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The central function of the aorta and all muscular arteries is to act as an efficient and durable
conduit for pulsatile blood flow. As such, these vessels must preserve a nonthrombogenic
lumen free of obstruction and maintain their structural integrity over a lifetime of cyclic
hemodynamic stresses. The loss of structural integrity is the fundamental cause of aneurysm
formation and ultimate rupture. Histologically, the complete or near-complete loss of intact
medial elastic fibers has long been recognized as a distinguishing feature of aneurysms,
particularly the relatively common infrarenal abdominal aortic aneurysm (AAA) (Figure 1).
Mechanical studies of human tissues have confirmed the critical structural role of the elastic
fiber in maintenance of arterial wall integrity.1,2 Further, animal models of aneurysms have
consistently been reproduced with the initiation of inflammatory and enzymatic cascades that
result in medial elastic fiber degeneration.3

The elastolytic process in aneurysms is associated with several reflexively related features in
humans: (1) an increase in expression and/or activity of elastin-degrading matrix
metalloproteinases (MMPs): MMP-2,4 MMP-3,5,6 MMP-9,7–9 MMP-7,10 and MMP-1211,
12; (2) an increase in tissue macrophages and other inflammatory cells12,13; and (3) a decrease
in medial vascular smooth muscle cell (SMC) density (Figure 2).14–16 The prevailing
conception of this disease considers that the inflammatory cell infiltrate results directly or
indirectly in the elaboration of the metalloproteinases17 and that these proteases directly
degrade elastin. Ultimately, pulsatile stresses are then brought to bear primarily on matrix
constituents not designed to withstand this repetitive stress. Furthermore, as the aorta dilates,
the distribution of force is altered, localized areas of supraphysiologic levels of wall stress
develop,18,19 and rupture occurs as the result of mechanical disruption of the remaining matrix
components.

The vascular SMC must play a critical role in aneurysm pathobiology since it is capable of (1)
matrix synthesis, (2) proteinase (and inhibitor) elaboration, and (3) inflammatory cell
recruitment. As seen in the simplified schematic of Figure 3, the SMC plays a central role in
its interactions (both positive and negative) with matrix-degrading enzymes and medial
inflammation. Furthermore, SMCs are the principal cell type involved in the production of the
extracellular matrix (ECM) components of the media, particularly elastin and collagen. Given
that the most likely therapeutic window for medical therapy of aneurysm disease is after
dilatation has been detected, stabilization of the aortic wall is likely to require both enzymatic
inhibition and the synthetic, reparative activities of the SMCs producing ECM.
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Differentiation of SMCs in AAA
Diverse Phenotypes of the Vascular SMC

The term smooth muscle cell encompasses a rather diverse population of cells that perform a
variety of functions within each tissue, including mechanical responses (eg, contraction,
migration, and proliferation) and maintenance of the ECM (eg, synthesis of matrix proteins,
growth factors, and cytokines). These cells tend to have unique tissue-specific functional
phenotypes, such as found in the bladder, the gastrointestinal tract, the small airways of the
lung, and vascular tissue. It is also now recognized that even among the vascular SMC
population, there is no homogeneous phenotype.20–30 These cells appear to undergo
differentiation relative to their location in the vascular tree and their embryologic origin.

The relative differentiation of vascular SMCs may be critical to the health and stability of the
matrix of a blood vessel for several reasons. First, the cells are, by far, the majority cell type
present within the normal vessel wall, and they perform important mechanical functions
integrated with the matrix. Second, these cells are responsible for the production of the
structural proteins of the ECM. Third, these cells are capable of releasing cytokines and
chemokines, which can result in the recruitment of the other cell types to the vascular wall.
Fourth, these cells are capable of migration and the expression of matrix-degrading enzymes.
Each of these functions will require the regulation of expression of a distinct set of genes unique
to each process.

