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Abstract

To detect and repair damaged DNA, DNA damage response proteins need to overcome the barrier 

of condensed chromatin to gain access to DNA lesions1. ATP-dependent chromatin remodeling is 

one of the fundamental mechanisms used by cells to relax chromatin in DNA repair2–3. However, 

the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also 

known as MCPH1) is an early DNA damage response protein that is mutated in human primary 

microcephaly4–8. We report here a previously unknown function of BRIT1 as a regulator of ATP-

dependent chromatin remodeling complex SWI/SNF in DNA repair. Upon DNA damage, BRIT1 

increases its interaction with SWI/SNF through the ATM/ATR-dependent phosphorylation on the 

BAF170 subunit. This increase of binding affinity provides a means by which SWI/SNF can be 

specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired 

chromatin relaxation owing to reduced association of SWI/SNF with chromatin. This explains the 

decreased recruitment of repair proteins to DNA lesions and reduced efficiency of repair in 

BRIT1-deficient cells, resulting in impaired survival from DNA damage. Our findings, therefore, 

identify BRIT1 as a key molecule that links chromatin remodeling with DNA damage response in 

the control of DNA repair, and its dysfunction contributes to human disease.

BRIT1 (BRCT-repeat inhibitor of hTERT expression) was initially identified as a 

transcriptional repressor of human telomerase reverse transcriptase (hTERT)4. Its sequence 

was later matched to that of a disease gene called microcephalin (MCPH1)7. In human, loss-

of-function mutations in BRIT1 cause primary microcephaly (MCPH), which is inherited in 

an autosomal recessive pattern and characterized by a reduction in brain size to one third of 
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normal size7,8. BRIT1 contains three BRCT domains and functions as an early DNA 

damage response protein5,6. In addition, dysfunction of BRIT1 impairs the recruitment of 

DNA damage signaling proteins to DNA lesions5. However, how dysfunction of BRIT1 in 

DNA damage response leads to MCPH remains unknown.

To answer this question, we systematically identified the binding partners of BRIT1, among 

which we found five core subunits of the human SWI/SNF complex: BRG1/BRM, BAF170, 

BAF155 and SNF5 (ref 9) (Fig. 1a). SWI/SNF is an ATP-dependent chromatin remodeling 

complex that utilizes ATP hydrolysis to alter chromatin structure10. The validation of our 

mass spectrometry result was shown in Fig.1b and Supplementary Fig. 1a.

To further characterize the BRIT1-SWI/SNF interaction, we first sought to identify the 

subunit(s) of the SWI/SNF complex that mediated this interaction with BRIT1. Depletion of 

BAF170 entirely abolished this interaction. Depletion of BAF155 also resulted in loss of 

interaction between BRG1/BRM and BRIT1, and significantly reduced the interaction 

between BAF170/SNF5 and BRIT1 (Fig. 1c). In contrast, the two catalytic subunits, BRG1 

and BRM, as well as SNF5, were not necessary for BRIT1-SWI/SNF interaction 

(Supplementary Fig. 1b–e). In addition, Endogenous SNF5 can pulldown other subunits of 

SWI/SNF in BAF155- or BAF170-deficient cells, excluding the possibility of an unstable 

SWI/SNF complex due to BAF155- or BAF177 deficiency (Supplementary Fig. 2f). Our 

data, therefore, showed that the core subunits BAF170 and BAF155 mediate BRIT1-

SWI/SNF interaction. Next, we analyzed the critical regions that mediated these 

interactions. An N-terminal region of BRIT1 was required for its interaction with SWI/SNF 

(Fig. 1d). We also confirmed the direct binding of this region with SWI/SNF using GST 

pull-down assay, which was not affected by λ-phosphatase treatment (Fig. 1e), indicating 

that BRIT1-SWI/SNF interaction is not phosphorylation-dependent in the absence of DNA 

damage. When analyzing a series of deletion mutants of BAF15511 and BAF170, A 

conserved SANT domain (595–839aa) of BAF155 and a region (571–645aa) of BAF170 

were required for their binding to BRIT1 (Supplementary Fig. 1g, h). Taken together, our 

data clearly establish an interaction between BRIT1 and the SWI/SNF complex, likely 

mediated through the N-terminal region of BRIT1 and the specific domains of BAF170 and 

BAF155 subunits of SWI/SNF.

