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Inhibition of y-secretase induces G2/M arrest and triggers

apoptosis In breast cancer cells
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y-Secretase is an aspartyl protease macromolecular complex
comprising nicastrin (NCSTN), anterior pharynx-defective 1-a/b/c
isoforms, the enzymic component presenilin-1/2 (PSEN) and
presenilin enhancer protein-2 (PSENEN, Pen-2). By providing an
internally hydrophilic environment within the plasma membrane
(Lazarov et al, 2006), y-secretase is responsible for cleaving more
than 30 substrates, including amyloid precursor protein (APP),
Notch (Mumm et al, 2000), ErbB4 (Ni et al, 2001), E-cadherin
(Marambaud et al, 2002), CD44 (Lammich et al, 2002) and p75
(Schluesener et al, 1992), which regulate vital cell functions such
as proliferation, cell cycle, cell adhesion and apoptosis. Interest-
ingly, increased expression of Notch ligands, receptors, and/or
downstream targets are highly associated in the pathogenesis of
breast (Jones et al, 2004; Stylianou et al, 2006; Yamaguchi et al,
2008), brain (Purow et al, 2005), colon (Akiyoshi et al, 2008),
cervical (Liu et al, 2007) pancreatic (Doucas et al, 2008) and skin
cancers (Dang et al, 2006). Thus, the y-secretase complex may be
a potential therapeutic target in a wide array of carcinomas.
Notch signalling is initiated through the interactions between
the plasma-embedded Notch heterodimer receptors and cell
surface ligands (Jagged-1, -2, Delta-like -1, -2 and -4) present on
adjacent cells (Lindsell et al, 1995). This results in a conforma-
tional change in Notch to reveal the site 2 cleavage site for metallo-
proteases (ADAM10, ADAM17), which leaves a 12 amino-acid stub
of the Notch extracellular domain, required for subsequent
recognition and cleavage by the y-secretase complex (Brou et al,
2000; Mumm et al, 2000). y-Secretase cleavage of Notch liberates
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y-Secretase activity is vital for the transmembrane cleavage of Notch receptors and the subsequent migration of their intracellular
domains to the nucleus. Notch overexpression has been associated with breast, colon, cervical and prostate cancers. We tested the
effect of three different y-secretase inhibitors (GSls) in breast cancer cells. One inhibitor (GSI1) was lethal to breast cancer cell lines at
concentrations of 2 uM and above but had a minimal effect on the non-malignant breast lines. GSII was also cytotoxic for a wide
variety of cancer cell lines in the NCI60 cell screen. GSII treatment resulted in a marked decrease in y-secretase activity and
downregulation of the Notch signalling pathway with no effects on expression of the y-secretase components or ligands. Flow
cytometric and western blot analyses indicated that GSII induces a G2/M arrest leading to apoptosis, through downregulation of
Bcl-2, Bax and Bcl-XL. GSII also inhibited proteasome activity. Thus, the y-secretase inhibitor GSII has a complex mode of action to
inhibit breast cancer cell survival and may represent a novel therapy in breast cancer.
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the intracellular domain (NICD), which translocates to the nucleus
where it binds to the CSL family of DNA-binding proteins (CBF1/
RBPJ-x in mammalian cells) (Tamura et al, 1995). The NCID-
CBF1 complex initiates recruitment of transcriptional co-activators
Mastermind-like-1, 2, 3, and p300 (Oswald et al, 2001) to enable
gene transcription of Notch downstream targets. These include
Hes, Hey (Iso et al, 2003) c-myc (Klinakis et al, 2006), p21
(Rangarajan et al, 2004) and cyclin DI (Ronchini and Capobianco,
2001), which regulate proliferation, differentiation and apoptosis.

