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Mild cognitive impairment can represent a transitional state between normal ageing and Alzheimer’s disease. Non-invasive

diagnostic methods are needed to identify mild cognitive impairment individuals for early therapeutic interventions. Our

objective was to determine whether automated magnetic resonance imaging-based measures could identify mild cognitive

impairment individuals with a high degree of accuracy. Baseline volumetric T1-weighted magnetic resonance imaging scans

of 313 individuals from two independent cohorts were examined using automated software tools to identify the volume and

mean thickness of 34 neuroanatomic regions. The first cohort included 49 older controls and 48 individuals with mild cognitive

impairment, while the second cohort included 94 older controls and 57 mild cognitive impairment individuals. Sixty-five patients

with probable Alzheimer’s disease were also included for comparison. For the discrimination of mild cognitive impairment,

entorhinal cortex thickness, hippocampal volume and supramarginal gyrus thickness demonstrated an area under the curve of

0.91 (specificity 94%, sensitivity 74%, positive likelihood ratio 12.12, negative likelihood ratio 0.29) for the first cohort and an
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area under the curve of 0.95 (specificity 91%, sensitivity 90%, positive likelihood ratio 10.0, negative likelihood ratio 0.11) for

the second cohort. For the discrimination of Alzheimer’s disease, these three measures demonstrated an area under the curve of

1.0. The three magnetic resonance imaging measures demonstrated significant correlations with clinical and neuropsychological

assessments as well as with cerebrospinal fluid levels of tau, hyperphosphorylated tau and abeta 42 proteins. These results

demonstrate that automated magnetic resonance imaging measures can serve as an in vivo surrogate for disease severity,

underlying neuropathology and as a non-invasive diagnostic method for mild cognitive impairment and Alzheimer’s disease.

Keywords: MRI; mild cognitive impairment; Alzheimer’s disease; diagnostic marker

Abbreviations: AUC = area under curve; CDR = clinical dementia rating; MCI = mild cognitive impairment; OASIS = Open Access
Series of Imaging Studies; OC = older control; ROI = region of interest

Introduction
Mild cognitive impairment (MCI) represents a transitional period

between normal ageing and clinically probable Alzheimer’s disease

(Petersen et al., 2001). Individuals classified with the amnestic

subtype of MCI are likely in the prodromal stage of Alzheimer’s

disease (Morris et al., 2001) and up to 80% of these individuals

progress to dementia after 6 years (Petersen et al., 1999). Overall,

the prevalence of MCI in the elderly is 19%, with estimates as

high as 29% amongst individuals greater than 85 years of age

(Lopez et al., 2003). The neuropathologic changes of this transi-

tional state are consistent with the density and distribution of the

tau-associated neurofibrillary and abeta-associated amyloid fea-

tures of very early Alzheimer’s disease (Bennett et al., 2005)

and present long before the clinical onset of probable

Alzheimer’s disease (Gomez-Isla et al., 1996). As therapeutic inter-

ventions become available, there is a need for developing

methodologies that will serve as an in vivo surrogate for these

pathologic changes, and thus, accurately identify those cognitively

impaired individuals who are in the earliest stages of Alzheimer’s

disease.

Structural MRI provides visualization of the macroscopic tissue

atrophy that results from the cellular changes underlying

Alzheimer’s disease. In order to be used as a diagnostic marker,

structural MRI measures should: (i) specifically detect and quantify

fundamental features of Alzheimer’s pathology in individuals at an

elevated risk for Alzheimer’s disease (i.e. individuals with amnestic

MCI) and in patients with a clinical diagnosis of Alzheimer’s

disease; (ii) demonstrate excellent discrimination accuracy between

normal elderly controls and individuals with MCI and Alzheimer’s

disease; (iii) exhibit a high degree of consistency and test–retest

reproducibility across multiple, independent cohorts; and (iv) cor-

relate strongly with clinical measures of decline as well as invasive

measures of cellular pathology.