As BRIT1 is an early DNA damage response protein5,6, we next examined whether the 

BRIT1-SWI/SNF interaction is responsive to DNA damage. The interaction between BRIT1 

and SWI/SNF was indeed enhanced 15 mins after DNA damage with ionizing radiation (IR) 

(Fig. 2a). To gain mechanistic insights into this DNA damage-enhanced BRIT1-SWI/SNF 

interaction, we first determined whether this interaction is dependent on ATM and/or ATR, 

two central kinases in the DNA-damage response network. No apparent change was 

observed when either ATM or ATR was depleted (Supplementary Fig. 2a, b). However, 

deficiency of both ATM and ATR abolished the damage-enhanced interaction without 

affecting the basal binding affinity (Fig. 2b). These results suggest that ATM/ATR kinases 

are required for the DNA-damage enhanced BRIT1-SWI/SNF interaction. ATM/ATR 

substrates share a common motif S/TQ. Interestingly, we identified BAF170 (not BAF155) 

as a potential ATM/ATR substrate, which could be pulled down by the phospho-S/TQ (p-

S/TQ) antibody in an ATM/ATR-dependent manner (Fig. 2c). We then generated a series of 
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mutations (serines/threonines to alanines) on BAF170 S/TQ sites and found that when S969 

was mutated, there was a significantly decreased the p-S/TQ antibody-binding affinity (Fig. 

2d). The sequences around this site are very similar to the sequences around BRCA1 

(S1432), a known ATM/ATR target site12 (Supplementary Fig. 2c), which allowed us to 

detect p-BAF170 (S969) by the antibody against p-BRCA1 (S1432) but not the S969A 

mutant (Supplementary Fig. 2c). The phosphorylation of this site was further confirmed by 

the in vitro kinase assay (Fig. 2e).

To test the hypothesis that the phosphorylation of S969 by ATM/ATR upon DNA damage 

may increase the BRIT1-SWI/SNF binding, we compared the binding affinity of BRIT1 to 

BAF170 and S969A mutant and found that the mutation of BAF170 on S969 blocked its 

DNA-damage enhanced but not basal binding affinity to BRIT1 (Supplementary Fig. 2d). 

We then reconstituted BAF170 expression with either the wild-type or the S969A mutant 

constructs in BAF170-depleted cells. Although the mutant BAF170 could restore the 

BRIT1-SWI/SNF interaction in the absence of DNA damage, it failed to recover their DNA-

damage enhanced interaction. In contrast, wild-type BAF170 readily rescued both 

(Supplementary Fig. 2e), suggesting that the enhanced BRIT1-SWI/SNF interaction in 

response to DNA damage is mediated through an ATM/ATR-dependent BAF170 

phosphorylation.

Recent studies have demonstrated a role of ATP-dependent chromatin remodeling 

complexes in repairing DNA double-strand breaks (DSBs)1–3 and in the maintenance of 

cell survival after DNA damage13,14. We have previously shown that BRIT1 deficiency 

leads to prolonged H2AX phosphorylation upon DNA damage, indicating potentially 

impaired DNA repair5. Therefore, we tested whether the BRIT1-SWI/SNF interaction may 

function in repairing DSB.

Firstly, we used neutral pH comet assays to demonstrate BRIT1 deficiency resulted in a 

significantly defect in DSB repair (Supplementary Fig. 3a, b). In mammalian cells, two 

conserved pathways are involved in DSB repair, homologous recombination (HR) and 

nonhomologous end joining (NHEJ)15,16. To confirm BRIT1’s role in DSB repair and 

determine which repair pathway it acted in, we analyzed BRIT1-deficient cells using an HR 

repair analysis system17 (supplementary Fig. 3c, d) and found BRIT1 knockdown cells 

showed a significant decrease (40–60%) in HR repair induced-GFP+ cells, indicating 

defective HR repair (Fig. 3a). Decreased GFP signal was not due to effects on cell cycle 

distribution, transfection efficiency or cutting efficiency of I-SceI (Supplementary Fig. 3e–

g). An indirect reduction in HR repair, through reduced expression of BRCA1 by BRIT1 

knockdown, another component of HR repair 18–20 was also excluded (Supplementary Fig. 

3h, i). During the course of our studies, another study also confirmed this new function of 

BRIT121 in HR repair.

