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Chronic severe pain is a significant global health problem [1]. In the US alone, one third of
Americans suffer some form of chronic pain, and in these individuals over 30% of reported
pain is resistant to analgesic therapy [1]. The economic impact of pain is equally large at
approximately $100 billion annually [1]. While selective cyclooxygenase-2 (COX-2)
inhibitors are effective for several forms of chronic pain, their occasional side-effects including
increased risks of heart attack and stroke [2] prompted the precipitous withdrawal of some of
them (i.e. Vioxx) from the market in 2004.

Morphine sulfate and other opiate/narcotic analgesics are the most effective treatments for
acute and chronic severe pain. However, their clinical utility is often hampered by the
development of analgesic tolerance as well as by de novo painful hypersensitivity to innocuous
and noxious stimuli with such phenomena observed in both animal and human studies [3;4;
5]. For morphine in particular, development of tolerance necessitates escalating doses to
achieve equivalent pain relief [6], even as the onset of morphine-induced hypersensitivity
subverts the therapeutic impact of such dose increases [3;4;5]. This complex
pathophysiological cycle contributes significantly to decreased quality of life in the growing
population of subjects with chronic pain due to oversedation, reduced physical activity,
respiratory depression, constipation, potential for addiction, and other side-effects [6].
Accordingly, there is growing interest in new approaches that would maintain opiate efficacy
during repetitive dosing without engendering tolerance or unacceptable side-effects.
Considerable evidence implicates nitroxidative stress in the development of pain of several
etiologies and importantly in opiate antinociceptive tolerance, caused by the presence of
superoxide, O2·-, nitric oxide, ·NO and more recently peroxynitrite (ONOO- or its protonated
counterpart ONOOH) that is the product of their interaction (Figure 1). In addition to the 3
routes of reducing ONOO- toxicity depicted in Figure 1, there is a fourth: scavenging of the
radicals from ONOOH (urate, methionine and tyrosine peptides are examples in this category)
[7].

The objectives of this first mini-review written on peroxynitrite and morphine antinociceptive
tolerance are to discuss the importance of nitroxidative stress in this process and argue that
peroxynitrite is a rational target for therapeutic intervention in pain management. These
concepts provide a pharmacological basis for developing inhibitors of peroxynitrite
biosynthesis as novel non-narcotic analgesics, thus addressing a large and currently unmet
medical need with major socioeconomic consequences.
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Morphine-induced antinociceptive tolerance: Is there a role for peroxynitrite?
Prolonged use of opiates results in antinociceptive tolerance, such that higher doses are required
to achieve equivalent analgesia [6] or antinociception [5;8;9]. Adaptative modifications in
cellular responsiveness, particularly desensitization and downregulation of opioid receptors,
underlie this phenomenon [10]. By contrast, a competing hypothesis is that stimulation of
opioid receptors over time triggers activation of anti-opioid systems that reduce sensory
thresholds, thus causing hypersensitivity to tactile stimulation (allodynia) and noxious thermal
stimulation (hyperalgesia) [8;11;12]. As a corollary, such opioid-induced hypersensitivity
paradoxically diminishes the net analgesic effect of the opioid agonist [8;11;12]. In vivo support
for this alternative hypothesis has been found in animals [3;13;14] and in humans [4;15;16].
Thus, analgesic tolerance likely arises when pain facilitatory systems become sensitized or
hyperactive after repeated opioid use.