Notch activation has been observed in a number of malig-
nancies. It was first reported when insertion of mouse mammary
tumour virus within the Notch 4 locus incited tumour formation in
mice (Gallahan et al, 1996). In humans, elevated Notchl is
observed in Ras-positive breast cancers (Weijzen et al, 2002), while
both increased Notchl and Jaggedl expression decreases patient
survival (Jones et al, 2004; Reedijk et al, 2005; Dickson et al, 2007).
In addition, Numb, a negative regulator of Notch signalling
(McGill and McGlade, 2003), is significantly reduced in 50% of
breast cancer tissues, inversely correlating with tumour size (Pece
et al, 2004) and correlating with a poor prognosis (Colaluca et al,
2008). Inhibiting Notch signalling by overexpression of Numb
reverts the transformed phenotype of MCF-7 cells (Stylianou et al,
2006), whereas silencing of Notch 3 inhibits proliferation and
promotes apoptosis in ErbB2-negative breast cancer cell lines
(Yamaguchi et al, 2008). Moreover, overexpression of Notch in
non-tumourigenic breast epithelial cells induces transformation
in vitro (Imatani and Callahan, 2000; Stylianou et al, 2006). Thus,
deregulation of Notch signalling plays a significant role in
tumorigenesis.

Synthetic y-secretase inhibitors have been successful in treating
Alzheimer’s disease, where defective y-secretase cleavage of the
substrate molecule APP results in a longer Af42 variant of Af40
peptides, consequently leading to plaque formation (Lichtenthaler
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et al, 1997). In breast cancer, the y-secretase inhibitor DAPT
(N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine ¢-butyl
ester) has been shown to effectively reduce DCIS-induced
mammosphere formation (Farnie et al, 2007). We therefore
investigated the effects of commercially available y-secretase
inhibitors on the proliferation/survival of normal and malignant
breast cancer cell lines, their effects on y-secretase component
expression and the possible mechanisms involved. We show here
that inhibition of y-secretase activity in breast cancer cell lines
induces G2/M arrest and downregulation of antiapoptotic proteins
leading to cell death.

MATERIALS AND METHODS

Cell culture

Oestrogen receptor-a (ER)-positive (MCF-7, T47D, and ZR-75-1)
and ER-negative (MDA-MB-231 and CAL-51) breast cancer cell
lines were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% foetal calf serum (FCS) and 2mm
L-glutamine, 100Uml™ ' penicillin, 0.lmgml™' streptomycin.
Non-tumorigenic 226-L-U19 and 226-L-TS4 breast cell lines were
kindly provided by Parmjit S Jat, Ludwig Institute for Cancer
Research, London, and were cultured in DME/F12 medium
supplemented with 10% FCS containing, 5ugml™' insulin,
1ugml™' hydrocortisone, 10ngml~' epidermal growth factor,
10ngml™' cholera toxin and 2mm L-glutamine, 100 Uml ™"
penicillin, 0.1 mgml ™" streptomycin.

Effect of y-secretase inhibitors on proliferation assays

The y-secretase inhibitors, DAPT, Compound E ((2S)-2-{[(3,5-
Difluorophenyl)acetyl]Jamino}-N-[(3S)-1-methyl-2-ox0-5-phenyl-2,
3-dihydro-1H-1,4-benzodiazepin-3-yl]propanamide) and y-secre-
tase inhibitor 1 (GSII: z-Leu-Leu-Nle-CHO), were purchased from
Merck Biosciences (Darmstadt, Germany). Cells (2.5 x 10%) were
seeded in triplicate and allowed to adhere overnight. The media
was replaced with media containing the inhibitors diluted in
dimethyl sulphoxide (DMSO). After 48h, the media was removed
and the cells were harvested and counted using a Coulter Counter
(Beckman Coulter, Buckinghamshire, UK).

Sulphorhodamine B assay

The sulphorhodamine B (SRB) assay was used to screen for
GSI1 cytotoxicity (Vichai and Kirtikara, 2006). The assay relies on
the ability of SRB to bind to protein components of cells that
have been fixed to tissue-culture plates by trichloroacetic acid
(TCA). SRB is a bright-pink aminoxanthene dye with two
sulphonic groups that bind to basic amino-acid residues under
mild acidic conditions, and dissociate under basic conditions. As
the binding of SRB is stoichiometric, the amount of dye extracted
from stained cells is directly proportional to the cell mass. To
determine the effect of GSI1 on cell number over time, SRB assays
were performed as described. Cells were seeded with six replicates
in flat-bottomed 96-well plates (3000 cells per well). The cells were
allowed to adhere overnight, and then media containing GSI1 at
different concentrations were added. One plate was assayed at this
time point (time zero) and further plates were assayed at 2-day
intervals until day 10. The cells were fixed by adding 100 ul per well
of ice-cold 40% TCA to each well for 60 min. The plates were
washed five times in running tap water and stained with 100 pl per
well SRB reagent (0.4% w/v SRB (Sigma-Aldrich, Poole, UK)) in
1% acetic acid for 30 min. The plates were washed five times in 1%
acetic acid and allowed to dry overnight. SRB was solubilised with
100 pl per well 10 mm Tris-base, shaken for 30 min and the optical
density measured at 492 nm.
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y-Secretase activity assay