In parallel, we used the method as described in Supplementary Fig. 3j to analyze NHEJ 

repair22 and found that NHEJ repair efficiency was also decreased in BRIT1 knockdown 

cells (50–60%) (Fig. 3b), which was not reversed by ectopic expression of BRCA1, but by 

the ectopic expression of siRNA-resistant BRIT1 (Supplementary Fig. 3k). Altogether, our 

data reveal a critical function of BRIT1 in both HR and NHEJ repair.
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HR and NHEJ are two distinct mechanisms for DSB repair. However, both mechanisms are 

confronted with DNA wrapped into highly condensed chromatin structure. Therefore, 

BRIT1’s involvement in both HR and NHEJ could be explained by both pathways requiring 

chromatin relaxation to allow access of repair proteins to DNA lesions. Such access could be 

provided by BRIT1 facilitating association of SWI/SNF complex with chromatin and so 

promoting chromatin relaxation. In the first experiment to examine this possibility, we found 

BRIT1 depletion significantly reduced the amount of chromatin-associated BRG1, BRM, 

BAF170 and two key DNA repair proteins Rad51 and Ku7015,16, while their total 

expression remained constant (Fig. 3c and Supplementary Fig. 4a–c).

To address whether SWI/SNF recruitment was altered specifically at sites of induced DSBs, 

chromatin immunoprecipitation assays were performed utilizing the I-SceI GFP system 

described above. BRM and BRG1 are two catalytic subunits of SWI/SNF complex. The 

recruitment of BRM after I-SceI induced DSB was abolished in BRIT1 knockdown cells 

(Fig. 3d). Both basal and damage-induced DNA localization of BRG1 was also undetectable 

in BRIT1 knockdown cells (Fig. 3d). In contrast, depletion of individual SWI/SNF subunit 

affected neither the association of BRIT1 to chromatin nor its recruitment to the DNA 

damage loci (Supplementary Fig. 4d), placing SWI/SNF functions downstream of BRIT1.

As SWI/SNF relaxes chromatin and hence facilitates protein access to chromatin, we 

reasoned that impaired recruitment of SWI/SNF to chromatin in BRIT1-deficient cells might 

affect the state of chromatin relaxation and consequently the recruitment of the downstream 

DNA repair proteins to DNA lesions. To test this hypothesis, we assessed the extent of 

chromatin condensation using a micrococcal nuclease (MNase) sensitivity assay, which 

provides a measure of chromatin compaction1,23. BRIT1 knockdown cells were less 

sensitive to MNase digestion in both the absence and presence of DNA damage, indicating 

that chromatin structure is more compact in BRIT1-deficient cells (Fig. 4a and 

Supplementary Fig. 7h). Consistently, the impaired chromatin relaxation and the defective 

HR repair were also observed in SWI/SNF knockdown cells (Supplementary Fig. 5d–f).

To demonstrate that the function of BRIT1 in chromatin relaxation and DNA repair is 

dependent on SWI/SNF, we made a small deletion (1-48aa) on N-terminal of BRIT1 

(BRIT1-ND), which abolished its interaction with SWI/SNF but preserved its ability to form 

DNA-damage-induced foci (Supplementary Fig. 5a, b). By reconstitution of wild-type 

BRIT1 or BRIT1-ND to BRIT1-deficient cells, we observed that in contrast to wild-type 

construct, BRIT1-ND was unable to restore the defects in chromatin relaxation and DNA 

repair in BRIT1 knockdown cells, a phenomenon similar to our observations in BRCT1-Δ3 

reconstituted cells (Fig. 4b, Supplementary Fig. 5a). As a consequence, the BRIT1-ND 

reconstituted cells still exhibited increased sensitivity to IR (Supplementary Fig. 5c). It is 

worthwhile to mention that since BRIT1 BRCT-Δ3 mutant could not form DNA-damage 

induced foci, it is not surprising that this mutant also failed to restore chromatin relaxation 

and DNA repair activity.

We also tested whether the mutants of BAF155 or BAF170 which lacked BRIT1-binding 

activity could exert dominant-negative effects to block proper DNA damage response such 

as DNA damage repair (Supplementary Fig. 5g–i). By sequence analysis, we found that 
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BAF155 contained a highly hydrophobic sequence on its BRIT1-interacting domain 

(SANT), which has been reported to be essential for the function of SANT domain24. 

Interestingly, this sequence is also conserved in the BRIT1-interacting domain of BAF170. 

Therefore we replaced 4 consecutive leucines on BAF155 (629–632aa) and BAF170 (607–

610aa) to arginines. These subtle mutations abolished their binding activity to BRIT1 

without affecting their incorporations into the endogenous SWI/SNF complex. Notably, 

overexpression of these mutants reduced the binding of BRIT1 to other SWI/SNF subunits 

and thus exerted dominant-negative effects that impaired HR repair in the cells. 