Prior structural MRI studies have employed either manual region

of interest (ROI) (Killiany et al., 2000; Xu et al., 2000; Devanand

et al., 2007) or automated whole-brain approaches (Scahill et al.,

2002; Buckner et al., 2005; Dickerson et al., 2009) to identify

MCI and Alzheimer’s disease individuals. Though these methodol-

ogies offer several strengths, they are limited in their use as a

diagnostic marker due to variable discrimination accuracy and

decreased test–retest reliability with the manual ROI methods,

and an inability to evaluate the disease state in a single

individual with the whole-brain approaches.

Recent advances in image analysis algorithms have led to the

development of structural MRI-based software tools that can

automatically parcellate the brain into anatomic regions and quan-

tify the tissue atrophy in these regions for a single individual (Fischl

et al., 2002; Desikan et al., 2006). In this study, we investigated

the feasibility of utilizing these automated software tools as a

diagnostic marker for Alzheimer’s disease. Using structural MRI

scans from a cohort of 97 participants, we first identified a set

of anatomic regions that best differentiated MCI individuals from

elderly controls and examined the discrimination accuracy of these

regions. We then validated the accuracy and consistency of these

measures on a second, independent cohort of 216 participants.

Finally, we examined the relationship between these MRI-based

anatomic measures and clinical measures of decline and cerebrosp-

inal fluid (CSF) markers of cellular pathology.

Methods

Overview
A total of 313 individuals were examined in this study. The first cohort

of 97 participants (‘training cohort’) was selected from the Open

Access Series of Imaging Studies (OASIS) database (Marcus et al.,

2007). Informed consent for all participants was obtained in accor-

dance with guidelines of the Washington University Human Studies

Committee (St Louis, MO). Data from subsets of these participants

have been published in previous studies (Salat et al., 2004;

Buckner et al., 2004, 2005; Head et al., 2005; Dickerson et al.,

2009). The OASIS dataset reflects a collaborative effort of investiga-

tors from a single acquisition site supported by the National Institute

on Aging (NIA), the Howard Hughes Medical Institute, the Biomedical

Informatics Research Network (BIRN) and the Washington University

Alzheimer’s Disease Research Center [Alzheimer’s Disease Research

Center (ADRC)]. The dataset includes multiple (2–4) structural MRI

acquisitions from 416 adults, ages 18–96. For more information,

please see http://www.oasis-brains.org.

The second cohort of 216 participants (‘validation cohort’) was

selected from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (www.loni.ucla.edu/ADNI). The ADNI is a large

multi-site collaborative effort launched in 2003 by the National

Institute on Aging, the National Institute of Biomedical Imaging and

Bioengineering, the Food and Drug Administration, private pharma-

ceutical companies and non-profit organizations as a public–private

partnership aimed at testing whether serial MRI, PET, other biological

markers and clinical and neuropsychological assessment can be

MRI as a diagnostic marker for MCI and Alzheimer’s disease Brain 2009: 132; 2048–2057 | 2049

http://www.oasis-brains.org


combined to measure the progression of MCI and early Alzheimer’s

disease. The Principal Investigator of this initiative is Michael Weiner,

MD, and ADNI is the result of many co-investigators from a broad

range of academic institutions and private corporations, with subjects

recruited from over 50 sites across the United States and Canada.

For more information, please see http://www.adni-info.org.

Cohort 1—training cohort
Potential participants underwent a multi-stage screening procedure

that has been described in detail elsewhere (Rubin et al., 1998).

Briefly, eligibility requirements included living independently in the

community, having an informant who could provide information

about the participants’ daily function, and absence of significant

underlying medical, neurologic or psychiatric illness. The degree of

clinical severity was evaluated by an annual semi-structured interview.

This interview generates both an overall Clinical Dementia Rating

(CDR) score and a measure known as the CDR Sum of

Boxes (CDR-SB) (Morris, 1993). Experienced clinicians conducted

independent semi-structured interviews with the participant and a

knowledgeable collateral source that included a health history and

neurological examination. The Mini-Mental State Examination

(MMSE) (Folstein et al., 1975) and a complete neuropsychological

battery (Rubin et al., 1998) were also conducted.