Cells (1.5 x 10°) were treated with increasing concentrations of
GSI1 (0.75, 2, and 5pum) and y-secretase activity was measured
after 24 and 48 h using the R&D Systems (R&D, Minneapolis, MN,
USA) y-Secretase Activity Kit following the manufacturer’s
instructions. Briefly, cells were washed twice with ice-cold
phosphate-buffered saline (PBS), harvested in the cell extraction
buffer, and incubated on ice for at least 10 min. Lysates were
centrifuged at 10000 g for 1 min and supernatants were collected
with a total protein yield of 0.5-1.0mgml~". Pierce BCA Protein
Assay (Pierce, Rockford, IL, USA) was used to determine the
protein concentration in each sample. Protein (200 ug) was
incubated with the y-secretase fluorogenic substrate for 2h at
37°C and fluorescence was measured at 355/460 nm.

CBEF-1 reporter assay

The ability of the y-secretase-cleaved NICD to bind to CBF1 and
activate gene transcription was measured by the transfection of a
reporter in which four copies of the wild-type CBF1-binding elements
were cloned in front of a simian virus 40 promoter-driven luciferase
gene (4xwtCBF1Luc) (Hsieh et al, 1996). Twenty-four hours after
transfection, cells were treated with GSI1 and luciferase activity was
measured 24h later using a Promega Luciferase kit (Promega,
Madison, WI, USA) following the manufacturer’s recommendations.

National Cancer Institute Screen of y-secretase inhibitor

The human tumour cell lines of the cancer-screening panel (NCI60)
were cultured in RPMI 1640 medium containing 5% foetal bovine
serum and 2mM L-glutamine. Cells were inoculated into 96-well
microtiter plates in 100 ul at plating densities ranging from 5000 to
40000 cells per well, depending on the doubling time of individual
cell lines. After cell inoculation, the microtiter plates were incubated
at 37°C, 5% CO, for 24 h before addition of experimental drugs. After
24h, two plates of each cell line were fixed in situ with TCA to
represent a measurement of the cell population for each cell line at
the time of drug addition (Tz). GSI1 in complete medium containing
50 ugml ™' gentamicin was added to the cell lines and the plates were
incubated for an additional 48 h at 37°C, 5% CO,, and an SRB assay
was performed. Using the seven absorbance measurements (time zero
(Tz), control growth (C), and test growth in the presence of drug at
the five concentration levels (Ti)), the percentage growth was
calculated at each of the drug concentrations levels. Percentage
growth inhibition was calculated as:

[(Ti — Tz)/(C — Tz)]x 100 for concentrations for which Ti > Tz

[(Ti — Tz)/Tz)]x 100 for concentrations for which Ti < Tz.

Three dose-response parameters were calculated for each experi-
mental agent. Growth inhibition of 50% (GI50) was calculated as was
the drug concentration resulting in total growth inhibition (TGI) is
calculated from Ti= Tz. The LCs, (concentration of drug resulting in a
50% reduction in the measured protein at the end of the drug
treatment as compared with that at the beginning) indicating a net loss
of cells following treatment is calculated from [(Ti—Tz)/
Tz] x 100 = —50. Values were calculated for each of these three
parameters if the level of activity is reached; however, if the effect is
not reached or is exceeded, the value for that parameter is expressed as
greater or less than the maximum or minimum concentration tested.