Collectively, these data further support that dysfunction of SWI/SNF is the underlying 

mechanism responsible for impaired chromatin relaxation, HR repair and cell survival in 

BRIT1-deficient cells.

We next tested whether impaired chromatin relaxation would lead to defects in the 

recruitment of DNA repair proteins to DNA damage sites. The foci formation of Rad51 and 

phospho-replication protein A (p-RPA), key players in DSB repair15,25 was significantly 

reduced in BRIT1-depleted cells (Fig. 4c, Supplementary Fig. 6a). Chromatin binding of p-

RPA34 was also impaired. However, treatment of chromatin relaxation agents significantly 

reversed the effects of BRIT1 depletion on RPA foci formation, phosphorylation and 

binding to chromatin (Supplementary Fig. 6a–d). Consistent with this notion, reduced HR 

repair efficiency in BRIT1 knockdown cells was reversed in the presence of chromatin 

relaxation agents (Fig. 4d), indicating that the impaired recruitment of DNA repair proteins 

is a direct consequence of impaired access to chromatin in BRIT1-deficient cells.

To confirm the physiological relevance of our findings, we examine MCPH patient 

lymphoblastoid cell lines (LCLs) with homozygous loss-of-function mutations in BRIT1 

(Supplementary Fig. 7a).

Comet assays demonstrated a significantly reduced DSB repair efficiency in BRIT1 LCLs 

(Fig. 5a, Supplementary Fig. 7b). Consistent with this, BRIT1 LCL also exhibited increased 

sensitivity to the topoisomerase inhibitors camptothecin and etoposide, which generate 

DSBs during S phase, a cell cycle phase in which lesions are predominantly repaired by 

HR26. This increased sensitivity was consistent with DSB generation during S-phase as the 

effects were abrogated when cells were treated with the DNA replication inhibitor 

aphidicolin (Fig. 5b). In addition, increased sensitivity to IR-induced DNA damage was 

observed in BRIT1 LCLs arrested in G1 phase, a cell cycle exclusively utilizing NHEJ to 

repair DSBs (Supplementary Fig. 7c). Together, our data suggested that BRIT1 LCL might 

have impaired cell survival as a result of generated DSBs being un-repaired because of both 

the defective HR and NHEJ repair. Furthermore, repair foci formation was also impaired in 

these cells with significantly reduced recruitment of RPA and Rad51 (Fig. 5c). These results 

were further confirmed by our detection of a decreased association of DNA repair proteins 

to chromatin in patients’ cells, while total protein levels were unaffected (Supplementary 

Fig. 7d–f).

SWI/SNF binding to chromatin was also severely impaired in BRIT1 LCL cells (Fig. 5d). 

Again, reduced binding of SWI/SNF to chromatin was not due to decreased total cellular 

protein levels (Supplementary Fig. 7e). Importantly, in keeping with our RNAi studies, 
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BRIT1 LCLs did not undergo chromatin relaxation after DNA damage, unlike control LCL. 

Control LCL chromatin exhibited increased sensitivity to MNase after neocarzinostatin 

induced DNA damage, while BRIT1 LCLs chromatin remained more resistant to MNase 

digestion (Fig. 5e, and time course, Supplementary Fig. 7h). Induction of chromatin 

relaxation also restored damaged-induced phosphorylation of RPA in BRIT1 LCLs 

(Supplementary Fig. 7g). Notably, the defects of cell survival, and chromatin relaxation 

could be rescued by the introduction of wild-type Flag-BRIT1 into BRIT1 deficient-LCLs, 

but not by the introduction of BRCT-Δ1 mutant, which abrogated its SWI/SNF-binding 

activity (Supplementary Fig. 7i–l). We also found a partial rescuing effect from BRCT-Δ2 

mutant which might have been due to the requirement of C-terminal BRCT domain in other 

cellular functions6. Therefore our findings in BRIT1 LCLs are again consistent with a 

requirement for BRIT1 to mediate chromatin relaxation and the recruitment of DNA repair 

proteins to DNA lesions after DNA damage.

In summary, our results suggested a model for BRIT1 function. BRIT1 interacts with 

SWI/SNF via the core subunits BAF170 and BAF155. These interactions are enhanced in 

response to DNA damage through an ATM/ATR-dependent phosphorylation of BAF170. 