Participants were selected from the OASIS database if they were

clinically classified as: (i) older controls (OCs) (n = 49)—individuals

who were cognitively normal (CDR 0) or (ii) estimated to be MCI

(n = 48)—individuals with a memory complaint who experienced very

mild cognitive decline and a CDR of 0.5. Note that a CDR score of 0.5

is not synonymous with a diagnosis of amnestic-type MCI and slight

differences in the sample may exist, although the two groups are

expected to largely be similar and capture individuals at the transitional

state between normal cognition and dementia. The mean age, gender

and mean MMSE, and mean CDR-SB scores are shown in Table 1.

As expected, the CDR-SB and MMSE showed a difference between

the groups (P50.05). No other demographic variables differed

between the groups.

Confirming our expectation that the samples are similar, based on

their CDR-SB scores, the individuals in this estimated MCI group are

comparable to amnestic MCI subjects used in epidemiological studies

and clinical trials (Davis and Rockwood, 2004; Petersen et al., 2005).

Prior work using a larger cohort of the above-described mildly

impaired individuals has demonstrated that amnestic MCI represents

the prodromal stage of Alzheimer’s disease (Morris et al., 2001). For

simplicity, we use MCI in this article to refer to the entire group of

cognitively impaired subjects who did not meet criteria for probable

Alzheimer’s disease (CDR = 1.0).

Cohort 2—validation cohort
Each participant was selected using eligibility criteria that are described

in detail elsewhere (http://www.adni-info.org/index.php?option=

com_content&task=view&id=9&Itemid=43). Briefly, experienced clini-

cians conducted independent semi-structured interviews with the par-

ticipant and a knowledgeable collateral source that included a health

history, neurological examination, the MMSE (Folstein et al., 1975),

the CDR-Sum of Boxes (Morris, 1993) and a comprehensive neurop-

sychological battery.

Participants were selected from the ADNI database if they were

clinically classified as: (i) OCs (n = 94)—individuals who were

cognitively normal (CDR 0) or (ii) MCI (n = 57)—individuals with

MMSE scores between 24 and 30, a subjective memory complaint

verified by an informant, objective memory loss as measured by

education-adjusted performance on the Logical Memory II subscale

(delayed paragraph recall) of the Wechsler Memory Scale-Revised

(Wechsler, 1987), a CDR of 0.5, absence of significant levels of

impairment in other cognitive domains, essentially preserved activities

of daily living and an absence of dementia at the time of the baseline

MRI scan who within 2 years progressed to a diagnosis of probable

Alzheimer’s disease (CDR = 1.0). Only individuals classified as the

amnestic subtype of MCI, based on the revised MCI criteria

(Petersen, 2004), were selected. In addition, 65 individuals who met

criteria for probable Alzheimer’s disease (McKhann et al., 1984)

(all were CDR 1) were also included for comparison. As expected,

the CDR-SB and MMSE showed a difference between the groups

(P50.05). No other demographic variables differed between the

groups.

MRI image acquisition
For the training cohort (OASIS subjects), the MRI scans were acquired

on a 1.5T Vision system (Siemens, Erlangen, Germany). T1-weighted

magnetization-prepared rapid gradient echo (MP-RAGE) scans were

obtained according to the following protocol: two sagittal acquisi-

tions, FOV = 224, matrix = 256� 256, resolution = 1�1�1.25 mm3,

TR = 9.7 ms, TE = 4 ms, flip angle = 10�, TI = 20 ms, TD = 200 ms

(Marcus et al., 2007). Two acquisitions were averaged together to

increase the contrast-to-noise ratio.

For the validation cohort (ADNI subjects), the MRI scans were

acquired at multiple sites using either a GE, Siemens or Philips 1.5T

system. Two high-resolution T1- weighted volumetric MP-RAGE scans

were collected for each subject and the raw DICOM images were

downloaded from the public ADNI site (http://www.loni.ucla.edu/

ADNI/Data/index.shtml). Parameter values vary depending on scan-

ning site and can be found at http://www.loni.ucla.edu/ADNI/

Research/Cores/.