It is well recognized that SMCs retain significant plasticity with regard to their expression
profiles, which may allow them to modulate gene expression to participate in this myriad of
functions. In particular, the phenotype of these cells in vivo and in vitro appears to be
significantly affected by local environmental conditions. In tissue culture, vascular SMCs have
been found to alter their phenotype significantly based on culture conditions. Generically, there
have been two in vitro phenotypes referred to as the “contractile” and “synthetic” phenotypes
with different expression and activity profiles, and in certain circumstances, particular SMC
clones can undergo reversible conversion between these two phenotypes.31

There are limits to phenotypic modulation for specific SMCs, however, which are dictated by
the differentiation state of the cell. Thus, under identical culture conditions, SMCs from
different vascular mural compartments are found to have unique phenotypes and can be
distinguished in culture. Frid and colleagues established that there is heterogeneity of cultured
SMC phenotype even within a single segment of bovine pulmonary arterial media.30 This
evidence for local heterogeneity of cultured SMCs was recently extended to the internal
thoracic artery in humans.32 This suggests an important level of specialization of the medial
SMC for particular tasks of vascular maintenance.

The understanding of SMC differentiation and its role in vascular pathology has been advanced
primarily through the study of atherosclerosis. Atherosclerotic plaque has long been recognized
to be a pathologic process that involves SMCs that populate the lesion and produce ECM and
metalloproteinases. In atherosclerosis research, it has become clear that the SMCs that populate
an intimal plaque consist primarily of a monoclonal or oligoclonal population of cells.33–36

Moreover, these cells derived from atherosclerotic plaque are now known to have a unique
phenotype compared with SMCs obtained from arterial media.37,38 It is believed that the
unique phenotype of these cells is critical for the development of atherosclerotic disease in
humans.35

Unresolved Pathobiology: Role of the SMC in AAA
The predominant paradigm of aneurysm pathobiology describes the medial degeneration as
developing secondary to an imbalance between proteolytic and matrix synthetic activities.
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Obviously, the imbalance is weighted in favor of the proteolytic activity, with
metalloproteinases appearing to be the most significant participating enzyme family. Within
this context, SMCs, as a class, could participate on either side of the balance, either accentuating
the matrix-degrading or the matrix-synthesizing/antiprotease roles. Therefore, the SMCs in
AAA must be participating in the process of matrix degradation either through enhancement
of the matrix proteolysis or through insufficient matrix repair or protection.

Despite their central role, study of the activity of the SMC in human aortic aneurysm tissue
has been relatively superficial. Most of the human studies of SMC in aneurysm disease describe
a decrease in the concentration of the cells within the media, evidence of SMC apoptosis, and
poor in vitro propagation of SMC lines derived from aneurysmal tissue.16,39–41 It has therefore
been hypothesized that the matrix destruction seen in AAA in part results from a reduction in
the quantity or activity of SMCs.14–16,39,40 The implication here is that given adequate
numbers or activity levels, the medial SMCs of the aorta are capable of mitigating the
proteolytic injury either through the matrix-synthesizing capabilities of the SMC or enzymatic
inhibition. Supporting this concept is evidence that SMC seeding can prevent AAA in a
decellularized xenograft transplantation model of aneurysms.42–44

Alternatively, there is a body of evidence that directly implicates the SMC in the matrix
destructive process of aneurysms. The ability of SMCs to degrade medial matrix has been well
described in relation to migration of SMCs.45,46 Furthermore, there is important evidence that
protease expression by SMCs is critical to aneurysm development in humans and in certain
models of aneurysmal degeneration.47–51

Thus, there is contradictory information on the function of these cells in the complex
environment of the aneurysmal aortic wall. Ultimately, the true role of the medial SMC in
human aneurysm development remains unknown. Deciphering the activities of these cells with
respect to the medial ECM changes seen in aneurysms has great potential for assisting in
devising therapies and improving our animal models of aneurysm disease. Fortunately,
extensive studies of SMCs in the pathobiology of atherosclerotic disease can offer some
important insights and techniques to understand the role of these cells in AAA.