The mechanisms by which prolonged opiate exposure induce tolerance and hypersensitivity
remain unclear, although a role for peroxynitrite-mediated nitroxidative stress has been
identified [17]. Peroxynitrite is a potent pro-inflammatory and pro-apoptotic reactive species
[18;19;20] and a potent inducer of hyperalgesia (defined as augmented pain intensity in
response to painful stimuli) [21]. Besides its role in the development of morphine-induced
antinociceptive tolerance that will be reviewed herein, peroxynitrite is also implicated in the
development of hyperalgesia associated with acute and chronic inflammation and in response
to spinal activation of the N-methyl-D-aspartate (NMDA) receptor [22;23;24] (Figure 1). We
reasoned that since inhibiting formation of peroxynitrite precursors (O2·- or ·NO) blocks the
development of morphine antinociceptive tolerance, then peroxynitrite is most likely the
common and final signaling mediator of nitroxidative stress accompanying antinociceptive
tolerance [17]. In support, it has been repeatedly shown that non-selective inhibitors, as well
as those selective for iNOS and nNOS, prevent development of morphine-induced
antinociceptive tolerance [25;26;27;28;29;30;31;32;33;34]. These beneficial effects of NOS
inhibition were associated with attenuation of spinal neuroimmune activation and reduced
release of pro-inflammatory and pro-nociceptive cytokines, achieved at least in part by
blocking redox-sensitive transcription factors such as p38 MAPK [17;35;36;37;38]. While
links among morphine hypersensitivity, tolerance and ·NO production clearly exist, the
contributions of different isoforms by pharmacological, antisense and genetic approaches
remain controversial. In general nNOS is considered the primary source, although evidence
also implicates iNOS [32;39]. A defined role of eNOS must await development of selective
inhibitors of this isoform; one study using eNOS knockout mice indicated that these animals
develop tolerance in a manner similar to wild types [32]. Inhibition of O2·- formation with
superoxide dismutase mimetics blocks tolerance events and is associated with suppressed
spinal formation of TNF-α, IL-1βand IL-6, and reduced apoptosis [17]. Repeated
administration of morphine in rodents promotes the nitration and thus the enzymatic
inactivation of spinal manganese superoxide dismutase (MnSOD). Consequently, morphine
may provide a critical source of spinal peroxynitrite that contributes to the development of
morphine antinociceptive tolerance through three well-defined biochemical pathways within
the dorsal horn of the spinal cord: (1) post-translational nitration of proteins involved in
glutamate homeostasis (2) neuroimmune activation (release of pro-inflammatory cytokines
such as tumor necrosis factor-α (TNFα), interleukin (IL)-1β, and IL-6) and (3) neuronal
apoptosis [17]. Thus, reducing ONOO- formation either indirectly (with nitric oxide synthase
inhibitors or superoxide dismutase inhibitors) or directly (using pharmacological approaches
to catalytically decompose ONOO-) inhibits these three events [17]. Collectively then,
experimental evidence points to peroxynitrite as a canonical signaling molecule in morphine
antinociceptive tolerance. The mechanisms leading to nitroxidative stress upon repeated
administration of morphine during the development of antinociceptive tolerance are not known
to date but are the subject of current investigation in my laboratories. However a link between
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morphine and oxidative stress has been documented. For example, morphine-induced O2·-
production seems to occur as a result of activation of μreceptors, leading to the activation of
the phospholipase D pathway, and an increase in Ca2+, leading to the activation of NADPH
oxidase; generation of superoxide through this pathway evokes apoptosis in macrophages
[40;41]. Furthermore, morphine has been shown to exert oxidative stress in various cells
including cells that we know play a critical role in antinociceptive tolerance namely neurons,
microglial cells and astrocytes [42;43]. Another potential source for peroxynitrite in response
to repeated administration of morphine and the development of antinociceptive tolerance
includes the activation of NMDA receptors and glial cells. Why? Substantial evidence has been
gathered over the last decade to demonstrate that NMDA receptor activation as well as the
activation of glial cells play a key role in the development of morphine tolerance since NMDA
receptor antagonists, inhibitors of glial cell activation and anti-cytokine therapies block
morphine antinociceptive tolerance [26;35;44;45;46;47;48;49;50;51;52]. NMDA receptor
activation and glial cell activation release the precursors in the formation of ONOO- namely
O2·- and ·NO [53;54;55;56;57;58;59;60]. We therefore propose that repeated administration
favors the formation of ONOO- as a result of at least in part μ receptor activation, NMDAR
activation and glial cell activation (Figure 2). In this paradigm the enzymatic sources in
ONOO- formation include NOS (already discussed), nitration and enzymatic inactivation of
MnSOD (vide infra) and activation of the NADPH oxidase. The O2·- -generating enzyme,
NADPH-oxidase, is dormant in resting cells and produces superoxide only upon activation.
Unlike the regulation of NOS, the principal regulation of NADPH oxidase is post-translational
and depends on assembly of several membrane-bound and cytosolic components to form an
active enzyme complex. In resting cells, the enzyme consists of two membrane-bound
components, gp91phox and p22phox, and several cytosolic components, including p47phox,
p40phox, p67phox, and rac1-2 [61]. Gp91phox is a flavocytochrome and the catalytic core of
the enzyme. Upon activation, the cytosolic components translocate to the membrane and
associate with membrane components to form an assembled, activated, and superoxide-
producing enzyme complex. Although this enzyme is best characterized in immune cells and
leukocytes for its involvement in superoxide production, it is now known that various protein
components of NADPH oxidase are expressed in neurons, astrocytes and microglia [61;62;
63;64]. These include the following NADPH oxidase subunits: gp91phox, p22phox, p40phox,
p47phox, and p67phox [64;65]. Furthermore, a recent study with hippocampal slices has
demonstrated a link between NMDA and production of superoxide through NADPH oxidase
[66]. Cytokines such as TNF-α and IL-1β activate this enzyme and activated glial cells generate
ONOO- by iNOS and NADPH oxidase leading to neuronal death [58;59;67;68]. Importantly,
superoxide autoaugments superoxide formation by upregulating gp91phox creating a self-
perpetuating cascade [67]. The role of this enzyme in superoxide formation during pathological
settings is supported by the following observations. First, apocynin, a well-known inhibitor of
the NADPH-oxidase prevents serine phosphorylation of p47phox, and blocks its association
with gp91phox [69;70]. This blunts NADPH oxidase activation leading to beneficial effects
in animal models of oxidative stress including rheumatoid arthritis, diabetes, atherosclerosis,
neurodegeneration, stroke and ischemia-reperfusion injuries [71;72;73;74;75;76;77;78].
Second, these pharmacological observations are supported by genetic approaches
demonstrating that mice lacking a functional NADPH oxidase subunit (gp91phox) show
substantial decrease in O2·- and ONOO- formation and reduced oxidative stress in animal
models [79]. Our preliminary results have shown that besides nitration and enzymatic
inactivation MnSOD, the NADPH oxidase is also an important target source in the generation
of ONOO- via O2·-. Thus, co-administration of morphine with apocynin, a well-characterized
specific inhibitor of this enzyme blocked antinociceptive tolerance (Salvemini, manuscript in
preparation). As discussed above NOS activation will provide ·NO, the second precursor in
ONOO- formation.
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Role of peroxynitrite in the development of morphine antinociceptive
tolerance: Proposed molecular and biochemical pathways
A. Post-translational nitration and protein modification