Table 1 Descriptive statistical information for the subjects in the study

Diagnostic group Training cohort (OASIS subjects) Validation cohort (ADNI subjects)

OC MCI OC MCI Alzheimer’s disease

Sample size 49 48 94 57 65

Age 76.6 (4.9) 78.0 (5.6) 76.0 (5.0) 76.4 (6.1) 76.6 (7.7)

Percent female 65% 60% 52% 40% 56%

MMSE 29.4 (0.8) 25.9 (2.9) 29.2 (1.0) 26.7 (1.7) 22.5 (2.0)

CDR-SB 0.0 (0.1) 2.8 (1.0) 0.0 (0.0) 1.5 (0.8) 5.7 (1.2)

Means are listed with standard deviations in parentheses. OC = Older controls; MCI = individuals with mild cognitive impairment; Alzheimer’s disease = individuals with
clinically diagnosed Alzheimer’s disease; OASIS = Open Access Series of Imaging Studies; ADNI = Alzheimer’s Disease Neuroimaging Initiative.
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Automated image analysis procedures
All MRI scans were processed using the FreeSurfer software

package, freely available at http://surfer.nmr.mgh.harvard.edu. Multi-

ple MPRAGE MRI acquisitions for each participant were motion cor-

rected, averaged and normalized for intensity inhomogeneities to

create a single image volume with relatively high contrast to noise

(Dale et al., 1999). This averaged volume was used to locate the grey/

white matter boundary (white matter surface) and this, in turn, was

then used to locate the grey/CSF boundary (grey matter surface)

(Fischl et al., 1999a; 2000). Cortical thickness measurements were

then obtained by calculating the distance between the grey and

the white matter surfaces at each point (per hemisphere) across

the entire cortical mantle (Fischl et al., 2000). This cortical thickness

measurement technique has been validated via histological (Rosas

et al., 2002) as well as manual measurements (Salat et al., 2004;

Dickerson et al., 2009). The reliability of the cortical thickness

measures as well as the other image analysis procedures presented

here has been demonstrated across different manufacturer types,

scanner upgrades, varying contrast-to-noise ratio, and the number

of MPRAGE MRI acquisitions used (Han et al., 2006; Fennema-

Notestine et al., 2007; Jovicich et al., 2009).

The neocortex of the brain on the MRI scans was then automati-

cally subdivided into 32 gyral-based ROIs (in each

hemisphere). To accomplish this, a registration procedure was used

that aligns the cortical folding patterns (Fischl et al., 1999b) and

probabilistically assigns every point on the cortical surface to one

of the 32 ROIs (Desikan et al., 2006). In addition, two non-

neocortical regions of the brain, namely the amygdala and

the hippocampus, were automatically delineated using an algorithm

that examines variations in voxel intensities and spatial relationships

to classify non-neocortical regions on MRI scans (Fischl et al., 2002).

The anatomic accuracy of the grey and white matter surfaces as well

as each of the individual ROIs was carefully reviewed by a trained

neuroanatomist (RSD), with particular attention to the medial temporal

lobe where non-brain tissue, such as dura mater and temporal bone,

often needs to be excluded. All of the MRI scans were processed on

a Linux cluster machine with 230 nodes, each with a 2 GHz AMD

Opteron CPU (Advanced Micro Devices, Sunnyvale, CA, USA) and

4 GB RAM. Processing time for each MRI scan was �25–40 h. The clus-

ter machine allows for the processing of 230 MRI scans simultaneously.

In total, 34 neocortical and non-necortical ROIs were used in this

study. For all of the analyses performed here, the mean thickness

(only neocortical regions) and the volume (both neocortical and

non-neocortical regions) of the right and the left hemispheres,

for each ROI, were added together. In order to account for

differences in head size, the total volume for each ROI was

corrected using a previously validated estimate of the total intracranial

volume (eTIV) (Buckner et al., 2004). Figure 1 shows all of the ROIs

used in this study.