SMC Differentiation in AAA
As shown in Figure 4, the prevalence of a differentiated phenotype of SMCs that predominantly
express proteins associated with matrix degradation could result in a medial environment that
results in elastin fiber degradation typical of aneurysms. Given the central role of the SMC in
maintenance of the medial ECM of the aorta, understanding the phenotype of the resident SMC
may be a critical link in our understanding of aneurysm pathobiology. There is evidence that
SMCs derived from the wall of an AAA may be unique compared with cells from a
nonaneurysmal artery, as suggested by the in vitro growth characteristics16,39–41 and tissue
studies of SMCs in aneurysms.48 In studies performed over 10 years ago, SMCs explanted
from aneurysms and normal aortas were compared under interleukin-1β (IL-1β) stimulation.
52 These studies examined a limited set of metalloproteinases and inhibitors with Western
blotting but did identify unique responses of the aneurysm cells to cytokine stimulation.52

However, there has been no ongoing systematic attempt to define this population of SMCs.

Postulating a unique phenotype for SMCs populating aneurysmal segments of the arterial tree
begs the question of the origins of the diversity of these cells. Unlike the endothelial cells that
appear to derive from primary endothelial or endodermal tubes, in the embryo, SMCs seem to
arise locally from the surrounding mesenchyme53,54 or from the neural crest.55 It has also been
reported that certain situations can result in endothelial cells delaminating, migrating, and
transdifferentiating into SMCs.56 Finally, SMCs populating intimal plaque can derive from
circulating bone marrow–derived stem cells,57–59 although this has been specifically disputed.
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60 Any or all of these may have an impact on the development of unique populations of SMCs
in aneurysms.

The embryologic origins of the SMC during development may be particularly useful in
explaining localized differences in arterial pathology. For example, mesenchyme of the head
and neck derives from ectoderm, whereas mesenchyme of the lower body derives from
mesoderm.61 Differences in aortic SMCs persist and can be identified topographically even in
young adults without significant aortic disease.62

In the context of aneurysm disease, it is remarkable that the vast majority of arterial aneurysms
occur in an anatomically defined segment, including the distal aorta, common iliac, and internal
iliac arteries. The predisposition of aneurysms for this portion of the aorta has been explained
in many different ways, including blood flow and wall stress dynamics, as well as differences
in medial structure.63–66 However, these explanations do not generally allow for an
understanding of the development of aneurysms in the adjacent iliac system. On the other hand,
differential SMC ontogeny related to the local properties of the mesenchyme could result in a
regional predominance of cells with a differentiation bias toward matrix degradation. Given
the anatomic continuity of the most affected segments of the vascular tree, this might
reasonably account for the localized anatomic distribution of aneurysm disease. The localized
differences in matrix of the infrarenal aorta could be accounted for by uniquely differentiated
SMCs as well.64 Furthermore, clonal expansion of pathologic SMCs has not been demonstrated
in animals,36,53,67 which may relate to the absence of spontaneous aneurysmal disease in
animals.

Elastolysis and SMCs in AAA
As noted above, an SMC population within the media of the wall of an aneurysm may have a
phenotype that promotes matrix degeneration. One means by which a unique population of
SMCs in AAA may impact the course of the disease is through production of active
metalloelastases. Alternatively, SMCs may participate in matrix degeneration through an
inability to produce appropriate antiproteases. Several lines of evidence suggest that SMCs
may play an integral role in the MMP-mediated characteristic degradation of elastin in AAA.

