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Abstract
A novel one-pot synthesis of N-substituted heterocycles via successive cyclization/annelation
starting from primary sulfonamides is described. This process leads directly to N-sulfonyl pyrroles,
indoles and carbazoles. The selection of appropriate reactant/triflic acid ratio successfully controls
the formation of the desired product.
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Nitrogen containing heterocycles, such as pyrroles, indoles and carbazoles have attracted
considerable attention due to their numerous applications in pharmaceutical and synthetic
chemistry.1 These heterocylic moieties are also found in a variety of biologically active
synthetic and natural products.2 Many efficient processes had already been reported, however,
the development of new methods is still in demand.3 Most methods involve two or more steps
to synthesize these heterocycles resulting in 2,3-di or poly substituted products.4 Ideally the
synthesis of these heterocycles would involve only one step, directly from simple, readily
available substrates. Although, similar idea had been proposed earlier, it suffered with serious
drawbacks such as low yields (up to 50%) and low selectivities.4 In the present study we report
a convenient one-pot synthesis of N-sulfonyl-pyrroles, indoles and carbazoles from
commercially available sulfonamides using trifluomethanesulfonic acid (TfOH) as an effective
catalyst. This methodology provides the desired N-substituted products only, preserving other
positions open for further functionalization. (Scheme 1)

Introduction of electron-withdrawing groups such as phenylsulfonyl group on the pyrrole
nitrogen directs subsequent Friedel-Crafts electrophilic substitution predominantly to the 3-
position. Similarly, it makes the 2-position of indole more facile for electrophilic substitution.
5 This indicates that depending on the substituent on the nitrogen we can achieve unusual
regioselective synthesis of pyrrole and indole derivatives. Traditional methods for synthesis
of N-sulfonyl pyrroles involve strong base catalyzed nucleophilic substitution of pyrroles with
sulfonyl chlorides.4, 5
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Paal-Knorr type cyclization reactions are often facilitated by strong acids.6 TfOH is a
commonly used superacid (Ho = −14.1) and effective catalyst for many transformations. Its
use is preferable to other acids with similar acid strength (e.g. H2SO4, ClSO3H, FSO3H) since
it does not promote oxidative side reactions.7 We explored the effectiveness of triflic acid in
cyclialkylations of sulfonamides to form N-sulfonyl pyrroles, which underwent successive
annelation to form corresponding indoles and carbazoles depending upon the amount of triflic
acid used. We have carried out several reactions using benzenesulfonamide as a probe and 2,5-
dimethoxytetrahydrofuran as an alkylating agent to assess suitable reaction parameters. The
results are summarized in Table 1.

We optimized reaction conditions first by varying the amount of triflic acid from catalytic to
quantitative. We have observed that the amount of triflic acid had a significant effect on the
chemoselectivity of the reaction. Maximum yield of pyrrole was observed with 5 mol % TfOH,
however, indole and carbazole syntheses required 1.0 eqv. and 3.5 eqv. respectively. To learn
about the effects of time and temperature, the reaction was stirred for a longer time and elevated
temperatures but no improvement was observed in yields. After proper optimization of reaction
conditions, we were able to obtain the corresponding products in nearly quantitative yields and
selectivities. With the optimized one-pot annelation reaction conditions, we explored the scope
of the methodology using several commercially available substituted sulfonamides. We
initially synthesized the sequence of various N-substituted pyrroles using 5 mol% TfOH and
obtained excellent yields (90–95%) and almost exclusive selectivities. Representative
examples are shown in Table 2.

As the data show, the corresponding substituted pyrroles are formed in good to excellent yields.
The reaction can be carried out effectively with a wide variety of sulfonamides. In all cases
the reaction occurred smoothly without showing any substitutent effect. Also, the formation
of other products such as indole or carbazole was not observed. This cyclialkylation provides
N-substituted pyrroles, which can be further functionalized as needed. We also tried to explore
consistency with aliphatic sulfonamides, the reaction worked with poor yields.

As shown above (Table 1) the amount of TfOH is crucial in these systems. The TfOH/reactant
ratio will determine the major product and its actual selectivity. Table 1 indicates that using
stoichiometric amount of TfOH, indole derivatives will exclusively form as a major product.
Accordingly, in this case a two-step sequence occurs in the reaction; first the already studied
Paal-Knorr cyclization takes place, which is followed by a successive annelation on the pyrrole
ring. Variety of sulfonamides has been targeted to the above one-pot/two step reaction
sequence, using stoichiometric amount of TfOH. The results are summarized in Table 3.

As the data show sulfonamides readily undergo cyclization and annelation. The corresponding
indole derivatives have been formed with high selectivities and in good to excellent yields.

To explore the further extension of this method we carried out a third sequence of reactions
with even higher amount of TfOH as determined in Table 1. For this step we used 3.5 eqv.
excess of TfOH. Representive results are shown in Table 4. The results clearly show that in
this case the reaction sequence is even further expanded. After cyclialkylation and annelation,
a second annelation takes place, providing the corresponding carbazole derivatives in high
selectivities and good isolated yields

Based on the earlier literature data7 and our own experimental results, Scheme 2 summarizes
the most probable reaction sequence. Reactant 2 undergoes rearrangement under acidic
conditions to form 1,4-butanedial, which immediately reacts with the sulfonamides and
undergoes Paal-Knorr cyclization to form pyrrole derivatives after eliminating two water
molecules. It is known that the acid strength of TfOH is significantly modified by H2O.8 Due
to the substantial amount of H2O formed (2 moles of H2O/1mol of 2,5-
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dimethoxytetrahydrofuran) in the cyclialkylation; the acidity of the system significantly drops.
This low acidity is not able to catalyze further reactions.