Neuropsychological measures
All ADNI subjects were administered a neuropsychological battery.

Two test scores were selected for analysis in the present study because

they had previously been shown to be sensitive predictors of progres-

sion from MCI to Alzheimer’s disease (Estevez-Gonzalez et al., 2003;

Blacker et al., 2007). These two test scores were 5 min and 30 min

recall from the Rey Auditory Verbal Learning Test (AVLT)

(Lezak, 1995), and time to complete part B of the Trail Making Test

(Trails B) (Reitan, 1958).

Biomarker samples
From the current sample, a number of ADNI subjects (n = 115) under-

went lumbar puncture for CSF biomarker evaluation. Three protein

samples were selected for analysis in the present study because they

had previously been shown to be sensitive predictors of progression

from MCI to Alzheimer’s disease (Hampel et al., 2008). These included

plasma samples of tau, abeta 42 and hyperphosphorylated tau (p-tau).

Statistical analysis
A series of logistic regression models were applied on the train-

ing cohort ROI data to identify those automated measures that best

discriminated the MCI individuals from the OCs. Age was included as

a covariate in each of the regression models. For each measure, the

P-value, odds ratio (OR) computed for a 1 SD difference in the

predictor and area under the curve (AUC) was computed. In these

analyses, the AUC functionally combines the sensitivity and specificity

of the regression analyses in classifying subjects as either MCI or OCs.

The value for the AUC varies from 0.5 representing no discrimination

to 1.0 representing perfect discrimination (Nam et al., 2002).

For the training cohort, the thickness and estimate of the total

intracranial volume-corrected volumes for each of the ROIs (total of

66 measures) were first entered into simple logistic regression models

and only those measures that demonstrated an AUC of 0.70 or better

were retained for further analysis. These retained ROI measures were

entered into a second logistic regression model but only those that

demonstrated an independent effect equal to an OR of 0.57 or lower

(equivalent to a 75% increase in risk with smaller volume or decreased

thickness) were selected. The resulting ROI measures were retained for

inclusion into a final multiple regression model and the discrimination

accuracy for the training cohort was derived. For the validation cohort,

only those ROI measures that best discriminated the MCI group in the

training cohort were entered into a multiple regression model and the

discrimination accuracy was derived. In order to assess consistency and

reproducibility, the logistic regression coefficients from the final model

(developed from the training cohort) were applied to the validation

cohort and the AUC was calculated.

Correlation coefficients were used to examine the relationship

between the automated MRI measures that best discriminated

the MCI group and clinical, neuropsychological and CSF biomarker

evaluations in the validation cohort (ADNI subjects). Spearman’s

rank correlation coefficients were utilized in order to avoid making

assumptions about the statistical distributions of the variables.

Results
The simple logistic regressions on the training cohort (OASIS sub-

jects) revealed significant effects for entorhinal cortex thickness

(AUC = 0.86, P50.00001) and volume (AUC = 0.80, P50.0001),

inferior parietal lobule thickness (AUC = 0.71, P50.0001) and

volume (AUC = 0.70, P50.0001), inferior temporal gyrus thickness

(AUC = 0.72, P50.0001) and volume (AUC = 0.72, P50.0001),

isthmus of cingulate cortex thickness (AUC = 0.71, P50.001),

lateral occipital cortex thickness (AUC = 0.72, P50.0001),

lingual cortex thickness (AUC = 0.71, P50.0001) and volume

(AUC = 0.71, P50.0001), middle temporal gyrus thickness

(AUC = 0.72, P50.0001) and volume (AUC = 0.72, P50.0001),

parahippocampal gyrus (AUC = 0.74, P50.0001) and volume

(AUC = 0.75, P50.0001), precuneus cortex (AUC = 0.70,

P50.0001) and volume (AUC = 0.74, P50.0001), superior
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temporal gyrus thickness (AUC = 0.78, P50.0001), supramarginal

gyrus thickness (AUC = 0.75, P50.0001), temporal pole thickness

(AUC = 0.75, P50.0001), amygdala volume (AUC = 0.78,

P50.0001) and hippocampal volume (AUC = 0.82, P50.00001)

(Fig. 2).