We suspect that BRIT1 is required for the recruitment and maintenance of SWI/SNF at 

DNA lesions and through which BRIT1 promotes chromatin relaxation and in turn 

facilitates the recruitment of DNA repair proteins to DNA lesions for efficient repair. 

Therefore, loss of BRIT1 would lead to impaired chromatin relaxation and DNA DSB 

repair, which may contribute to the development of MCPH and cancer.

Also, besides its recognition of histone modifications2,3, our findings reveal a mechanism 

by which the SWI/SNF complex is recruited to DNA lesions without containing intrinsic 

specificity for particular nuclear process10,27–28. Indeed, multiple mechanisms may be 

involved regulating chromatin structure in order to cope with different stages of damage 

response and/or response to different types of DNA lesions and/or repair DNA lesions 

located in different regions of chromatin (euchromatin or heterochromation)1,23,29. In 

addition, our studies reveal that post-translational modifications such as phosphorylation 

may serve as critical mechanisms to regulate the functions of SWI/SNF. Therefore it will be 

of future interests to illustrate the additional roles of phosphorylation on other SWI/SNF 

subunits in DNA damage response12 and impaired its function in the pathogenesis of human 

diseases30,31.

METHODS

Cell culture

U2OS and 293T cells were purchased from the American Type Culture Collection. The 

U2OS cells were maintained in McCoy’s 5A medium supplemented with 10% fetal bovine 

serum (FBS). 293T wre grown in Dulbecco’s modified Eagle’s medium (DMEM) with 10% 

FBS. Lymphoblastoid control cell line and two MCPH cell lines [MCPH#1 (C74G)7; 

MCPH#2 (G321C; Personal communication, A.P. Jackson & E. Griffth)] were grown as a 

suspension culture in RPMI 1640 medium supplemented with 20% FBS.
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Plasmids, small interfering RNAs (siRNAs), and transfection

siRNA #1, #2, #3 sequences, control siRNAs, Flag-BRIT1, Flag-BRIT1 mutant resistant to 

siRNA#1, BRCA1 plasmids and the procedures for BRIT1 knockdown and ectopic 

expression of BRCA1-HA, Flag-BRIT1, or deletion mutants of BRIT1 in BRIT1 

knockdown cells were all previously described5,18. On-target smart pool siRNAs against 

BAF170, BAF155, SNF5, ATM and ATR were purchased from Dharmacon Research 

(Lafayette, CO). Short hairpin RNA (shRNA) vectors targeting BRG1 or BRM were 

purchased from Sigma. The deletions of BRIT1 were generated from Flag-BRIT1 plasmid 

via polymerase chain reaction (PCR) using primers with restriction sites and subcloned into 

N-terminal p3xFlag-CMV plasmid in frame. A series of deletion mutants of BAF155 are 

kindly provided by Dr. Archer, T.K. (NIH, North Carolina)12. Flag-tagged ATM, ATR, 

ATM-KD (catalytic dead) and ATR-KD plasmids were generously provided by Dr. Kastan, 

M. (St. Jude Children’s Research Hospital, Memphis, TN.), Dr. Cimprich, K. (Stanford 

University) and Dr. Zou, L. (Harvard University). BAF170 was cloned from cDNA of 

HMEC cells (normal breast epithelial cells). The deletions of BAF170 were generated via 

PCR using primers with restriction sites and subcloned into pCMV/myc/nuc (Invitrogen). 

All the mutations described in the paper were generated by QuickChange II Site-Directed 

Mutagenesis Kit (Stratagene). Fragments containing BAF170 (S969) and BAF170 (S969A) 

were sub-cloned into pGEX vectors (GE Healthcare). Detailed cloning information is 

available upon request. Plasmids were verified by DNA sequencing. Oligofectamine 

(Invitrogen) was used for all siRNA transfections and FuGENE 6 (Roche) was used for all 

plasmids transfection following the manufacturers’ protocols. Transfection in LCLs was 

done as previously described8.

Affinity purification of BRIT1 protein complex

U2OS cells were transiently transfected with empty Flag plasmid or Flag-BRIT1 plasmid. 