Considerable evidence supports the notion that a key biologically relevant feature of
peroxynitrite is post-translational tyrosine nitration and consequent modification of protein
function [80;81;82]. The biological importance of post-translational nitration is thus
underscored by compelling evidence linking this phenomenon to diseases driven by overt
production of peroxynitrite including sepsis, ischemia/reperfusion injury, cancer,
neurodegenerative disorders [22;23;83;84;85;86;87;88], and more recently for pain and opiate
antinociceptive tolerance [17;21;23;24;89].

A1: Protein nitration and superoxide/peroxynitrite homeostasis—Several proteins
are nitrated, a modification associated with loss, gain or change of function [90;91;92]. A key
example of lost enzyme activity due to nitration in vivo is mitochondrial MnSOD that normally
keeps concentrations of superoxide under tight control [93]. The MnSOD protein is nitrated
by peroxynitrite on Tyr-34 by a Mn-catalysed process which leads to enzyme inactivation
[94]. Nitration of MnSOD, and its subsequent enzymatic inactivation, favor the accumulation
of peroxynitrite which then nitrates and alters additional proteins and receptors, thereby
perpetuating and extending the initial damage [80;81;82;95]. To determine likely sources of
sustained production of peroxynitrite during antinociceptive tolerance, we asked whether
nitration/inactivation of MnSOD was a possibility. Our studies revealed that repeated
administration of morphine leads to spinal nitration and enzymatic inactivation of MnSOD and
that inhibition of peroxynitrite blocks nitration, restores the enzymatic activity of the enzyme
and blocks tolerance suggesting the key role of nitrated MnSOD as a source of peroxynitrite
in tolerance [17]. Interestingly, St. Clair and colleagues reported that when activated glial cells
release cytokines such as TNF-α, iNOS is induced in neighbouring neurons; as a consequence
formation of ·NO-derived peroxynitrite in such neurons nitrates MnSOD causing neuronal cell
death [96]. Their results led us to postulate that nitration and inactivation of MnSOD contributes
to the neuronal death often accompanying antinociceptive tolerance, and this hypothesis is
being evaluated in our laboratory.