Cell cycle analysis

Cells (3 x 10°) were plated out and after 24h the media was
changed to one containing DMSO, or GSI1 at a concentration of
0.75, 1, or 5uM. Both adherent and floating cells were harvested
after 24 and 48 h, fixed with ice-cold 70% methanol, washed twice

© 2009 Cancer Research UK



with 5ml PBS, treated with 10 ug RNAse, and stained with 50 ug
propidium iodide, and their DNA content was estimated by flow
cytometry using a Beckton Dickinson FacsCanto flow cytometer
(Beckton Dickinson, Franklin Lakes, NJ, USA) to determine the
proportion of cells at each stage of the cell cycle.

RNA expression

Cells were lysed with 4M guanidinium isothiocyanate and total RNA
was extracted using RNAeasy (Qiagen Ltd, West Sussex, UK) according
to the manufacturer’s instructions. cDNA was synthesised from 2 ug of
RNA with Moloney Murine Leukemia Virus reverse transcriptase and
amplified by PCR on a LightCycler (Roche Diagnostics, Mannheim,
Germany) using the LightCycler DNA FastStart SYBR Green 1 kit
(Roche Diagnostics). Oligonucleotide sequences and PCR conditions
are described in detail in Supplementary Table 1.

Protein expression

Cell lines were harvested and lysed in Lysis buffer (150 mm NaCl,
0.1% SDS, 5mM EDTA, 10mm Tris (pH 7.2), 1% Triton-X, and 1%
deoxycholate), containing 1mM phenylmethanesulphonylfluoride
and protease inhibitor cocktail (Sigma-Aldrich P8340: AEBSF
104 mmM, Aprotinin 0.08 mM, Leupeptin 2mM, Bestatin 4mwm,
Pepstatin A 1.5mm, E-64 1.4mm). Whole cell extracts were
denatured at 100°C for 10 min and were electrophoresed on a 10%
SDS -polyacrylamide gel. Primary antibodies Bcl-XL, Bcl-2, Bax and
XIAP (Beckton Dickinson), Notch 1 intracellular domain (Abcam
Plc, Cambridge, UK), and y-tubulin (Sigma-Adrich) were incubated
in 0.1% TBS-Tween overnight. Blots were visualised using chemi-
luminescence (ECL) (Amersham Bioscience, Buckinghamshire, UK),
according to the manufacturer’s instructions.

Proteasome activity

The inhibitory effect of GSI1 and MG132 (z-Leu-Leu-Leu-CHO) on
the 20S proteasomal component (Millipore, Billerica, MA, USA)
was determined in vitro after pre-incubation for 15min at room
temperature. Then, the enzyme-inhibitor mix was added to 1 x
assay buffer (25 mm HEPES, 4-(2-hydroxyethyl)-1-piperazineetha-
nesulphonic acid, pH 7.5, 0.5mM EDTA, 0.05% (v/v) NP-40 and
0.001% (w/v) SDS), and incubated with N-Succinyl-Leu-Leu-Val-
Tyr-7-Amino-4-methylcoumarin (suc-LLVY-AMC, Millipore) for
75min at 40°C. Three replicates were included per treatment.
Fluoresence was measured at 380/460 nm.

The effect of GSI1 and MG132 on proteasomal activity in vivo
was determined after treatment of MDA-MB-231 and MCF-7 cells
(1 x 10%) with the inhibitors for 4h. Adherent cells were washed
and scraped in cold PBS, collected and centrifuged for 5min at
170 x g and 4°C. Cells were resuspended in 50 mm HEPES, pH 7.5,
5mM EDTA, 150 mM NaCl and 1% Triton X-100, and incubated on
ice for 30 min, with vortexing at 10 min intervals. Samples were
centrifuged at 14000 g for 15 min at 4°C, and the supernatant was
collected. Lysates were incubated with 1 x assay buffer and 50 um
suc-LLVY-AMC at 40°C for 75 min. Three replicates were included
per treatment. Fluorescence was measured at 380/460 nm.

Statistical analysis

Where indicated a t-test was performed (two-sided). Statistical
significance was assumed when P <0.05.

