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Abstract
Due to importance of oxidative energetics for cerebral function, extraction of oxygen consumption
(CMRO2) from blood oxygenation level dependent (BOLD) signal using multi-modal
measurements of blood flow (CBF) and volume (CBV) has become an accepted functional
magnetic resonance imaging (fMRI) technique. This approach, termed calibrated fMRI, is based
on a biophysical model which describes tissue oxygen extraction at steady-state. A problem
encountered for calculating dynamic CMRO2 relates to concerns whether the conventional BOLD
model can be applied transiently. In particular, it is unclear whether calculation of CMRO2 differs
between short and long stimuli. Linearity was experimentally demonstrated between BOLD-
related components and neural activity, thereby making it possible to use calibrated fMRI in a
dynamic manner. We used multi-modal fMRI and electrophysiology, in α-chloralose anesthetized
rats during forepaw stimulation to show that respective transfer functions (of BOLD, CBV, CBF)
generated by deconvolution with neural activity are time invariant, for events in the millisecond to
minute range. These results allowed extraction of a significant component of the BOLD signal that
can be ascribed to CMRO2 transients. We discuss the importance of minimizing residual signal,
represented by the difference between modeled and raw signals, in convolution analysis using
multi-modal signals.
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INTRODUCTION
Despite advancements to measure neural activity, e.g., electroencephalography (EEG) and
magnetoencephalography (MEG), these techniques still have limited spatial resolution and
localization problems (Srinivasan et al. 2006). Alternative methods of brain mapping are
based on secondary signals, such as changes in blood oxygenation level dependent (BOLD)
signal and blood flow (CBF) or volume (CBV). However another estimation of brain
activity, based on thermodynamic principles, can be obtained by measuring the energy
consumption (Hyder et al. 2002). The main energy source for brain is glucose which is
stoichiometrically oxidized in mitochondria to produce ATP efficiently (Riera et al. 2008).
Cerebral oxygen consumption (CMRO2) is measured with 13C or 17O magnetic resonance
spectroscopy (MRS) (Hyder et al. 2006; Zhu et al. 2008) as well as with 11C and 15O
positron emission tomography (PET) (Vafaee and Gjedde 2000; Kudomi et al. 2005). Since
these methods require expensive/radioactive isotopes, alternative ways of CMRO2
estimation are widely sought for brain mapping.

Functional magnetic resonance imaging (fMRI) is used for non-invasive mapping of brain
activity. It provides an indirect measure of neural activity by sensing hyperemic changes.
Since BOLD signal has both an energetic and hemodynamic basis, CMRO2 can be extracted
by calibrating fMRI with additional measurements of CBF and CBV. The BOLD image-
contrast depends on changes of magnetic properties of blood: oxy-hemoglobin is
diamagnetic, while deoxy-hemoglobin is paramagnetic (Ogawa et al. 1993). At steady-state,
based on the Fick’s principle (Kety and Schmidt 1948), the fractional change of BOLD
signal (ΔS/S) is given by

(1)

where A is a field dependent constant and the biophysical and physiological basis of Eq. 1
have been described (Kennan et al. 1994; Hyder et al. 2001). Therefore high spatial
resolution CMRO2 maps can be obtained by calibrated fMRI using multi-modal but
concurrent measurements of BOLD, CBF, and CBV (Supplementary Fig. 1), where each
parameter is measured independently (in the same session) with different MRI contrasts
(i.e., BOLD with gradient or spin echo; CBF with arterial spin labeling; CBV with
exogenous contrast agent). Furthermore the calculated CMRO2 can be validated by
comparison with MRS or PET measurements (Kida et al. 2000; Zhang et al. 2004; Ito et al.
2005).

An alternative for dynamic calibrated fMRI is to test the linearity of the multi-modal signals
within short-lived and steady-state stimuli. If each BOLD-related component in Eq. 1 is
demonstrated to be linear across various stimulus durations, then the respective transfer
functions generated by deconvolution with the neural signal should be time invariant and
thus used for calculating CMRO2 dynamics. For CMRO2 transients associated with neural
events, underlying BOLD-related components were measured and combined with
electrophysiology data, over a range of brief and long stimuli. Transfer functions generated
for brief stimuli with convolution analysis could be successfully used to model responses for
long stimuli within the range of the uncertainty of the real measurements.
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MATERIALS and METHODS
Animal preparation and stimulus presentation