A2: Protein nitration and glutamate homeostasis—Dysfunction of the glutamatergic
pathway is a key component of nociception [3;35;36;46;56]. Peroxynitrite alters glutamate
homeostasis through post-translational nitration and modification of key proteins involved in
maintaining a normal glutamate balance. Indeed research in diverse fields including
amyotrophic lateral sclerosis and septic shock have demonstrated that peroxynitrite nitrates
and inactivates 1) NMDA receptors [97;98;99], 2) the transport activity of sodium-dependent
high-affinity glutamate transporters (GTs) [100;101] and 3) glutamine synthase [102;103;
104]. While these excitatory amino acid transporters also transport cysteine, for simplicity we
shall refer to them as glutamate transporters GTs, and not excitatory amino acid transporters,
EAATs.

We will next discuss why these observations are critically important in the context of
morphine-induced antinociceptive tolerance and associated hyperalgesia: Glutamate
neurotransmission, in particular that mediated via NMDA receptors under chronic pain
conditions, is fundamentally involved in the development of opioid tolerance, especially
tolerance arising from μ-opioid receptor stimulation [26;44]. cDNA cloning has revealed that
the NMDA receptor is formed by several NMDA receptor subunits. The coexpression of NR1
with various NR2 subunits is required for a fully functional ion channel receptor and the
combined expression of NR1 with different NR2 subunits results in channel with distinct
pharmacological and physiological properties that define NMDA receptor heterogeneity
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[105]. Peroxynitrite interacts with the NMDA receptor leading to nitration of the tyrosine
residues present on the NMDA receptor subunits. This nitration is an irreversible reaction that
leads to a constant potentiation of synaptic currents, calcium influx, and ultimately
excitotoxicity [97;98;99].

Glutamate, as the primary endogenous ligand for the NMDA receptor, is not metabolized by
extracellular enzymes but must be removed from the synaptic cleft by cellular uptake. Thus,
homeostasis of extracellular glutamate is tightly regulated by GTs in the plasma membranes
of both neurons and glia [106;107;108;109]. There are five membrane GTs, termed GLAST
(EAAT1), GLT-1 (EAAT2), EAAC1 (EAAT3), EAAT4, and EAAT5 [110]. Of these, GLAST
and GLT-1 are localized primarily to astrocytes and EAAC1, EAAT4 and EAAT5 to neurons.
EAAT4 and EAAT5 are restricted to cerebellar Purkinje cells and the retina, respectively,
whereas EAAC1 is widely expressed in the CNS [111]. Astrocyte glutamate transporters are
limited to glutaminergic synapses, whereas EAAC1 is detected diffusely over cell bodies and
processes [112]. Three glutamate transport protein subtypes isolated in the spinal cord [GLAST
and GLT-1 associated with glial cells, and EAAC1 associated with neurons [113;114;115;
116;117;118]], are considered essential to maintain low resting levels of glutamate (< 1μM),
and to prevent overstimulation of GTs [108;119;120;121;122]. Knockdown expression of
GLAST or GLT-1 in rats using antisense oligonucleotides increased the extracellular glutamate
concentration [123]. Notably, these glutamate transport proteins are concentrated in the
superficial dorsal horn of the spinal cord and are responsible for > 80% of total glutamate
transport [110]. In elucidating potential mechanisms of morphine-induced antinociceptive
tolerance and hypersensitivity, activation of NMDA receptors can lead to neurotoxicity under
many circumstances [124;125;126;127]. Thus, peripheral nerve injury has been shown to
activate spinal cord NMDA receptors, causing intractable neuropathic pain and neuronal
apoptosis [128;129;130;131]. Furthermore, crosstalk between the pathways underlying opioid
tolerance and neuropathic pain has been proposed, suggesting that a common cellular
mechanism may be causal in both conditions [3;132]. Extending this reasoning, it is possible
that the cellular process leading to the development of opioid tolerance may also cause
neurotoxic changes in response to prolonged opioid administration [133]. Thus, a number of
studies indicate that functional glutamate transporters prevent glutamate neurotoxicity under
both physiological and pathological conditions [101;108;109;121;134]. In brain tissue,
decreases in GLT-1 mRNAs have been observed after naloxone-precipitated morphine
withdrawal [135]. Of note, the activity of glutamate transporters decreases during morphine
tolerance and is associated with spinal apoptosis [136]. Glutamate transporter inhibitors, or GT
activators such as MS-135, increase and decrease respectively the development of spinal
apoptosis, hyperalgesia and tolerance [136;137]. In addition, agents such as dexamethasone or
amitryptiline attenuate analgesic tolerance to morphine in part by preventing the
downregulation of glutamate transporters, with consequent reduction in synaptic levels of
glutamate [138;139]. Not unexpectedly, nitration of GLT-1 by peroxynitrite inhibits its
glutamate transport capacity and causes excitotoxicity [103].