The final regression model, estimated from the training cohort,

demonstrated that entorhinal cortex thickness (OR = 0.18,

P50.0001), hippocampal volume (OR = 0.20, P50.0001) and

supramarginal gyrus thickness (OR = 0.02, P50.0001) represented

the best set of discriminators for MCI. In the comparison between

the OCs and the MCI individuals, these three measures

demonstrated an AUC = 0.91.

For the validation cohort (ADNI subjects), in the comparison

between the OCs and the MCI individuals, entorhinal cortex

thickness, hippocampal volume and supramarginal thickness

demonstrated an AUC = 0.95. In the comparison between the

OCs and patients with Alzheimer’s disease, these three measures

demonstrated an AUC = 1.00. The application of the logistic

regression coefficients from the model based on the training

cohort to the validation cohort resulted in an AUC of 0.95. The

AUC, sensitivity and specificity, negative and positive predictive

values and negative and positive likelihood ratios for both the

training and validation cohorts are presented in Table 2.

The correlations between the automated MRI measures and the

clinical, neuropsychological and CSF measures are presented in

Table 3. Figure 3 illustrates in pictorial format the nature of the

relationship between one of the automated MRI measures,

entorhinal cortex thickness and the three CSF biomarkers.

Discussion
The results demonstrate that automated MRI measures of entorh-

inal cortex thickness, hippocampal volume and supramarginal

Figure 1 Three-dimensional representations of all 34 ROIs examined in the current study (only one hemisphere is shown). All of

the neocortical ROIs visible in (A) lateral and (B) medial views of the grey matter surface and (C) the two non-neocortical regions

(i.e. the hippocampus and amygdala) visible in the coronal view of a T1-weighted MRI image.
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gyrus thickness identify MCI and Alzheimer’s disease individuals

with excellent discrimination accuracy and specificity, exhibit a

high degree of consistency and reproducibility across multiple

independent cohorts, and correlate strongly with clinical measures

of decline as well as cellular biomarkers. Taken together, these

findings suggest the feasibility of using automated, MRI-based

software tools as a diagnostic marker for Alzheimer’s disease.

The regression analyses presented here indicate that automated

MRI measures can differentiate MCI and Alzheimer’s disease from

normal ageing with excellent discrimination accuracy. In the

comparisons between the MCI individuals and OCs, entorhinal

cortex thickness, hippocampal volume and supramarginal gyrus

thickness demonstrated an average AUC of 0.91 in the training

cohort and an AUC of 0.95 in the validation cohort. Using these

same MRI measures, patients with mild Alzheimer’s disease could

be differentiated from OCs with perfect discrimination

(AUC = 1.0). These AUC values are more accurate than prior

MRI (Xu et al., 2000; Devanand et al., 2007; Colliot et al.,

2008; Kloppel et al., 2008), FDG–PET (Mosconi et al., 2008;

Jack et al., 2008) or amyloid-binding PET studies (Jack et al.,

2008; Li et al., 2008). The MCI discrimination accuracies pre-

sented here are comparable to one prior PET study utilizing a

radioactive amyloid and tau protein tracer (Small et al., 2006)

and two prior MRI studies where a smaller number of subjects

were examined from a single cohort (Killiany et al., 2000;

Davatzikos et al., 2008). Further studies are needed to determine

whether combining structural MRI measures with other imaging

modalities will improve diagnostic and prediction accuracy and

whether the benefits of using multiple methods outweigh the

costs.

To the best of our knowledge, this is the first study to demon-

strate that automated software tools can be utilized to quantify

the atrophy of individual anatomic regions in a highly specific and

precise fashion. The fact that entorhinal cortex thickness and

hippocampal volume were two of the best discriminators of MCI

indicates the specificity of these automated MRI methods for

identifying the two regions implicated in the earliest stages of

Alzheimer’s pathology (Braak and Braak, 1991; Kemper, 1994).