The acidity drop is still significant even after increasing the amount of TfOH to 100 mol%.
The higher amount of TfOH, however, is able to maintain the necessary acid strength of the
reaction mixture, and initiates the annelation on the pyrrole ring. The additional two moles of
H2O formed in the annelation have a similar effect to that mentioned above. A further increase
in TfOH concentration enables the system to catalyze the second annelation as well, to give
the corresponding carbazoles virtually in one step. This analysis indicates that although the
TfOH amount exceeds the 1:1 stoichiometric ratio, it is only needed to maintain the necessary
acid strength of the reaction mixture. As such the reaction is still catalytic. Based on our earlier
studies,9 we suggest that both cyclialkylation and subsequent annelation occur in stepwise
manner. Under the highly polar experimental conditions the occurrence of the concerted
process is improbable.

In conclusion, a one-pot triflic acid controlled cyclization/annelation provides efficient
protocol for preparing a wide variety of N-sulfonyl pyrroles, indoles and carbazoles from
commercially available sulfonamides. This attractive method provides the products in excellent
yields and selectivities in short reaction times. The simplicity and wide variability of the method
makes it a novel alternative to current synthetic processes, which produce these products in
multistep reactions.

A general experimental procedure for the synthesis of N-sulfonyl pyrroles,
indoles and carbazoles

Benzenesulfonamide (100 mg, 0.636 mmol) and 2,5-dimethoxytetrahydrofuran (420 mg, 3.18
mmol) were placed in a round bottom flask with 2 ml of CH2Cl2. This mixture was cooled to
0°C for 10–15 min and TfOH (0.05 eqv. for pyrroles, 1.0 eqv. for indoles and 3.5 eqv. for
carbazoles) was added slowly dropwise to the reactants. After addition the mixture was stirred
at room temperature for an additional 2 h. Acid was quenched with water and the product was
extracted with CH2Cl2. Combined organic layers were dried over sodium sulfate. Solvent was
evaporated in vacuo and the residue was subjected to flash chromatography. The pure products
were characterized by GCMS and NMR as shown below.
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Scheme 1.
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Scheme 2.
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Table 1
Triflic acid catalyzed synthesis of N-phenylsulfonyl pyrrole, indole and carbazolea

Entry TfOH
(mole%)

Yieldb(%)

a b c

1 3 85 0 0

2 5 98 0 0

3 50 40 60 0

4 100 5 95 0

5 200 0 30 70

6 300 0 15 85

7 325 0 11 89

8 350 0 8 92

a
Reaction conditions: sulfonamide (0.636 mmol), 2,5-dimethoxytetrahydrofuran (5 eqv.), RT, 2h.

b
Based on sulfonamide, determined by GCMS.
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Table 2
Triflic acid catalyzed synthesis of N-sulfonyl pyrroles from aryl sulfonamides and 2,5-dimethoxytetrahydrofuran.a

Entry Ar Time
(h)

Selectivityb
(%)

Yieldc
(%)

1 C6H5 2 98 92

2 p-CH3C6H4 2 95 90

3 p-OCH3C6H4 2 98 89

4 p-BrC6H4 2 92 86

5 o-CH3C6H4 2 90 88

6 p-ClC6H4 2 92 90

7 p-NO2C6H4 2 88 80

8 Naphth-2-yl 2 90 85

a
Reaction conditions: sulfonamide (0.636 mmol), 2,5-dimethoxytetrahydrofuran (5 eqv.), TfOH (5 mol%), RT, 2h.

b
Determined by GCMS.

c
Isolated yields after flash chromatography.
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Table 3
Triflic acid catalyzed synthesis of N-sulfonyl indoles from aryl sulfonamides and 2,5-dimethoxytetrahydrofuran.a

Entry Ar Time
(h)

Selectivityb
(%)

Yieldc
(%)

1 C6H5 2 95 90

2 p-CH3C6H4 2 91 85

3 p-OCH3C6H4 2 90 87

4 p-BrC6H4 2 95 91

5 o-CH3C6H4 2 90 82

6 p-ClC6H4 2 89 85

7 p-NO2C6H4 2 80 75

8 Naphth-2-yl 2 82 88

a
Reaction conditions: sulfonamide (0.636 mmol), 2,5-dimethoxytetrahydrofuran (5 eqv.), TfOH (100 mol%), RT, 2h.

b
Determined by GCMS.

c
Isolated yields after flash chromatography.
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Table 4
Triflic acid catalyzed synthesis of N-sulfonyl carbazoles from aryl sulfonamides and 2,5-dimethoxytetrahydrofuran.a

Entry Ar Time
(h)

Selectivityb
(%)

Yieldc
(%)

1 C6H5 2 92 79

2 p-CH3C6H4 2 91 81

3 p-OCH3C6H4 2 88 75

4 p-BrC6H4 2 85 77

5 o-CH3C6H4 2 91 82

6 p-ClC6H4 2 93 86

7 p-NO2C6H4 2 85 75

8 Naphth-2-yl 2 91 82

a
Reaction conditions: sulfonamide (0.636 mmol), 2,5-dimethoxytetrahydrofuran (5 eqv.), TfOH (3.5 eqv.), RT, 2h.

b
Determined by GCMS.

c
Isolated yields after flash chromatography.
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