Besides regulating synaptic levels of glutamate, these GTs play a crucial role in the uptake of
cysteine, and thus contribute to the overall thiol redox state of cells that is regulated by
intracellular levels of glutathione (GSH). GSH plays a critical role in protecting cells from
oxidative stress as well as maintaining the thiol redox state. GSH depletion enhances oxidative
stress leading to neuronal degeneration as shown in several studies [140;141]. GSH is a
tripeptide composed of glutamate, cysteine and glycine. In neurons, cysteine is the rate-limiting
substrate for GSH synthesis [142] and in neurons approximately 90% of total cysteine uptake
is mediated by EAATs [143;144;145]. Thus, EAAC1 transports cysteine at a rate comparable
to that of glutamate, with an affinity 10- to 20-fold higher than that of GLAST or GLT-1
[146]. Recent studies have shown that peroxynitrite-mediated nitration of EAAC1 in neurons
reduces the uptake capacity of cysteine leading to a depletion of intracellular GSH and neuronal
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cell death [100]. Integrating these findings, tolerance could develop due to excitotoxicity from
increased synaptic concentrations of glutamate and a decrease in neuronal thiol redox state due
to decreased intracellular levels of cysteine and thus GSH. We are currently evaluating such a
concept.

In contradistinction to the central role of GTs in regulating the homeostasis of extracellular
glutamate, glutamine synthase (GS) plays a pivotal role in glutamate’s intracellular metabolic
fate. Once taken up into glial cells, glutamate is converted into nontoxic glutamine by
endogenous GS [147]. In the brain, GS is located mainly in astrocytes; a primary roles of these
cells is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate,
converting them into glutamine [detoxification of ammonia by GS will not be discussed here
for simplicity]. Studies have shown that in glutamatergic brain areas, the distribution of both
glial glutamate receptors and glial transporters parallels the location of GS suggesting a
functional coupling between the two systems to prevent damage [148;149;150]. Furthermore,
through feedback regulation, a decrease in GS activity can reduce the activity of GTs [148].
Thus, dysfunctional glutamate metabolism likely contributes to antinociceptive tolerance
[133;137;138;139]. These observations prompted us to show that post-translational tyrosine
nitration of spinal glutamate transporters (GLT-1) and GS by peroxynitrite contributes to the
development of antinociceptive tolerance to morphine [17]. Increased levels of glutamate can
be decreased by reducing the production of cytokines such as TNF-αand IL-6 that have been
shown to inhibit glutamate uptake [151]. Since peroxynitrite increases cytokine production
(vide infra) it is likely that peroxynitrite modulates glutamate homeostasis via the cytokine
signaling pathway.