All experiments were conducted on artificially ventilated (1–2% halothane during surgery,
plus 70%N2O/30%O2) adult male rats (n = 26; Sprague-Dawley; 200–300 g; Charles River,
Wilmington, MA). Femoral artery and vein were cannulated respectively for monitoring
physiologic parameters (pCO2, pO2, pH, blood pressure) and for infusion of iron oxide
contrast agent for measuring CBV changes (Kida et al. 2000). The α-chloralose (∼40 mg/kg/
h) and D-tubocurarine chloride (∼0.3 mg/kg/h) were administered intraperitoneally.
Stimulus parameters consisted of 2mA amplitude pulses of 0.3ms duration where multiple
pulses were separated by 333ms and the number of pulses varied from 1 to 90. A resting
period of 300s was allowed between repeated stimulation trials (at least four trials per rat:
two repetitions, two paws).

Electrophysiology and CBF
The first group of rats (n = 12) were mounted on a stereotaxic frame and small burr holes
were drilled for insertion of adjacent electrical and laser-Doppler flowmetry (LDF) probes to
simultaneously measure neural and CBF signals (Schridde et al. 2008). Although arterial
spin labeling (ASL) MRI is used to provide quantitative CBF measurements at steady-state,
we used LDF for dynamic CBF measurements because ASL techniques loose perfusion
sensitivity at higher temporal resolution (Kida et al. 2004). Recordings were localized to
middle cortical layers (4.4 mm lateral, 1.0 mm anterior to bregma, 0.9±0.1 mm depth from
cortical surface) and confirmed histologically (Englot et al. 2008; Schridde et al. 2008) for
comparison with MRI signals at the same depth. The scalp was used as the reference and
ground. Local field potential (LFP) and multi unit activity (MUA) were obtained by splitting
into low (<150 Hz) and high (0.4–10 kHz) bands. Magnitude of the LDF data was calibrated
to CBF collected with ASL MRI (3 Hz, 2 mA, 0.3 ms, >90 pulses) (Kida et al. 2004).
Electrical and optical signals were digitized with CED µ-1401 using Spike 2 software
(Cambridge Electronic Design, Cambridge, UK) at 20 kHz and 50 Hz, respectively. To
compare with lower temporal resolution BOLD and CBV data, we averaged the neural raw
data by running 0.02s bins.

Multi-modal fMRI
In the second group of rats (n = 14) all fMRI data were obtained on a modified 11.7T Bruker
horizontal-bore spectrometer (Bruker, Billerica, MA) using a 1H surface coil radio-
frequency probe (1.4 cm diameter) with conventional methods for BOLD and CBV contrasts
(Herman et al. 2008; Sanganahalli et al. 2008). We used echo-planar imaging with repetition
and gradient echo times of 1000 and 15 ms, respectively.

Estimating parameters of gamma-based transfer functions
The transfer function, h(t), can be achieved by deconvolution between the input signal, i(t),
and the output signal, r(t). The LFP was used as the input signal, i(t), whereas the BOLD,
CBV, and CBF responses each was used as an independent response, r(t). It can be shown
that

(2)

where t is time. The gamma variate function is widely used for transfer function modeling
(Supplementary Text A).
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To calculate a transfer function, a least-square mean (Gauss-Newton) fitting method
(Matlab, Natick, MA) was used with iterative steps (Supplementary Fig. 2): a transfer
function was created with initial parameters; it was convolved on the input function; a
difference between the modeled and the measured response was calculated to create a
residual signal. This method is a modification of Newton's method for detecting a function
minimum without using second derivatives, thereby minimizing computational load and
time. If the modeled response was significantly different from the measured response, then
parameters of the transfer function were changed and the process was repeated.

The fitting process was usually completed within several hundred iterations. We assumed
the residuals to be acceptable if all of their values were within the range of uncertainty of the
measured response, given by ± standard deviation (SD) of the raw signal.

RESULTS
We simultaneously measured LFP and CBF signals from the somatosensory cortex using a
dual-sensor probe and compared these signals with BOLD and CBV signals (at 11.7T) in the
same cortical location. The neural (LFP) and imaging signals (BOLD, CBV, CBF) were
measured with short and long forepaw stimuli to assess whether the hyperemic responses
were linearly associated with neural activity. Fig. 1 shows a representative single-trial data
set with 4 stimulus pulses. Briefly, the evoked neural response was immediate and short
lived in comparison to the imaging signals which lasted about 4s.