Forty-eight hours later, whole cellular extracts were prepared with RIPA buffer (50 mM Tris 

Hcl pH7.4, 1% NP-40, 150 mM NaCl, 1 mM EDTA, 10% Na-deoxycholate, freshly added 

with 1 mM PMSF, 1 mM Na3VO4, and 1 mM NaF) and immunoprecipitated with anti-Flag 

M2 affinity gel (Sigma) overnight. Bead-bound immunocomplexes were eluted with 3xFlag 

peptide (Sigma) and subjected to SDS-PAGE. The silver staining was performed with 

SilverSNA kit for Mass spectrometry (Pierce). Specific bands were excised, digested and the 

peptides were analyzed by a mass spectrometry analysis at the M. D. Anderson Cancer 

Center Proteomic Facility.

Purification of GST-fusion proteins and GST pull down assay

Purification and GST pull down methods were adapted from previous publication32. BL21 

bacteria containing indicated plasmids were allowed to grow 6 hrs after addition of IPTG. 

Cell pellets were resuspend in lysis buffer and sonicated. The supernatant was incubated 

with glutathione-agarose beads at 4°C for overnight. After washing, GST fusion proteins 

were eluted with glutathione. Then cell lysates (1 mg) were incubated with 2–5 µg GST 

fusion protein and 40 µl Gluthatione-agarose beads in a total 1 ml RIPA buffer at 4°C on a 

rotator for 2–4 hrs. After washing the beads with RIPA buffer for 3 times, elute the protein 

for SDS-PAGE gel analysis.
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In vitro ATM and ATR kinase assay

Immunoprecipitations of ATM and ATR and in vitro kinase assay were performed as 

described earlier33. Briefly, 293T cells were transfected with 8 µg Flag-tagged ATM, ATR, 

ATM-KD and ATR-KD plasmids. Cell extracts were prepared in lysis buffer containing (50 

mM Tris, pH 7.5, 150 mM NaCl, 1% Tween 20, 0.3% Nonidet P-40, 1 mM sodium fluoride, 

1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 50 mM glyycerophosphate, 1 mM 

DTT, 1mM EGTA, 10% glycerol and 1 _ protease inhibitor mixture from Roche Molecular 

Biochemicals). Cleared supernatants were immunoprecipitated with anti-Flag M2 antibody 

(sigma). After washing with lysis buffer and kinase buffer (20 mM HEPES, pH 7.5, 50 mM 

NaCl, 10 mM MgCl2, 1 mM dithiothreitol, and 10 mM MnCl2) 5 times, the 

immunoprecipitant was resuspended in 50 µl of kinase buffer containing 10 µCi of 

[-32P]ATP, 10 µM ATP, 1 mM sodium fluoride, 1 mM Na3VO4, 20 mM glyycerophosphate 

and 1 µg of GST fusion substrate. The kinase reaction was performed at 30 °C for 20 min 

and stopped by the addition of SDS sample buffer. Proteins were separated on SDS PAGE 

gel and transferred to PVDF membrane. Radiolabeled proteins were visualized by 

autoradiography.

Antibodies, immunoprecipitation, chromatin fractionation and Western blot analysis

BRIT1, BRCA1, RPA34, and p-RPA34 antibodies were previously described5,22. Rabbit 

anti-SWI/SNF subunits antibodies (BRG1, BRM, BAF170, BAF155 and SNF5), MCM2 

and p-MCM2 (Ser40/Ser41) were purchase from Bethyl Laboratory. Rabbit anti-Rad51 

(Ab-1) antibody was purchased from Calbiochem. Mouse anti-Ku70 antibody was 

purchased from Novus. Control rabbit Immunoglobulin G (IgG) and anti-ATR antibody 

were purchased from Santa Cruz. Anti-Mcy tag antibody, Chk1, p-Chk1 (Ser345), Chk2, p-

Chk2 (Ser68), p-S/TQ antibodies, and anti-ATM antibody was ordered from Cell signaling. 

The immunoprecipitation with anti-Flag affinity beads was done as described above. For 

reciprocal immunoprecipitation, whole cellular extracts were prepared in RIPA buffer as 

indicated above and precleaned with protein A/G plus-agarose beads (Santa Cruz). Then 

cellular extracts were subjected to incubation with antibodies against BRG1 or BRGM (2 

µg) for 2 h followed by incubation with protein A/G agarose beads overnight at 4 °C. The 

immunocomplex was eluted in loading buffer by boiling at 95 °C for 5 min. The preparation 

of chromatin fractions and Western blot analysis including the conditions for RPA analysis 

were done as previously described5,22. For the chromatin fractions to analyze SWI/SNF and 

DNA repair proteins, cells were exposed to IR (10 Gy), then harvested 2 h or 5 h later 

respectively. Densitometry analysis was done using NIH IMAGE software.