RESULTS

Downregulation of the Notch signalling pathway with GSI1
selectively affects the viability of breast cancer cells

The breast cancer cell lines MDA-MB-231, T47D, and MCF-7 were
treated with three y-secretase inhibitors at concentrations in the
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Figure 1 Cytotoxic effect of y-secretase inhibitors on breast cancer cell

lines. Cells were treated with Compound E (A), DAPT (B), and GSI|
(C) for 48h and their viability was determined using a Coulter counter.
Data represent the average of three independent experiments =+ s.d.

range 0.01-50 um. Compound E had no effect on the MDA-MB-231
cells and only reduced the proliferation of the other cell lines by
less than 50% at a concentration of 50 um (Figure 1A). The effect of
DAPT on T47D and MCF-7 cell lines was comparable with the
Compound E, but DAPT inhibited proliferation by approximately
50% in the MDA-MB-231 lines at 50 um (Figure 1B). GSI1 had the
most significant effect on all three cell lines at 1um reducing
proliferation by approximately 80% (Figure 1C). GSI1 inhibited
y-secretase activity in MCF-7 cells in a dose-dependent manner
and at 5 uM inhibition reached 100% (Figure 2A).

We confirmed that inhibition of y-secretase by GSI1 down-
regulated the Notch pathway by directly detecting the NICD
(which is cleaved by y-secretase) with a specific antibody.
Treatment of MCF-7 cells with 2 and 5 um GSI1 decreased notably
the levels of NICD (Figure 2B). It is well established that the Notch
intracellular domain interacts with the transcriptional repressor
CBF1 and abolishes CBFl-mediated repression. We used a
surrogate for the activation of Notch by y-secretase consisting of
the transfection of a luciferase reporter containing CBF1-binding
sites (Hsieh et al, 1996). In this system, activation of Notch is
reflected by an increase in luciferase expression. Treatment of
MCEF-7 cells with GSI1 reduced the luciferase activity of the
transfected reporter in a dose-dependent manner (Figure 2C).
Interestingly, the effect of GSI1 on Notch-driven luciferase
transcription was always lower than the corresponding inhibition
of y-secretase activity, probably due to a less than 100%
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Figure 2 GSIl downregulates y-secretase activity and the Notch

pathway. (A) Relative y-secretase activity in MCF-7 cells were treated
with GSII for 24 h. (B) Western blot analysis of NICD in MCF-7 cells were
treated with GSII for 24h. (€) MCF-7 cells were transfected with a
CBFl-luciferase reporter and the next day treated with GSII for 24h.
Values represent relative luciferase activity with respect to the mock-
transfected and vehicle-treated cells. Bars indicate the average y-secretase
(A) or luciferase activity (C) *s.d. of three independent experiments (*
indicates P<0.05).

transfection efficiency and activation of CBFI-Luciferase by
Notch-independent mechanisms.

Sulphorhodamine B assays were then carried out on five
tumorigenic and two non-tumorigenic breast cell lines to
investigate the effects of GSI1 over a longer time frame. In
MCF-7, MDA-MB-231, ZR-75-1, T47D and CAL-51 breast cancer
cell lines 1 um GSI1 and above resulted in cell death (range of ICsq
values: 0.6-0.9 um) (Figure 3A). No effect on the non-tumorigenic
226-L-U19 and 226-L-TS4 cell lines was seen in the range
0.5-40 um, which showed ICs, values around 50 um (Figure 3B).

There was no effect on the expression of the y-secretase
components or ligands such as Notch, Jagged, and Numb in
response to the GSI1 treatment (Supplementary Figure 1). Thus,
the effect of GSI1 on breast cancer cells is not due to a differential
expression of y-secretase components or its downstream effectors.

Effect of GSI1 on the NCI 60 panel of cancer cell lines

The effect of GSI1 (10 nm, 100 nM, 1, 10, and 100 um) was tested, in
duplicate, on the NCI panel of 60 cancer cell lines. A decrease in
cell number was seen in all 60 cell lines with the mean log;o GIso of
—6.13 £0.007 M (Figure 4). The mean log;o LCs calculated for all
of the cell lines was —4.41+0.011M (Supplementary Table 2).
When the screen was repeated the values obtained were
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—6.41£0.005M for the log;, Glso, and —4.49+0.12M for the
logm LCSO'