B: Inflammation
Peroxynitrite is a potent pro-inflammatory nitroxidative species with an established role in
“neuronal inflammation” (defined here as neuroimmune activation which includes activation
of glial cells and release of proinflammatory cytokines) [35;45;46;47;48;49;50;51;52]. Chronic
administration of morphine promotes activation of spinal cord glial cells, as well as production
of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6 and spinal sensitization [35;
36;52]. Thus, inhibitors of glial cell metabolism and/or anti-proinflammatory cytokine
approaches block morphine-induced antinociceptive tolerance and hyperalgesia [35;36;52]. In
addition, other anti-inflammatory agents including dexamethasone [138] [152], non-steroidal
anti-inflammatory drugs [45;51], IL-10 [48], NOS inhibitors [27;28;45], p38 kinase inhibitors
[38] and superoxide dismutase mimetics [153]have been shown to inhibit morphine-induced
antinociceptive tolerance and hyperalgesia. The possible mechanisms for chronic morphine-
induced glial cell activation are not known with certainty. Although μ-opiate receptors are
present on microglia and astrocytes [154], acute administration of morphine does not activate
these cells [52]. On the other hand, morphine primes glial cells for enhanced production of
pro-inflammatory cytokines [155]. In inflammation, peroxynitrite induces endothelial cell
damage and increased microvascular permeability [156;157], activates redox-sensitive
transcription factors including NF-κ B and AP-1 that in turn regulate genes encoding various
pro-inflammatory and pronociceptive cytokines genes such as interleukin-1β, tumor necrosis
factor-α and interleukin-6 (IL-1β, TNF-α and IL-6 respectively [158;159;160;161;162;163;
164]. Peroxynitrite also up-regulates adhesion molecules such as ICAM-1 and P-selectin to
recruit neutrophils at sites of inflammation [163;165], auto-catalyzes the destruction of
neurotransmitters and hormones such as norepinephrine and epinephrine [166;167], lipid
peroxidation and oxidation [20]. In the development of morphine antinociceptive tolerance,
inhibition of peroxynitrite formation with NOS inhibitors, superoxide dismutase mimetics or
decomposition of peroxynitrite with peroxynitrite decomposition catalysts, block spinal
formation of IL-1β, TNF-α and IL-6 [17]. The cyclooxygenase (COX) pathway has also been
implicated in tolerance. In animals, a number of studies have confirmed that neuronal
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cyclooxygenase (COX) activity contributes to the expression of opioid tolerance and that
certain COX inhibitors can be used for the prevention, and even the reversal of morphine
tolerance [168;169] As discussed previously in this review article, it has also been established
that NOS inhibitors can effectively attenuate opioid tolerance [25;26;27;28;29;30;31;32;33;
34;39] In this setting, another potential molecular pathway by which peroxynitrite may
influence the development of antinociceptive tolerance is through the constitutive (COX-1)
and inducible (COX-2) enzymes. A significant body of experimental evidence suggests a
relationship between NO biosynthesis and PG generation [170;171;172]. As originally reported
by our group [173] and subsequently extended by several other investigators [170;172;174;
175;176;177] the COX enzymes (constitutive COX-1 and inducible COX-2) are “receptor
targets” for the multifaceted action of ·NO and as such are regulated in its presence. Although
the mechanisms by which ·NO activates COX enzymes remain undefined, we now know that
ONOO- is involved in this activation through the oxidative inactivation and/or modification
of key amino acids residues in the COX polypetide backbone [178;179]. Other possibilities in
this complex reaction biochemistry have been raised and discussed in detail [172;176;180]. In
addition to effects on COX-2 enzyme activity, ·NO and ONOO- increase the production of PGs
from macrophages by acting post-transcriptionally or translationally to increase COX-2 protein
levels or to increase its mRNA stability, at least in part through O2·- and the p38 MAPK pathway
[174;175;181;182;183;184]. Furthermore, iNOS binds COX-2, and iNOS-derived ·NO
increases the catalytic activity of COX-2 through S-nitrosylation in a macrophage cell line
[185]. Furthermore, and as discussed nitroxidative species activate transcription factors such
as AP-1 and NF-kB as well as mitogen activated protein kinases (MAPK) such as p38 MAP
kinase, which is known to induce COX-2 protein expression during inflammation [159;161;
162;186]. Substantial evidence supports the conclusion that the activation or induction of COX
enzymes by nitro-oxidative stress augments the production of pro-inflammatory and pro-
nociceptive prostaglandin PGE2 (PGE2) at sites of inflammation [170;173]. It is therefore likely
that the beneficial effects of peroxynitrite decomposition catalysts are due to suppressed
production of local and spinal pro-inflammatory and pronociceptive cytokines and
prostaglandins.

C: Apoptosis
Peroxynitrite is a potent pro-apototic and cytotoxic molecule and a role for spinal neuronal
apoptosis in morphine antinociceptive tolerance is well established [136;187;188].
Peroxynitrite is considered the major oxidant responsible for DNA strand breakage which then
activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Rapid activation of PARP
depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus
slowing the rates of glycolysis, electron transport, and subsequent ATP formation [189].
Exposure of neurons to high concentrations of peroxynitrite more often leads to rapid necrosis
due to acute, severe cellular energetic derangements [18;190]. In contrast, lower concentrations
of peroxynitrite can lead to delayed, apoptotic neuronal death [191]. Peroxynitrite-induced
apoptosis is similar to other forms of oxidant/free radical mediated apoptosis in being
dependent on activation of caspases-2, -3, -8 and -9 [192;193;194]. Mitochondria are key sites
of cellular death and constitute a primary locus for the intracellular formation and reactions of
peroxynitrite [80]. Peroxynitrite-mediated inactivation of mitochondrial MnSOD favors more
peroxynitrite formation, resulting in positive feedback processes that promote mitochondrial
dysfunction and the triggering of apoptotic signaling of cell death, including activation of
PARP and caspases [195;196;197;198]. As discussed previously, peroxynitrite also causes
neuronal death via nitration of MnSOD following activation of neurons by glial cell-derived
cytokines [96].

