Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1984 Nov;20(5):837–842. doi: 10.1128/jcm.20.5.837-842.1984

Oxygen metabolism in phagocytes of leprotic patients: enhanced endogenous superoxide dismutase activity and hydroxyl radical generation by clofazimine.

Y Niwa, T Sakane, Y Miyachi, M Ozaki
PMCID: PMC271453  PMID: 6096396

Abstract

We examined the generation of active oxygens (O2-, H2O2, and OH X ) and the superoxide dismutase (SOD) activity of polymorphonuclear leukocytes (PMNs) and monocytes from 14 leprotic patients manifesting a bacillary index above 2.2. Patients with disease of more than 4 years in duration showed significantly enhanced SOD activity and a decrease in O2- and OH X production. The antileprotic agent, clofazimine, significantly increased the generation of OH X in a dose-dependent manner, with a subsequent decrease in H2O2, but had no effect on the SOD activity of the PMNs and monocytes. In medium containing FeSO4 or Fe2+-EDTA, the drug elevated OH X production markedly further. Phagocytic SOD in PMNs and monocytes of leprotic patients was both host and bacillus derived, because the presence of cyanide, to which human-derived cuprozinc SOD is susceptible, did not completely abrogate SOD activity. The difficulty in treating leprosy may be partly ascribable to decreased phagocytic OH X generation, which in leprosy patients is apparently due to the uptake of Hansen bacillus-derived SOD. Clofazimine may be effective in leprosy by chelating Fe2+, with the resultant potentiation of the catalyzing activity of Fe2+ in the Haber-Weiss reaction increasing OH X formation from H2O2.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambruso D. R., Johnston R. B., Jr Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J Clin Invest. 1981 Feb;67(2):352–360. doi: 10.1172/JCI110042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbieri T. A., Correa W. M. Human macrophage culture. The leprosy prognostic test (LPT). Int J Lepr Other Mycobact Dis. 1967 Jul-Sep;35(3):377–381. [PubMed] [Google Scholar]
  3. Bullock W. E., Jr, Ho M. F., Chen M. J. Quantitative and qualitative studies of the local cellular exudative response in leprosy. J Reticuloendothel Soc. 1974 Nov;16(5):259–268. [PubMed] [Google Scholar]
  4. COCHIN J., AXELROD J. Biochemical and pharmacological changes in the rat following chronic administration of morphine nalorphine and normorphine. J Pharmacol Exp Ther. 1959 Feb;125(2):105–110. [PubMed] [Google Scholar]
  5. Crapo J. D., McCord J. M., Fridovich I. Preparation and assay of superoxide dismutases. Methods Enzymol. 1978;53:382–393. doi: 10.1016/s0076-6879(78)53044-9. [DOI] [PubMed] [Google Scholar]
  6. Fridovich I. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem. 1970 Aug 25;245(16):4053–4057. [PubMed] [Google Scholar]
  7. Garcia-Gonzalex J. E., Rojas-Espinosa O., Estrada-Parra S. Phagocytosis in leprosy. I. The levels of "diaphorase", beta-glucuronidase, acid phosphatase, alkaline phosphatase and lipase in circulating leucocytes. Lepr Rev. 1977 Mar;48(1):17–26. doi: 10.5935/0305-7518.19770004. [DOI] [PubMed] [Google Scholar]
  8. Ichihara K., Kusunose E., Kusunose M., Mori T. Superoxide dismutase from Mycobacterium lepraemurium. J Biochem. 1977 May;81(5):1427–1433. [PubMed] [Google Scholar]
  9. Kark E. C., Davis B. R., Pomeranz J. R. Pyoderma gangrenosum treated with clofazimine. Report of three cases. J Am Acad Dermatol. 1981 Feb;4(2):152–159. doi: 10.1016/s0190-9622(81)70018-5. [DOI] [PubMed] [Google Scholar]
  10. Kusunose M., Noda Y., Ichihara K., Kusunose E. Superoxide dismutase from Mycobacterium species, strain Takeo. Arch Microbiol. 1976 May 3;108(1):65–73. doi: 10.1007/BF00425094. [DOI] [PubMed] [Google Scholar]
  11. Lindgren S., Enerbäck L., Freiberg N. Oral acantholytic itching disease responding to dapsone. Dermatitis herpetiformis, pemphigus, or a new disease? Oral Surg Oral Med Oral Pathol. 1976 Nov;42(5):597–605. doi: 10.1016/0030-4220(76)90211-5. [DOI] [PubMed] [Google Scholar]
  12. Mandell G. L., Hook E. W. Leukocyte bactericidal activity in chronic granulomatous disease: correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing. J Bacteriol. 1969 Oct;100(1):531–532. doi: 10.1128/jb.100.1.531-532.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCord J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science. 1974 Aug 9;185(4150):529–531. doi: 10.1126/science.185.4150.529. [DOI] [PubMed] [Google Scholar]