Metalloelastases in AAA
Although a complete review of MMP activities in AAA is beyond the scope of this monograph,
briefly, both constitutive and inducible production of elastolytic enzymes MMP-2, MMP-9,
MMP-7, and MMP-12 can be identified within human AAA tissues. Davis and colleagues
showed that large amounts of MMP-2 are bound to the ECM.68 A large portion of this matrix-
bound MMP-2 is found in the activated form, suggesting that MMP-2 is activated in AAAs
and tightly sequestered within the extracellular space. MMP-9 has attracted particular interest
because it is abundantly produced by human AAA tissues in vitro.69 Elevated amounts of
enzymatically active MMP-12 are also produced in human AAA tissue.12 Importantly,
MMP-12 is prominently localized to residual elastin fiber fragments within aneurysm tissue
by immunohistochemistry, a pattern distinct from other elastolytic MMPs. Stromelysin has
been detected in human AAAs by immunoblotting and messenger ribonucleic acid analysis,
9,70–72 but its role in aneurysm development remains unclear. Stromelysin may play a
significant role, however, by activating the proenzyme form of other MMPs, particularly
MMP-9.73

The regulation of MMP activities is critical to prevent widespread tissue destruction, both in
normal tissues undergoing remodeling and in disease.74–76 MMPs are thereby controlled at
several levels, including the induction and suppression of MMP gene transcription,
extracellular activation, and interaction with natural inhibitors. MMPs are secreted as
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zymogens (pro-MMPs) and are maintained in an inactive state by the presence of the amino-
terminal propeptide domain. Enzymatic cleavage of the propeptide is the most likely
mechanism of MMP activation in vivo, indicating that extracellular processing of pro-MMPs
is required, with few exceptions, to achieve full catalytic activity.77 Proteases known to be
effective activators of one or more elastolytic MMPs include plasmin,78,79 trypsin,80,81

chymase,82 active MMPs,48 and others. Several lines of evidence suggest that these MMP
activators are present in significantly elevated quantities in aneurysm tissue, particularly the
plasminogen activators urokinase (uPA) and tissue plasminogen activator (tPA).83,84 Evidence
exists to suggest that increases in expression of the fibrinolytic proteins are important for the
progression of small aortic aneurysms.85,86 Furthermore, in multiple models, plasminogen
activators appear to play a crucial role in the development of experimental aneurysms.87–89

SMC and MMP Expression
Proteolytic enzyme secretion in SMCs is a well-recognized capability. Unstimulated SMCs
produce MMP-2 both in vivo and in vitro,90,91 whereas MMP-3, MMP-7, MMP-9, and
MMP-12 are expressed in vivo in vessel walls associated with inflammation, shear stress, or
injury.92–96 In cell culture, SMCs can be induced to express the elastolytic MMPs 3, 9, and
12, under specific cytokine or other receptor stimulation.90,91,97–100 Expression of MMP-7,
however, has not been demonstrated from human vascular SMCs in culture. As noted, MMP-2
is expressed constitutively by SMCs, although augmented expression can be stimulated by
platelet-derived growth factor (PDGF).101 Although MMP-12 is not expressed constitutively
by SMCs, its expression can also be stimulated by PDGF through an AP-1-dependent
mechanism.98 Expression and synthesis of both MMP-9 and MMP-3 in SMCs are induced by
IL-1β and tumor necrosis factor α90 through nuclear factor (NF)-κB.102,103 All of these
cytokines have been found to be upregulated in human aneurysm tissue and thus may have a
role in stimulating SMCs in vivo.104,105

In addition to producing these potentially elastolytic metalloproteases, SMCs are also capable
of producing the enzymes that can activate them as well. Vascular SMCs may effect activation
of MMPs produced through the expression and activity of plasminogen activators, uPA and
tPA, or a membrane-bound metalloproteinase, MT1-MMP.11,47,106–108