Previous reports have implicated apoptosis in antinociceptive tolerance and associated
hypersensitivity. Indeed, chronic morphine exposure causes apoptosis in the spinal cord dorsal
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horn as determined by in situ terminal deoxynucleotidyl transferase (TdT)-mediated dUPT-
biotin nick-end labeling (TUNEL) staining, upregulation of the pro-apoptotic caspase-3 and
Bax proteins, and downregulation of the anti-apoptotic Bcl-2 protein [136;187;188]. Caspase-3
inhibitors that block apoptosis prevent the development of morphine hyperalgesia and
antinociceptive tolerance [136;187;188]. Interestingly in these studies, apoptosis was found in
neurons but not glial cells, although morphine can cause glial cell apoptosis [199]. The
mechanisms of this morphine-induced apoptosis remain unclear. However, a role for
peroxynitrite exists since its spinal inhibition during the development of antinociceptive
tolerance to morphine, blocks oxidative DNA damage and PARP activation [17]. Taken
together, these results provide a likely link between peroxynitrite, apoptosis and tolerance.
Spinal PARP activation is seen during neuropathic pain and morphine tolerance where it
induces excitotoxic transynaptic morphological changes in superficial dorsal horn “dark
neurons” [129;132]. Preventing PARP activation with PARP inhibitors or with peroxynitrite
decomposition catalysts inhibits the development of morphine antinociceptive tolerance
[136;187]. It is therefore likely that the beneficial effects of peroxynitrite decomposition
catalysts occur by attenuating neuronal and/or glial apoptosis during opiate-induced tolerance
driven by PARP and caspase activation and nitration of MnSOD.

Concluding remarks and looking ahead—Considerable evidence over the years has
supported the roles of ·NO and O2·- as precursors of peroxynitrite, in the development of
morphine antinociceptive tolerance. Since the rate of interaction between ·NO and O2·- to form
peroxynitrite is faster than the dismutation of O2·- by superoxide dismutase, peroxynitrite
formation from O2·- and ·NO is the likely signaling molecule involved in antinociceptive
tolerance [17] as in pain of several etiologies [23;24;89;200;201] (Figure 1). Because studies
have only recently begun to unravel the role of peroxynitrite in antinociceptive tolerance and
pain, few data are available to help understand the molecular and biochemical pathways
engaged by this nitro-oxidative species. To date we know that peroxynitrite contributes to
peripheral and central sensitization by increasing production of pro-inflammatory cytokines,
by activating PARP, and modulating the cyclooxygenase pathway to increase the production
of proinflammatory and pronociceptive PGE2 (activation of COX-1 and COX-2 and induction
of COX-2) [21]. Peroxynitrite is also involved in neuroimmune activation, apoptosis and post-
translational nitration and modification of key proteins known to be implicated in central and
peripheral sensitization [17;23;89] (Figure 2). Additionally, nitroxidative species may be
involved more subtly in central sensitization at least in part by sensitizing wide dynamic range
neurons in the dorsal horn [202]. Importantly for eventual clinical management, the
peroxynitrite decomposition catalysts evaluated to date apparently synergize with non-
selective COX-1/COX-2 inhibitors and selective COX-2 inhibitors, and do so at greatly
reduced doses. This synergism should minimize the obvious side effects of either drug class
when coadministered [21]. Considering the many molecular, biochemical, and
pharmacological similarities between opiate-mediated antinociceptive tolerance and the
hypersensitivity associated with chronic neuropathic pain, the broader implication of our
proposed studies is that peroxynitrite is a viable therapeutic target in both disease states (Figure
1). We believe that continued research in this field will soon provide a valid pharmacological
basis for developing peroxynitrite-based therapeutic targets as adjuncts or alternatives to
opiates (or other analgesics such as NSAIDs) in the management of pain and in particular
chronic pain.
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Figure 1.
Peroxynitrite (ONOO-) Mediated Nitro-Oxidative Stress in Pain
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Figure 2.
Peroxynitrite a Viable Target for Novel Therapeutic Intervention in Pain
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