The neural response had two phases (Fig. 1A). A positive phase was initiated immediately
after each stimulus pulse which lasted about 150ms. After the positive peak was a negative
phase which lasted about 200ms, but its amplitude was less than 5% of the initial positive
peak which was below the SD of the measurement. These positive peaks were used as input
signals for the convolution analysis (Supplementary Fig. 2). Evoked neural responses to
multiple stimulus pulses demonstrated a unique pattern (Fig. 1A) which have been noted by
others (Matsuura and Kanno 2001) where the alternate responses were attenuated most
likely due to inhibitory mechanisms (Hellweg et al. 1977). Therefore all subsequent evoked
responses were normalized to the first positive component (Fig. 2A). For long lasting stimuli
(90 pulses), in addition to the alternating stronger and weaker responses for consecutive
stimulus pulses, the magnitude of responses generally decreased during the initial 5–6s to
subsequently reach a new plateau (e.g., see Fig. 2A, extreme right). These observations are
in good agreement with prior results (Ances et al. 2000;Sheth et al. 2004).

Amplitudes and time-to-peak of the imaging signals (Figs. 2 B–D) are in good agreement
with prior observations (Kida et al. 2007; Shen et al. 2008). The mean time-to-peak of the
BOLD response was 3.9±0.3s. The response intensity (and width) gradually increased from
1 to 4 pulses and reached a plateau for 90 pulses (2.9±1.8%, 3.4±1.2%, 4.4±2.1%,
8.02±1.3%, and 7.8±4.2%, respectively). The CBF signals showed similar tendencies. The
mean time-to-peak of the CBF response was 3.2±0.2s, whereas the intensities were
51.8±28.2%, 75.1±23.3%, 87.7±23.2%, 100.9±31.1%, and 100.1±37.8%, respectively. The
mean time-to-peak in CBV response was 3.3±0.7s and the response intensities gradually
increased from 1 to 4 pulses (0.8±1.8%, 3.8±1.2%, 7.6±2.1%, and 9.5±1.4%, respectively).
The CBV response for 90 pulses of stimulation after a first initial rise (10.8±3.6%) showed a
secondary slow increase (15±5%) lasting more than 15s. These temporal characteristics of
CBV are typical of red blood cell and plasma volume changes (Herman et al. 2008). Using
the strength (i.e., both intensity and width) of each evoked signal, the neural responses were
correlated with the strength of each imaging signal. Increasing number of stimulus pulses
augmented responses in each of the signals (Fig. 2E). The so-called Grubbs law (Grubb et
al. 1974), i.e., CBV = CBFϕ, is critical for calculating dynamic CMRO2 from calibrated
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fMRI (Kida et al. 2007). The value of Φ was ∼0.15 at the peak of the hyperemic response
(Fig. 2F), which is in agreement with prior animal studies (Jin and Kim 2008; Shen et al.
2008).

Difference between linear and non-linear relationships can be elucidated with a
transformation between neural and imaging signals, using a transfer function. We applied
convolution and fitting methods in an iterative way to find a transfer function relating the
neural and imaging signals. The effectiveness of this process was characterized by the
residual signal given by the difference between the raw and modeled signals (Supplementary
Fig. 2). In all cases examined, the residual signal was lower than ±SD in measurement of
each imaging signal (Fig. 2B–D, bottom traces). For a more thorough inspection for
goodness of fit, we averaged the root mean square (RMS) of the residual signal for an entire
data set and compared that with the average of measurement SD. In all cases examined, the
average value of RMS residual signal was significantly lower than the average values of
measurement SD. These results suggest a linear relationship between neural and imaging
signals to provide universal transfer functions (Supplementary Fig. 3) applicable for both
brief- and long-lasting stimuli. Results of linearity from the convolution analysis, therefore,
provides a strong basis for applying Eq. 1 to calculate CMRO2 changes (using A = 0.5
(Englot et al. 2008; Schridde et al. 2008)), not only for steady-state stimuli but also for
transient events. The calculated CMRO2 dynamics in Fig. 3 show experimental evidence of a
linear dependency of oxidative energy demanded by neural events and its relationship with
CBF. A detailed description of the SD calculation for CMRO2 (Supplementary Text B)
shows that CBF has the most dominant influence and thus the larger SD of CBV has
minimal effect on CMRO2 uncertainties.