Consistent with prior MRI studies (Scahill et al., 2002; Buckner

et al., 2005; Dickerson et al., 2009), these results also highlight

the relative importance of examining lateral parietal regions, such

as the supramarginal gyrus, as important discriminators for the

earliest stages of Alzheimer’s disease.

The regression results further illustrate that these automated

MRI measures are highly consistent and reproducible. In the com-

parison between the MCI individuals and OCs, both the training

Table 2 Discrimination results for automated MRI measures from final stepwise regression model

Training cohort (OASIS subjects) Validation cohort (ADNI subjects)
(n = 98; MCI 48, OC 49) (n = 151; MCI 57, OC 94)

Regression
coefficient (SE)

Odds ratio
(95% CI)

P-value Regression
coefficient (SE)

Odds ratio
(95% CI)

P-value

Intercept 34.9 (7.91) 31.3 (5.68)

Entorhinal thickness �1.58 (0.61) 0.26 (0.09�0.73) 0.0097 �2.48 (0.63) 0.13 (0.05�0.71) 50.0001

Hippocampal volume �1.62 (0.63) 0.28 (0.11�0.73) 0.0105 �1.29 (0.45) 0.34 (0.16�0.71) 0.0041

Supramarginal thickness �3.90 (1.42) 0.19 (0.18�0.75) 0.0062 �2.25 (0.86) 0.42 (0.22�0.81) 0.0096

Area Under Curve (AUC)a (95% CI) 0.91 (0.83�0.95) 0.95 (0.90�0.97)

Sensitivitya (95% CI) 73% (58�85%) 90% (79�96%)

Specificitya (95% CI) 94% (83�99%) 91% (84�96%)

Negative predictive valuea 78% 94%

Positive predictive valuea 92% 85%

Negative likelihood ratioa 0.29 0.11

Positive likelihood ratioa 12.12 10.00

SE = standard error; CI = confidence interval; Odds ratio is for a 1 SD difference in the independent variable.
a Derived from entorhinal thickness, hippocampal volume and supramarginal thickness.

Table 3 Correlation results from the validation cohort (ADNI subjects) between the automated MRI measures that best
discriminated the MCI group and clinical, neuropsychological and CSF biomarker evaluations

Region of interest CDR-SB MMSE AVLT 5 min recall AVLT 30 min recall Trails B Tau P-Tau Abeta 42

Entorhinal cortex thickness �0.81
(0.0001)

0.72
(0.0001)

0.66
(0.0001)

0.70
(0.0001)

�0.51
(0.0001)

�0.41
(0.0001)

�0.47
(0.0001)

0.38
(0.0001)

Hippocampal volume �0.71
(0.0001)

0.60
(0.0001)

0.62
(0.0001)

0.62
(0.0001)

�0.51
(0.0001)

�0.37
(0.0003)

�0.44
(0.0001)

0.43
(0.0001)

Supramarginal gyrus thickness �0.50
(0.0001)

0.43
(0.0001)

0.39
(0.0003)

0.42
(0.0001)

�0.39
(0.0001)

�0.33
(0.0003)

�0.38
(0.0003)

0.26
(0.006)

Spearman’s rank correlation coefficients listed with P-values in parenthesis.
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and the validation cohorts demonstrated similar AUC values indi-

cating the reliability of these measures across multiple independent

cohorts. Furthermore, for the validation cohort, the application of

the training cohort logistic regression coefficients resulted in an

AUC value of 0.95, the same as the value derived without the

application of these coefficients. This shows that the model based

on the training cohort using the three temporoparietal measures is

clinically applicable and can be reproduced in populations other

than that from which the training cohort were drawn.

The correlations between the three MRI measures and

measures of clinical severity (i.e. CDR-SB and MMSE) suggest

the potential for using these measures as surrogate markers

of underlying disease. Correlations between tests of episodic

memory function (AVLT 5 and 30 min recall) and measures of

entorhinal cortex thickness and hippocampal volume are consistent

with the fact that declines in episodic memory function are

reported as predictors of disease progression. Future studies will

examine whether combining these automated MRI measures with

neuropsychological assessments will better predict which MCI

individuals eventually progress to Alzheimer’s disease.