  14. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  15. McDougall A. C., Horsfall W. R., Hede J. E., Chaplin A. J. Splenic infarction and tissue accumulation of crystals associated with the use of clofazimine (Lamprene; B663) in the treatment of pyoderma gangrenosum. Br J Dermatol. 1980 Feb;102(2):227–230. doi: 10.1111/j.1365-2133.1980.tb05697.x. [DOI] [PubMed] [Google Scholar]
  16. Michaëlsson G., Molin L., Ohmann S., Gip L., Lindström B., Skogh M., Trolin I. Clofazimine. A new agent for the treatment of pyoderma gangrenosum. Arch Dermatol. 1976 Mar;112(3):344–349. [PubMed] [Google Scholar]
  17. Molin L. Clofazimine-enhanced phagocytosis in pustulosis palmaris et plantaris. Acta Derm Venereol. 1975;55(2):151–153. [PubMed] [Google Scholar]
  18. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Niwa Y., Miyake S., Sakane T., Shingu M., Yokoyama M. Auto-oxidative damage in Behçet's disease--endothelial cell damage following the elevated oxygen radicals generated by stimulated neutrophils. Clin Exp Immunol. 1982 Jul;49(1):247–255. [PMC free article] [PubMed] [Google Scholar]
  20. Niwa Y., Sakane T., Miyachi Y. Dissociation of the inhibitory effect of dapsone on the generation of oxygen intermediates--in comparison with that of colchicine and various scavengers. Biochem Pharmacol. 1984 Aug 1;33(15):2355–2360. doi: 10.1016/0006-2952(84)90705-6. [DOI] [PubMed] [Google Scholar]
  21. Niwa Y., Sakane T., Shingu M., Yokoyama M. M. Effect of stimulated neutrophils from the synovial fluid of patients with rheumatoid arthritis on lymphocytes--a possible role of increased oxygen radicals generated by the neutrophils. J Clin Immunol. 1983 Jul;3(3):228–240. doi: 10.1007/BF00915347. [DOI] [PubMed] [Google Scholar]
  22. Rojas-Espinosa O. Phagocytosis in leprosy. 2. Production of superoxide by circulating blood leukocytes from lepromatous patients. Int J Lepr Other Mycobact Dis. 1978 Jul-Dec;46(3-4):337–341. [PubMed] [Google Scholar]
  23. Rosen H., Klebanoff S. J. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte. J Exp Med. 1979 Jan 1;149(1):27–39. doi: 10.1084/jem.149.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosen H., Klebanoff S. J. Role of iron and ethylenediaminetetraacetic acid in the bactericidal activity of a superoxide anion-generating system. Arch Biochem Biophys. 1981 May;208(2):512–519. doi: 10.1016/0003-9861(81)90539-7. [DOI] [PubMed] [Google Scholar]
  25. Salin M. L., McCord J. M. Free radicals and inflammation. Protection of phagocytosine leukocytes by superoxide dismutase. J Clin Invest. 1975 Nov;56(5):1319–1323. doi: 10.1172/JCI108208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sher R., Anderson R., Glover A., Wadee A. A. Polymorphonuclear cell function in the various polar types of leprosy and erythema nodosum leprosum. Infect Immun. 1978 Sep;21(3):959–965. doi: 10.1128/iai.21.3.959-965.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stach J. L., Fumoux F., Strobel M., Baret A., Michelson M. Augmentation de l'activité dismutasique dans les leucocytes spléniques de souris sensibles au BCG et à Mycobacterium lepraemurium. C R Seances Acad Sci III. 1981 Nov 16;293(10):575–578. [PubMed] [Google Scholar]
  28. Stendahl O., Molin L., Dahlgren C. The inhibition of polymorphonuclear leukocyte cytotoxicity by dapsone. A possible mechanism in the treatment of dermatitis herpetiformis. J Clin Invest. 1978 Jul;62(1):214–220. doi: 10.1172/JCI109109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Swanbeck G., Wennersten G. Effect of beta-carotene on photohemolysis. Acta Derm Venereol. 1973;53(4):283–289. [PubMed] [Google Scholar]
  30. Takigawa M., Miyachi Y., Uehara M., Tagami H. Treatment of pustulosis palmaris et plantaris with oral doses of colchicine. Arch Dermatol. 1982 Jul;118(7):458–460. [PubMed] [Google Scholar]
  31. WINKELMANN R. K., DITTO W. B. CUTANEOUS AND VISCERAL SYNDROMES OF NECROTIZING OR "ALLERGIC" ANGIITIS: A STUDY OF 38 CASES. Medicine (Baltimore) 1964 Jan;43:59–89. doi: 10.1097/00005792-196401000-00003. [DOI] [PubMed] [Google Scholar]
  32. WINKELMANN R. K., ROTH H. L. Dermatitis herpetiformis with acantholysis or pemphigus with response to sulfonamides: report of two cases. Arch Dermatol. 1960 Sep;82:385–390. doi: 10.1001/archderm.1960.01580030079010. [DOI] [PubMed] [Google Scholar]
  33. Ward P. A., Goralnick S., Bullock W. E. Defective leukotaxis in patients with lepromatous leprosy. J Lab Clin Med. 1976 Jun;87(6):1025–1032. [PubMed] [Google Scholar]
  34. Winston G. W., Cederbaum A. I. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. J Biol Chem. 1983 Feb 10;258(3):1508–1513. [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES