD after FDR correction for multiple testing
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Figure 2. Allelic association test in the female subset
SORCS1 and PRKG1 showed association after FDR correction for multiple testing
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Figure 3. Haplotype analysis in SORCS1 in the female subset
20 tagSNPs were analyzed in SORCS1. Bars show the haplotypes in the 3-SNP sliding
window; triangles show the single marker allelic association –log p values. The single
marker allelic association results for three tagSNPs around the SNP rs17277986 with r2<0.8
are also shown in the figure. The gene structure is shown at the bottom.

Liang et al. Page 17

Hum Mutat. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Hypothesized pathways involved in Alzheimer disease
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Table 1

Alzheimer disease case control data set

Case Control

Sample size (N) 506 558

Gender
Female 311 (61.5%) 337 (60.4%)

Male 195 (38.5%) 221 (39.6%)

Age-of-Onset

All 72.5±6.3 N/A

Female 72.8±6.6 N/A

Male 72.1±5.9 N/A

Age-of-Exam

All 75.9±12.1 74.3±5.9

Female 75.8±14.1 73.5±5.7

Male 76.2±8.1 75.5±6.0
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Table 2

Family-based data set for Alzheimer disease

Family Overall NIMH NCRAD CAP

Total pedigrees 730 352 154 224

Affected individuals 1,521 807 315 390

Unaffected individuals 974 331 162 481

Discordant Sib Pairs (DSP) 1,337 629 269 439

Independent Discordant Sib Pairs 674 283 129 262

Pedigrees with at least one DSP 406 165 75 166

Affected Relative Pairs (ARP) 188 66 26 96

Pedigrees with at least one ARP 64 31 11 22
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Table 3

Summary of linkage study results on chromosome 10

Chr. Location Linkage region (Mb) Peak LOD score Dataset Group

10p 5–25 3.00 50ca/50co Zubenko et.al

10q 45–75 4.10 451 ASPs Myers, et. al

10q 40–60 2.69 922 ASPs Liang, et. al

10q 80–100 1.70 922 ASPs Liang, et. al

10q 90–120 3.80 435 ASPs Bertram et.al
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Table 6

Summary of MDR results for genes on chromosome 10

# locus Best model Accuracy (%) Cross validation P

1-locus CACNB2(rs1277738) 50.35 40% 0.636

2-locus
CACNB2(rs1277738)

51.43 40% 0.374
CACNB2(rs10741083)

3-locus

CACNB2(rs1277738)

49.96 20% 0.710CACNB2(rs2489214)

CAMK1D(rs4750255)
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Table 7

The frequency of 3 genes in the top 10 MDR models from 5 cross-validations

1-locus model 2-locus model 3-locus model

Overall

    CACNB2 100% 80% 100%

    PTPLA 80% 60% 60%

    SORCS1 40% 40% 40%

Female

    CACNB2 100% 40% 40%

    PTPLA 20% 40% 40%

    SORCS1 100% 100% 80%
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Table 8

Summary of MDR results in the female subset

# locus Best model Accuracy (%) Cross validation P

1-locus SORCS1(rs17277986) 54.74 80% 0.098

2-locus
SORCS1(rs11193054)

48.67 20% 0.884
CACNB2(rs1277738)

3-locus

SORCS1(RS17277986)

52.49 40% 0.297CACNB2(rs1409207)

CACNB2(rs2482100)
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