DISCUSSION
The goal here was to calculate CMRO2 transients using dynamic calibrated fMRI. We used a
systematic convolution analysis to find a transfer function between neural activity and each
imaging signal. Effectiveness of the impulse response function was portrayed by the residual
signal. If fluctuations of the residual signal were smaller than the uncertainty or SD of the
raw signal, the convolution process could produce a universal impulse response function that
may be used to model each BOLD-related component successfully for all stimulus
parameters (Supplementary Fig. 3). Then linearity between each imaging signal and neural
activity will be demonstrated to render the respective transfer functions to be time invariant.
While we did not discuss the MUA data (data not shown), the general trends were quite
similar to the LFP data.

In α-chloralose anesthetized rats, multi-modal fMRI and electrophysiology data (Fig. 1)
were evaluated to show that the respective transfer functions (of BOLD, CBV, CBF)
generated by convolution with neural activity (LFP) are indeed linear and time invariant, for
both brief- and long-lasting events (Fig. 2). It was possible, therefore, to extract a
considerable part of the BOLD signal and assign it to dynamic CMRO2 changes, for stimuli
ranging from milliseconds to minutes (Fig. 3). Because CMRO2 predicted at steady-state by
calibrated fMRI had been validated in the past by independent measurements (Hyder et al.
2001), the CMRO2 data calculated here for 90 stimulus pulses withstands the same
corroboration because ΔCMRO2 predicted in our prior and present studies are in good
agreement. Given that the exact same transfer functions (of BOLD, CBV, CBF) can be used
for modeling signals with few or many stimulus pulses, the CMRO2 data validation for
longer stimuli can be extended to shorter stimuli, pending independent measurements. The
characteristics of CMRO2 responses were similar to CBF changes, but were impacted by
CBV dynamics. However because the Φ value (prescribed by Grubb’s law: CBV = CBFϕ)
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varied throughout the hyperemic response, we did not use a fixed Φ value for the CMRO2
calculation (Kida et al. 2007).

Results of a convolution are contingent on the choice of the input signal. The stimulus itself
is often used as the input when neural activity measures are lacking. However the evoked
neural response is preferred because the imaging signals are mechanistically linked to both
pre- and post-synaptic events at the nerve terminal (Hyder 2008), but not the stimuli. Neural
activity can be measured invasively (i.e., directly with microelectrodes) or non-invasively
(i.e., indirectly with surface EEG). Extracellular recordings (LFP, MUA) typically represent
activity from neuronal-glial ensembles in the microelectrode’s vicinity, integrating a wide
bandwidth of signals spanning short distances in the cortex (µm to mm). Surface EEG
covers a much larger area (mm to cm) and noninvasively represents slower rhythmic
activities of post-synaptic currents. Because of the higher spatiotemporal resolution of
extracellular recordings, LFP (or MUA) is an obvious candidate for the input signal because
each evoked signal in response to a stimulus pulse can be incorporated into the convolution
analysis, thereby sensitizing the subtle nuances of neural activities onto the modeled
imaging signals. While evoked signals captured by EEG may appear to be similar in shape
and form to LFP, there is greater chance of signal contamination due to noise injection from
a variety of sources (e.g., limb movements, breathing, heart beat, etc.).

Because of technical limitations, it is difficult to measure neural and imaging signals from
the same exact tissue volume. Therefore our convolution analysis of the multi-modal data
acquired within a single (0.1–0.5 µL) compartment could be termed as a heuristic approach.
However multi-compartment oxygen delivery models, which have detailed descriptions of
the microvascular bed, take account of different sampling volumes (Buxton et al. 1998;
Friston and Price 2001; Herman et al. 2006; Huppert et al. 2007) but lack multi-modal
experimental data. Therefore future renditions of these oxygen transport models can make
use of the multi-modal data availed from our study.

Consistent, yet peculiar, practices in convolution analysis are smoothing and integration of
neural signals. The smoothing (or box-car) approach stems from lumping consecutive
stimuli prior to convolution (e.g., (Glover 1999; Birn et al. 2001). This means that difference
between one and two pulses would be double, one and three pulses would be triple, and so
on, and it overlooks attenuation of early vs. late responses during long stimuli (90 pulses).
The integration approach is related to interpolating between separate neural events to create
the impression of a more robust neural signal (Ances et al. 2000; Norup Nielsen and
Lauritzen 2001; Martin et al. 2006). This means that if there were four evoked responses to
four stimulus pulses, by integrating between the signals there would be one pseudo box-car
to represent the neural signal. For long stimulus durations, the smoothing/integration
processes will have minimal impacts on the convolution analysis compared to the case if
actual neural signals were used. However for shorter stimuli, where the goal is to include
subtleties of the neural response variations from moment-to-moment, these practices could
generate apparent non-linearity trends.

The same universal transfer function is applicable for event related paradigms and steady-
state conditions (Fig. 1–Fig. 3) but also for stimuli with higher (6Hz) and lower (1.5Hz)
frequencies (data not shown), which is in agreement with prior studies where linearity has
been observed with variation of stimulation frequencies using different anesthetics
(Matsuura and Kanno 2001;Nemoto et al. 2004). Although different anesthetized (or
baseline) states produce different sensory-induced magnitude of responses (Smith et al.
2002;Maandag et al. 2007;Masamoto et al. 2007;Huttunen et al. 2008), coupling between
changes in neural and imaging signals are well correlated. In agreement with our findings,
prior studies using a similar stimulation paradigm but different anesthetized conditions have
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shown that neural activity is coupled with imaging signals using a variety of stimulus
durations (Nemoto et al. 2004;Ureshi et al. 2004).

Prior studies demonstrate non-linearity trends with stimulus amplitude variations (Norup
Nielsen and Lauritzen 2001; Devor et al. 2003; Jones et al. 2004; Nemoto et al. 2004; Sheth
et al. 2004; Franceschini et al. 2008). Therefore our approach excluded amplitude variations
given the narrow dynamic range for testing linearity relationships. Since the transfer
functions are dependent on measured neural responses and each of the measured imaging
signals, we expect that the predictions could be applied to other baseline situations, but
limited to the somatosensory region.

In summary, we collected multi-modal data consisting of neural and imaging signals and
applied convolution analysis to demonstrate linear relationships between neural and imaging
signals to verify the time invariance of their transfer functions. Because these transfer
functions could produce modeled signals for brief (1–4 pulses) and long (90 pulses) stimuli
successfully, we extended calibrated fMRI for CMRO2 calculation, from transient events to
steady-state. Preliminary results from our laboratory (data not shown) suggest that this
approach may be extended for stimuli of varying frequencies and across the somatosensory
cortex. However further studies are required to understand differences between cortical and
subcortical regions where neural activity patterns and microvasculature are known to be
significantly different (Ebner and Armstrong-James 1990).

Factors that affect the BOLD signal include hematocrit (Hyder et al. 2001). At steady-state,
CMRO2 calculation by calibrated fMRI assumes that volume (or discharge) hematocrit is
unchanged. Under steady-state conditions, this assumption has been partly confirmed by
comparing kinetics of red blood cell and plasma volumes (Herman et al. 2008). However
dynamically different velocities of red blood cell and plasma compartments may become
exaggerated in capillaries which in turn could affect the flow (or tube) hematocrit (Pries et
al. 1986). Therefore an important consideration for future studies is the involvement of
transient hematocrit changes (Fahraeus 1929) on the dynamic BOLD contrast, which may
account for some of the observed small imperfections in the residual signals.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Single trial multi-modal data. Representative neural (A; LFP) and imaging (B–D; BOLD,
CBV, CBF) signals for short forepaw stimuli. While there was an evoked LFP for each
stimulus pulse, alternate LFP’s were not identical. A similar trend was observed for MUA
(data not shown).
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Fig 2.
Multi-modal data for brief and long-lasting events. Measured neural (A; LFP) and imaging
(B–D; BOLD, CBV, CBF, upper rows) signals were used to generate transfer functions.
Transfer functions were used to generate modeled signals. The residual signal, created by
subtracting the modeled signal from the measured signal, was lower than ±SD of the
measured signal (B–D; BOLD, CBV, CBF, lower rows). (E) Relationship between strength
(i.e., both intensity and width) of evoked signals. The LFP responses were normalized to the
response with 4 stimulus pulses. The BOLD, CBV and CBF data were calculated as
normalized by area under the curves. (F) The so-called Grubb’s law (i.e., CBV = CBFΦ)
given by the slope of the log-log plot of change in CBF and CBV. The data points are from
the hyperemic portion for all stimuli with Φ of ∼0.08 where the peak values averaged to
∼0.15.
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Fig 3.
(A) Measured LFP and calculated CMRO2 signals for transient to steady-state stimuli.
Convolution analysis of the universal transfer functions (Supplementary Fig. 3) suggests
linearity of the imaging signals with neural activity (Fig. 2E). (B) Coupling between changes
in CBF and CMRO2 with a linear fit (slope=0.661, interception= −0.039, r2=0.81).
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