Chromatin immunoprecipitation (ChIP) assay

DSBs were induced in cells transfected with control siRNA or BRIT1 siRNA#1 by I-SceI 

expression. At indicated time points, cells were crosslinked with formaldehyde and ChIPs 

were performed using an EZ ChIP kit (Upstate) following the manufacturer’s instructions. 

Cellular lysates were subjected to five sets of sonication on wet ice with a 60 Sonic 

Dismembrator (Fisher Scientific). Each set consists of 8 seconds of sonication with 1 min 

interval on ice. BRG1, BRM (10 µl) antibodies were used for immunoprecipitation. The 
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ChIP primers used to analyze proteins binding at the site of DSBs were: sense 5′-

TACGGCAAGCTGACCCTGAA-3′; antisense, 5′-GCCCATATATGGAGTTCCGC-3′.

The primers used as a negative control on chromosome 12 were: sense, 5′-

ATGGTTGCCACTGGGGATCT-3′; antisense 5′-TGCCAAAGCCTAGGGGAAGA-3′.

Methods for the following assays are available in Supplementary Information

DNA repair assays (Comet assay, HR repair analysis, NHEJ repair analysis); Cell cycle 

analysis; Micrococcal nuclease (MNase) sensitivity assay; Colony-forming assay; Cell 

viability assay; Immunofluorescent staining for foci formation;

Statistical analysis

All statistical analysis was done by one-tailed Student’s t- test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. BRIT1 interacts with the SWI/SNF complex
(a) Silver staining of the BRIT1 complex separated by SDS-PAGE. The whole cell extracts 

were prepared from U2OS cells transiently transfected with empty vector or Flag-BRIT1. 

Subunits of SWI/SNF are indicated. (b) Co-IP of SWI/SNF with BRIT1 analyzed by 

Western blotting from cells transfected with empty vector (V) or Flag-BRIT1 (B). (c) 

BRIT1-SWI/SNF interaction dependent on BAF170 (Left) and BAF155 (Right). (d) N-

terminal BRIT1 is required for BRIT1-SWI/SNF interaction. (Top) Schematic diagram of 

BRIT1 deletions. (Bottom) Co-immunoprecipitation of BAF170 with Flag-BRIT1 

Peng et al. Page 11

Nat Cell Biol. Author manuscript; available in PMC 2010 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



containing indicated deletions. (e) SWI/SNF interacts specifically with the N-terminal 

BRIT1 in vitro. Lysates of 293T cells were treated with or without lambda phosphatase, and 

incubated with purified GST or GST-N-terminal BRIT1. MCM-2 phosphorylation (S40/41) 

was used as a positive control for effective phosphatase treatment.

Peng et al. Page 12

Nat Cell Biol. Author manuscript; available in PMC 2010 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. BRIT1-SWI/SNF interaction is responsive to DNA damage
(a) BRIT1-SWI/SNF interaction is enhanced in the presence of DNA damage signaling. 

Lysates were prepared from cells transfected with empty vector (V) or Flag-BRIT (B) at the 

indicated time points after exposure to IR (10 Gy) and immunoprecipitated. (b) DNA-

damage induced BRIT1-SWI/SNF interaction is dependent on ATM/ATR signaling. Cells 

were harvested 15 minutes after exposure to IR (10 Gy). (c) BAF170 is a substrate candidate 

for ATM/ATR (Top and Middle) and its phosphorylation is dependent on the presence of 

ATM/ATR (Bottom). (d) The mutation on BAF170 (S969) suppressed the recognition of 
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BAF170 by the p-S/TQ antibody after IR. A series of mutations on BAF170 were generated 

to replace potential ATM/ATR target sites S/TQ to AQ. Chk2-pulldown by p-S/TQ was 

used as a positive control to show that the general binding activity of p-S/TQ to other 

ATM/ATR substrates was not affected in cells transfected with M7 mutant. (e) BAF170 

(S969) is phosphorylated in vitro by ATM/ATR kinase assay. The sequence around BAF170 

(S969) was cloned into GST vector and the phospho-mutant (S969A) was made in this 

vector.
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Figure 3. BRIT1 depletion impairs DNA DSB repair
(a) Defective HR repair in BRIT1-depleted-cells transfected with BRIT1 siRNA #1 (#1) and 

siRNA #2 (#2) upon DSB induced by I-SceI. (Left) Representative flow cytometry profile. 