When the breast cancer cell lines only were examined the mean
logyo Glso were —6.23 £0.063 and —6.58 £ 0.059 M (on the second
run the MDA-MB-468 cell line was included). The mean values of
log;o LCs5o were —5.12+£0.078 and —4.86 £ 0.12M in runs 1 and 2,
respectively. GSI1 had a negligible effect on cell number at 100 nM,
but at concentration of 1 um and higher it had an inhibitory effect
(Figure 4). Interestingly, the multidrug-resistant cell line NCI/
ADR-RES, resistant to adriamycin and other P-glycoprotein
substrates, was less sensitive to GSI1 than the other breast cancer
cell lines tested and than most other cancer cell lines. At 1 um, GSI1
did not show any decrease in cell number, which was only
noticeable at 10 M (Figure 4). Thus, GSI1 inhibits the proliferation
of many different cancer cell lines corresponding to a variety of
solid tumours and leukaemia.

GSI1 induces a G2/M arrest resulting in apoptosis

We observed a marked increase in the percentage of cells in G2/M
arrest after 24h incubation with 5 um GSI1 (Figure 5A). After 48h
treatment, a large proportion of the ZR-75-1 and MDA-MB-231
cells were apoptotic (58 and 77%, respectively) and only a small
percentage were in G2/M arrest (Figure 5B). Seventeen percent
of MCF-7 cells were apoptotic after treatment with 5um GSI1
(Figure 5B), but there was a substantial increase in the percentage
of cells in G2/M arrest. Media replacement experiments indicated
that when fresh medium was added to MDA-MB-231 cells
previously treated with GSI1 for 48h, the cells recovered their
proliferative capacity when concentration was up to 1 um. However,
at higher concentrations no further proliferation was observed
(data not shown). When the levels of the antiapoptotic protein
Bcl-XL were monitored in MDA-MB-231, ZR-75-1, and MCF-7 cells,
we found a downregulation due to GSI1 treatment (0.75 M for 48 h)
in the two former cell lines (Figure 5C). However, GSI1 treatment in
MDA-MB-231 and ZR-75-1 cell lines also downregulated the level
of y-tubulin (Figure 5C) as well as other proteins tested as loading
controls (eIF4E, RPLPO, ribosomal protein S6, among others). We
then monitored the levels of the antiapoptotic proteins XIAP, Bcl-2,
Bax and Bad after treatment with increasing doses of GSI1 and
found that their levels decreased progressively from 2 to 5 um GSI1
(Figure 5D). Thus, GSI1 triggers apoptosis in breast cancer cells by
downregulating the expression of antiapoptotic proteins.

GSI1 inhibits proteasome activity both in vivo and in vitro
but has less cytotoxic effect on breast cancer cells than
MG132

As GSI1 (z-Leu-Leu-Nle-CHO) is chemically and structurally
similar to proteasomal inhibitor MG132 (z-Leu-Leu-Leu-CHO),
the possibility of GSI1 affecting proteasomal activity was explored.
Proteasomal activity was severely reduced (80-90%) upon incuba-
tion treatment of the isolated proteasome 20S proteolytic core
particle subunit with either compound in vitro (Figure 6A).
Similarly, a strong inhibitory effect was observed in vivo
(Figure 6B), although MG132 was marginally more efficient than
GSI1. However, the cytotoxic effect of both compounds on both
MCEF-7 and MDA-MB-231 cells was markedly different (Figure 6C),
MG132 showing a stronger cytotoxic effect than GSI1 (between
1.5- and 2-fold). Thus, despite their similar chemical structure and
protesome inhibition, GSI1 and MG132 affect the growth of breast
cancer cells differently.

DISCUSSION

In this study we endeavoured to determine whether the y-secretase
complex, which has an integral role in signalling of Notch, is a

© 2009 Cancer Research UK
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Figure 3 Cytotoxic effect of GSII on breast cancer cells. The effect of increasing concentrations of GSII in breast cancer cell lines (A) and non-
tumorigenic breast cell lines (B) was determined by staining with SRB. Data represents the average *s.d. of two independent experiments with six
replicates at each time point. The ICsq for each cell line was determined from the corresponding dose—response curves (data not shown) and is indicated.

potential therapeutic target in breast cancer. For this we tested
the effect of commercial y-secretase inhibitors on breast cell lines.
The three y-secretase inhibitors tested had markedly different
effects on different breast cancer cell lines. Both DAPT and
Compound E are chemical inhibitors of the complex. DAPT
reduces ductal carcinoma in sifu mammosphere formation
(Farnie et al, 2007) and pancreatic cancer cell growth (Kimura
et al, 2007). Another y-secretase inhibitor, MRK-003, reduces
tumour cell proliferation, inhibits serum independence, and
induces apoptosis of lung cancer cell lines in vitro and in vivo
using mouse xenograft models (Konishi et al, 2007). Thus, the
y-secretase complex is now becoming an accepted target in cancer
therapy, in particular, with regard to Notch signalling (Shih and
Wang, 2007).

Differential responses between tumourigenic and non-tumouri-
genic cell lines may be explained by differential expression of
Numb, a negative regulator of the Notch pathway, and NICD. It has
been shown that non-tumourigenic cells express Numb but
not NICD (Stylianou et al, 2006) indicating that, as expected, the
Notch pathway is not activated in non-cancerous cells. Conversely,
cancer cells have Numb downregulated, NICD upregulated and the
Notch pathway activated (Stylianou et al, 2006), and are sensitive
to the cytotoxic effect of GSI1 by its effect on the
Notch pathway.

© 2009 Cancer Research UK

We show here that y-secretase inhibition promotes a cell cycle
arrest at G2/M, which further triggers the apoptotic response.
Expression of cyclin Bl, which controls the G2/M checkpoint, can
be regulated by the Notch pathway (through putative CBEF-1-
binding elements in its promoter). Breast cancer cells in which the
Notch pathway has been targeted, either by an inhibitor of
y-secretase or by Notch-1 RNAi, downregulate cyclin B1 and suffer
G2/M arrest (Rizzo et al, 2008). In addition, in MCF-7 cells another
y-secretase inhibitor triggers the DNA damage response with the
concomitant upregulation of the cell cycle regulators, p53 and
p21, which may promote defective cell division, consequently
abrogating antiapoptotic mechanisms (Alimirah et al, 2007). We
observed a dose-dependent downregulation of Bcl-2, Bax, Bad and
XIAP upon GSII treatment (Figure 5) and a corresponding dose-
dependent activation of caspase 3/7 in MDA-MB-231 cells (data
not shown). Increased apoptosis upon treatment with a y-secretase
inhibitor has also been observed in Kaposi sarcoma, multiple
myeloma (Nefedova et al, 2008), melanoma (Leggas et al, 2004)
and tongue carcinoma (Yao et al, 2007). This may be indicative of
a possible mechanism through which inhibition of y-secretase
modulates decreased viability, as observed in the comprehensive
NCI screen.

Notch and APP are probably the best-studied y-secretase
substrates, and we have shown that GSI1 treatment downregulates

British Journal of Cancer (2009) 100(12), 18791888
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Figure 4 Cytotoxic effect of GSI on the NCI60 panel of cancer cell lines. The cytotoxic effect of GSII (10, 100nm, I, 10, 100 uM) on cancer cells was
determined by a SRB assay after 24 h of drug treatment. Although NCI/ADR-RES data are shown within the breast cancer cell panel, recent evidence
suggests that this is an ovarian cancer multidrug-resistant line derived from OVCAR-8 (Liscovitch and Ravid, 2007). Results shown are representative of two

independent experiments.

the Notch pathway in breast cancer cells. However, as y-secretase
acts upon a large variety of substrates, it is likely that the cytotoxic
effect of GSI1 upon cells will be due to the downregulation of
several downstream targets involved in vital cell functions, which
ultimately affect the survival of cancer cells.

Interestingly, NCI/ADR-RES, multidrug-resistant cells over-
expressing the ABC transporter ABCB1 (P-glycoprotein) (Raguz
et al, 2008) and prostate PC-3 cells, are the least susceptible of all
the cells in the NCI-60 cell panel. As PC-3 cells express also
P-glycoprotein (Rao et al, 2005), and considering the molecular
structure of GSI1, it is possible that GSI1 will be a substrate
of P-glycoprotein (Crivori et al, 2006). This would make GSI1
less effective in cancers from tissues expressing P-glycoprotein
such as those from colon or the adrenal gland, or in those
which have acquired P-glycoprotein-mediated drug resistance
(Burger et al, 2003).