Correlations between the three temporoparietal measures

(i.e. entorhinal cortex thickness, hippocampal volume and

Figure 2 AUC results (neocortical thickness and non-neocortical volumes) from the first regression model (MCI versus older controls)

for all of the automated ROIs from the training cohort (OASIS subjects) displayed on the grey matter surface (only one hemisphere is

shown) in (A) lateral, (B) medial views and (C) the two non-neocortical regions (i.e. the hippocampus and amygdala) in the coronal

view of a T1-weighted MRI image. The colour scale at the bottom represents the discrimination accuracy (AUC value), with green

indicating regions of lowest discrimination and brown/red indicating regions of highest discrimination (please see text for specific

AUC values for each ROI).
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supramarginal gyrus thickness) and CSF measures of tau, p-tau

and abeta 42 suggest that these MRI measures are likely to be

a reflection of known underlying Alzheimer’s disease pathology.

When considered together with the regression results, these data

suggest the hierarchical fashion in which pathology affects the

earliest stages of Alzheimer’s disease, with tau-associated neurofi-

brillary changes in medial temporal regions and abeta-associated

amyloid changes in the entorhinal cortex and neocortical regions

(Arnold et al., 1991; Braak and Braak, 1991; Kemper, 1994).

The methods we have described here can be implemented in

clinical practice for the diagnosis of MCI and Alzheimer’s disease.

Using these software tools a single volumetric T1-weighted MRI

scan can be completely processed, with little to no manual

intervention, in a relatively short amount of time. The training

cohort regression coefficients presented here can then be applied

to the final output values of entorhinal cortex thickness, hippo-

campal volume and supramarginal gyrus thickness to calculate

the predictive probability of a single individual being diagnosed

as either MCI or Alzheimer’s disease.

The present study has limitations. Since the MCI individuals in

the two cohorts were diagnosed using slightly different criteria,

differences between the two MCI groups could have affected

the ability to independently assess the discrimination accuracy of

the automated MRI measures. Another limitation is that the two

MCI cohorts had differing percentages of males and females, with

the training cohort comprised of a larger number of females and

the validation cohort comprised of a larger number of males. The

fact that the AUC values were comparable between the two

cohorts and that the application of the training cohort logistic

regression coefficients resulted in the same AUC value as without

the application of these coefficients, suggests that the differences

observed between the two cohorts did not play a major role in

affecting the main findings of this study.

One concern is that although the procedures demonstrated here

generalized across clinically diagnosed Alzheimer’s disease and

MCI populations, these procedures may be less accurate in the

clinical setting where a range of cognitive disorders and dementia

subtypes are present. The fact that the current results show

complete discrimination suggests that these tools would be

additionally powerful in the clinical setting. Future work will

examine the application of these automated MRI measures to a

larger, community-based, volunteer cohort that would be more

representative of a clinical setting. Another concern is regarding

clinical utility and whether these automated MRI measures can

predict progression from MCI to Alzheimer’s disease. Recently,

we have completed a study examining the feasibility of using

these automated MRI measures to identify those MCI individuals,

within a larger MCI cohort, at greatest risk for Alzheimer’s disease.

Preliminary evidence from this study indicates that these

automated MRI measures can identify MCI converters from MCI

non-converters with a high degree of accuracy and have signifi-

cant benefit when compared to clinical and neuropsychological

assessments alone for predicting progression from MCI to

Alzheimer’s disease (Desikan et al., 2009).

The identification of individuals in a transitional phase is critical

for testing disease-modifying therapies and for the development of

novel medications to prevent or delay Alzheimer’s disease. The

results from this study demonstrate that automated MRI-based

neuroanatomic measures provide one cost-effective and efficient

method to identify individuals in the earliest stages of Alzheimer’s

disease and may further serve as a quantitative and biologically

meaningful endpoint in therapeutic trials.
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