(Right) Quantitative summary of at least three independent experiments. Each value is 

relative to the percentage of GFP+ cells in I-SceI-transfected cells without siRNA 

transfection, which was set to 1 and represents the mean ± SD of three independent 

experiments; Student’s t-test. (b) Defective NHEJ repair in BRIT1-depleted-cells transfected 

with BRIT1 siRNA #1 (#1) and siRNA #3 (#3) upon DSB induced by I-SceI. (Left) 
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Representative image of PCR products digested by I-SceI or I-SceI+BcgI. (Right) 

Quantification of NHEJ repair product (uncut by I-SceI+BcgI). Percentage of uncut products 

in cells without siRNA transfection was set as 1. Each value represents the mean ± SD of 

three independent experiments; Student’s t-test. Western blot analyses to demonstrate the 

effective BRIT1 knockdown were shown next to the graph. (c) Impaired recruitment of 

SWI/SNF and DNA repair proteins to chromatin in BRIT1-depleted cells (Time course 

study and densitometry analyses were shown in supplementary Fig. 4a, b). (d) Impaired 

recruitment of SWI/SNF to the DNA damage site. ChIP analyses were performed at the 

indicated time points after induction of DSB by I-SceI transfection.
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Figure 4. BRIT promotes the function of SWI/SNF
(a) Impaired chromatin relaxation analyzed by MNase sensitivity assay. Cells were exposed 

to 4 Gy IR. (Top) Representative image. (Bottom) Quantification of average nucleosome 

size. Each value represents the mean ± SEM of of three independent experiments; Student’s 

t-test. (b) The function of BRIT1 in DNA repair is dependent on its interaction with SWI/

SNF. BRIT1-deficient cells were reconstituted with indicated plasmids. BRIT1 with N-

terminal deletion (BRIT1-ND), which lacks its SWI/SNF interaction domain, was unable to 

rescue the defect of DNA repair to a similar extent to the BRIT1 BRCT-Δ3 mutant that lost 
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its activity to be recruited to DNA damage lesions. Each value is relative to the percentage 

of GFP+ cells in I-SceI-transfected cells with control siRNA transfection, which was set to 1 

and represents the mean ± SD of three independent experiments. (c) Requirement of BRIT1 

for Rad51 foci formation. (Top) Representative immunostaining images. Scale bar is 10 µM. 

(Bottom) The bar graph represents the mean ± SD of three independent experiments; 

Student’s t-test. At least 50 cells were scored in each sample. (d) Restored HR repair in 

BRIT1 deficient cells in the presence of chromatin relaxation agents. Each value is relative 

to the percentage of GFP+ cells without siRNA transfection, which was set as 1, and 

represents the mean ± SD of three independent experiments. Western blot analyses to 

demonstrate the effective BRIT1 knockdown were shown next to the graph.
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Figure 5. BRIT1 promotes DNA repair and chromatin relaxation in two human MCPH 
lymphoblastoid cell lines (MCPH #1 and MCPH #2)
(a) Impaired DNA repair analyzed by comet assay after exposure of cells to IR. Percentage 

of cells with intact DNA (tail moment less than 2) in cells without IR exposure was set as 1. 

At least 100 cells were scored in each sample and each value represents the mean ± SEM of 

three independent experiments; Student’s t-test. Representative images are shown in 

Supplementary Fig. 7b. (b) Impaired cell survival in MCPH #1 cells exposed to DSB-

inducing agents. Cells were pre-treated with the DNA replication inhibitor aphidicolin 
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(Aphi) where indicated, and then treated with etoposide (Left) or camptothecin (Right). The 

graphs represent the mean ± SD of three independent experiments (c) Requirement of 

BRIT1 for foci formation of DNA repair proteins. (Top) Immunostaining of p-RPA foci. 

Scale bar is 10 µM. (Bottom) Quantification of p-RPA and Rad51 foci formation from three 

independent experiments (mean ± SD). At least 50 cells were scored in each sample for each 

experiment. (d) Reduced association of SWI/SNF to chromatin. (Top) Representative 

Western blots. (Bottom) Densitometry analyses of indicated protein values normalized 

against ORC2. Each value represents the mean ± SD of three independent experiments; 

Student’s t-test. (e) Impaired chromatin relaxation analyzed by MNase sensitivity assay. 

Cells were exposed to the DSB inducing agent neocarzinostatin (400 ng/mL). (Left) 

Representative image. (Right) Quantification of average nucleosome size. Each value 

represents the mean ± SEM of three independent experiments; Student’s t-test.
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