We also showed that GSI1 is a potent proteasomal inhibitor, and
may inhibit breast cancer cell proliferation through dual targets of
the y-secretase complex and the proteasome. Whether GSI1 targets

British Journal of Cancer (2009) 100(12), 1879— 1888

each specifically, or inhibition occurs through sequential conse-
quence remains uncertain. It is tempting to speculate that
aldehyde-based compounds, such as GSI1 and MG132, may be
able to bind interchangeably between the two complexes. Although
a low-resolution electron microscopy model of the 7y-secretase
complex has recently been described (Lazarov et al, 2006), only
the complete high-resolution X-ray structure of the y-secretase
complex may suggest putative shared 3D regions to which
aldehyde-based inhibitors bind. In addition, it is possible that
cross-talk between the y-secretase complex and the proteasome
exists, as PSEN may be cleaved into the active C- and N-terminal
fragments by the proteasome (Massey et al, 2005). Furthermore,
it has been suggested that the y-secretase complex can act in a
similar way to the proteasome, as they can recognise, capture
substrates and feed them through the proteolytic-containing cavity
of their respective complexes to produce functional cleaved
fragments (Kopan and Illagan, 2004).

The cytotoxic effect of GSI1 and MG132 on breast cancer cells is
different (Figure 6C). As GSI1, MG132 induces G2/M arrest and

© 2009 Cancer Research UK
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Figure 5 GSII induces G2/M cell cycle arrest and triggers apoptosis in breast cancer cells. (A, B) Cell cycle analyses of breast cancer cell lines treated with
GSlI for 24h (A) and 48h (B). Cells were stained with propidium iodide and gated according to their fluorescence to differentiate cell cycle phases: |,
apoptotic cells; 2, cells in GO/G1; 3, cells in S phase; 4, cells in G2-M. Data shown are a representative of two independent experiments. (C, D) Western blot
analyses were used to verify the modulation of the apoptotic response due to GSII treatment. (C) Three different breast cancer cell lines treated with a
single GSII concentration (0.75 um) for 48 h. (D) MCF-7 cells treated for 48 h with increasing concentrations of GSI1. Tubulin was used as a loading control.
Note the slight effect of GSII on tubulin levels in MDA-MB-231 and ZR-75-1 cells (C).

apoptosis with loss of Bcl-2 expression (Yan et al, 2007), thus the
therapeutic use of proteasome inhibitors are also being considered
in cancer treatment (Voorhees et al, 2003; Sato et al, 2008).
Whether the uptake of these compounds by breast cancer cells
or their half-lives (either in the culture medium or intracellularly)
is different, and thus modulate their potency, remains to be
established.

Two facts are important from a potential future clinical
application of GSI1: (1) the inhibitor is effective in triggering cell
death of cancer cell lines at much lower concentrations than those
required in non-tumorigenic cell lines, and (2) its effect on breast
cancer cells is irrespective of their ER status. This last point
is particularly important as triple-negative breast tumours
(ER-, progesterone receptor-, and Her-2-negative), which are
particularly aggressive and have a poor prognosis, are currently

© 2009 Cancer Research UK

only treated with traditional chemotherapy (Haffty et al, 2006;
Cleator et al, 2007). Interestingly, y-secretase inhibitors have the
potential of increasing sensitivity and efficacy of other chemother-
apeutic drugs as well as hormonal and targeted therapeutic agents.
For example, synergistic treatment of breast cancer cells with
a y-secretase inhibitor and trastuzamub (Osipo et al, 2008)
or Tamoxifen (Rizzo et al, 2008) was more effective in reducing
proliferation than the individual treatments. The combined
treatments of y-secretase inhibitors and chemotherapeutic agents
have illustrated a greater extent of antiproliferative effects and/or
apoptosis in multiple myeloma (Nefedova et al, 2008), T-cell acute
lymphoblastic leukaemia (De Keersmaecker et al, 2008), and colon
cancer cell lines (Akiyoshi et al, 2008).

Overall these data indicate that y-secretase is a potential
therapeutic target in breast cancer.

British Journal of Cancer (2009) 100(12), 18791888
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