Protease Expression in Aneurysm-Derived SMCs
As noted above, the role of the SMC as it relates to the degradation of medial elastin in
aneurysms is vaguely understood, and contrary hypotheses exist in regard to their participation
in aneurysm genesis. Yet there are data to suggest that SMCs in patients with aneurysms are
unique and, moreover, are associated with alterations in protease or inhibitor expression. In an
early study by Keen and colleagues, SMCs grown in explant culture from the aortas of patients
with aneurysms and from the aortas of elderly individuals donating organs demonstrated
differential expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in response to
IL-1β stimulation.52 In fact, it was found that SMCs from AAA had a significant increase in
TIMP-1 production, whereas no effect was seen in cells from normal aortas, which has been
confirmed by others.90 Although this may suggest an antiproteolytic bias of these cells,
expression of TIMP-1 and certain MMPs are known to be coordinately regulated through NF-
κB and AP-1 transcription factors, thus suggesting that there may have been significant
increases in elastolytic MMPs that were not recognized.109,110

In a study by the same group the following year, evidence supporting this later interpretation
was presented.111 It was found that unstimulated SMCs derived from AAA were found to
produce detectable amounts of uPA, whereas control SMCs did not express uPA. There was
also significantly more tPA produced by the aneurysm-derived SMCs than the SMCs from
normal aortic tissue.111 Although not evaluated in this study, this may have increased the
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activity of the MMPs secreted from these same cells. This suggests that SMCs from aneurysms
may actively participate in the production of a proproteolytic environment in the aortic media.

Further support of the unique properties of SMCs from AAA comes from a more recent study
by Goodall and colleagues.49 In these experiments, migration through a Matrigel layer was
compared between SMCs derived from patients with AAA and normal controls. The SMCs
from aneurysm patients showed significantly increased invasiveness under PDGF stimulation.
This effect was associated with increased MMP-2 production compared with the normal
controls. These enhanced responses to inflammatory stimuli may be an important feature of
the SMCs in AAA as even crude extracts of aneurysm tissue demonstrate high levels of
chemotactic and proinflammatory molecules.104,105,112

Summary
As described by Schwartz and colleagues over 10 years ago, the unique properties of the
“soil” (the cellular responses) of the intima provide for the development of intimal arterial
diseases.53 Now a significant amount of evidence points to the likelihood that the SMCs that
populate the media of aneurysms are unique and that they directly or indirectly participate in
the medial elastin degeneration characteristic of AAA. Because maintenance of a functional
aortic matrix depends on the SMC, restoration of the normal activities of these cells may be
essential to stabilize and potentially repair the damage that is associated with aneurysmal
degeneration. Evidence for this effect can be seen in recent studies in murine models with both
repopulation of the aorta with normal SMCs113 and alteration of SMC activities by modifying
intracellular inflammatory response pathways.114 Finally, identification of SMC
differentiation profiles associated with aneurysms may provide the unique ability to identify
those individuals with an increased propensity for aneurysm development prior to the
phenotypic expression of the disease.
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Figure 1.
Elastin-specific stain in normal and aneurysmal aorta. Note elastic fiber destruction in the
aneurysm despite minimal local inflammation.

Curci Page 13

Vascular. Author manuscript; available in PMC 2009 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Diagrammatic representation of the reflexive relationships that exist between the elastin matrix
destruction (mediated by specific enzymes), loss of normal smooth muscle cell function and
number, and inflammatory infiltration found in aortic aneurysmal disease. Each of those
invariate findings of aneurysmal tissue can induce or increase the other findings, resulting in
a destructive cycle leading to aortic wall failure. VSMC = vascular smooth muscle cell.
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Figure 3.
Vascular smooth muscle cell products involved in matrix metalloproteinase (MMP)-mediated
matrix injury in aneurysms. Products that may promote matrix injury are in green, and products
that may reduce limit or repair matrix injury are in red. PAI = plasminogen activator inhibitor;
TIMP = tissue inhibitor of metalloproteinase; uPA = urokinase.
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Figure 4.
In this simplified schematic, unbalanced differentiation of SMC could result in a predominance
of cells that have a tendency to express proinflammatory and matrix-degrading products. These
cells would feed into the cycle of aneurysmal degeneration once it is initiated by a secondary
injury. A more balanced phenotype of SMC could express products that predominantly act to
put a brake on the cycle and prevent inappropriate matrix damage.
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