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Abstract

 

Cell adhesion in endometrial epithelium is regulated to maintain the continuity and protectiveness of the luminal
covering cell layer while permitting interstitial implantation of the embryo during a restricted period of about
4 days. Many apparently normal embryos fail to implant, and epithelial-embryo adhesion remains a poorly
understood phenomenon. After menstruation, epithelial regeneration occurs by epiboly from the basal residues
of glands, an activity that requires migration on extracellular matrix as well as cell–cell cohesion. Here we review
current knowledge of adhesion molecules in the epithelium.
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Introduction

 

Implantation in human involves initial weak interaction
between the blastocyst and endometrial surface followed
by stable adhesion and transient disruption and resealing
of the epithelium as the embryo positions interstitially.
The molecular mechanisms are incompletely understood.
A few studies have analysed adhesion molecule expression
on trophectoderm in the human blastocyst (Campbell
et al. 1995a,b; Bloor et al. 2002; Fujiwara et al. 2002, 2003;
Genbacev et al. 2003) but given the scarcity of embryos for
research, information is slow to accumulate. Implantation
requires maternal receptivity, a property vested in the
epithelium (Aplin, 2000, 2006; Aplin & Kimber, 2004), and
identification of molecular candidates in the epithelium has
enabled strong hypotheses to be formulated regarding
attachment mechanisms. Adhesion molecules in the epi-
thelium are in addition required to mediate adhesion to the
underlying basement membrane or adjacent epithelial cells.
Cell surface components are relatively poorly represented
in transcriptomic libraries (Reese et al. 2001; Yoon et al. 2004;
Aplin, 2006), although other informatics-related approaches
may be informative (Aplin & Singh, 2008). Most existing
data arise from conventional immunolocalization studies,
some of which have been extended using 

 

in vitro

 

 models
of implantation to examine function. We here review
molecular families that have been identified in endometrial
epithelium and evidence pertaining to their function.

 

Cadherins

 

E-cadherin and calcium

 

Members of the cadherin superfamily are transmembrane
glycoproteins that share sequence repeats of about 110
amino acids in the ectodomain. They mediate cell–cell
interaction by calcium-dependent homotypic or hetero-
typic binding (Stemmler, 2008). Several subgroups have
been defined: the classical (type I) and closely related type
II cadherins, desmosomal cadherins, and protocadherins.
The transmembrane domain links the extracellular repeats
to a shorter cytoplasmic domain, which interacts non-
covalently with p120 catenin and 

 

β

 

-catenin. 

 

β

 

-Catenin in
turn binds 

 

α

 

-catenin, which can link the complex to the
actin cytoskeleton both directly through interaction with
actin filaments and indirectly through the actin-binding
proteins vinculin, zonula occludens-1 (ZO-1), 

 

α

 

-actinin
and afadin (Kaplan et al. 2001; Hartsock & Nelson, 2008;
Stemmler, 2008).

Deletion of catenin binding sites results in the loss of
cellular re-organization and adhesive function, showing
that catenins mediate activity of the cadherins (Rosales et al.
1995). Loss of cadherin–catenin complex formation due to
the expression of truncated 

 

β

 

-catenin correlates with the
loss of lateral adhesion in epithelial cells (Oyama et al. 1994).
Expression of full length 

 

β

 

-catenin restores both complex
formation and cell adhesion (Kawanishi et al. 1995).

The E-cadherin-null mouse shows defective pre-
implantation embryo development and failure to implant
(Larue et al. 1994; Riethmacher et al. 1995). 

 

β

 

-Catenin is
expressed by the mouse blastocyst at cell–cell borders. In
endometrium, E-cadherin is located at the lateral epithe-
lial plasma membrane and is likely to be critical for the
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establishment and maintenance of adherens junctions
(Gumbiner, 1996; Huber et al. 1996; Poncelet et al. 2002).
Other cadherins present include type 1 N-cadherin and
P-cadherin, and the type 2 cadherin-6 (K-cadherin) (van der
Linden et al. 1995; Getsios et al. 1998; MacCalman et al.
1998; Dai et al. 2002; Tsuchiya et al. 2006).

 

In vitro

 

 experiments using Ishikawa (well-differentiated
endometrial carcinoma) cells have demonstrated that a
transient rise in intracellular calcium, triggered by calci-
tonin, down-regulates E-cadherin at cellular contact sites
and activates tissue transglutaminase (Li et al. 2002,
2006). Calcitonin promotes trophoblastic displacement of
endometrial epithelial cells through calcium mobilization
(Li et al. 2008). In rodents, it has been demonstrated that
progesterone regulates calcitonin expression (Zhu et al.
1998b) and a reduction in implantation rate is observed if
maternal calcitonin is blocked (Zhu et al. 1998a). Rising
progesterone levels during the secretory phase in human
probably induce endometrial calcitonin expression (Ding
et al. 1994; Kumar et al. 1998; Zhu et al. 1998a). Calcitonin
also acts to enhance trophectodermal surface expression
of integrin 

 

α

 

5

 

β

 

1 in mouse blastocysts (Wang et al. 1998).
Members of the calbindin family of proteins are specifi-

cally up-regulated at the site of embryo attachment and
dual ablation of two calbindins, CaBP-d9k and CaBP-d28k,
in mouse prevents implantation (Nie et al. 2000; Luu et al.
2004). Thus regulators of calcium homeostasis clearly play
an important role in the process of implantation.

As E-cadherin is found on luminal epithelium and also
on trophectoderm, it has been suggested that it may be
involved in the initial attachment of the embryo (Coutifaris
et al. 1991). It is possible that E-cadherin (or other cadherins)
possess a dual function. In the initial stages, expression at
the cell surface may be required for epithelial continuity.
However, cadherin-mediated adhesion may be subsequently
down-regulated at the implantation site to enable blasto-
cyst invasion.

ββββ

 

-Catenin interactions

 

In addition to its role in maintaining the integrity of
cadherin-bearing cell–cell junctions, 

 

β

 

-catenin is important
in the transduction of cytosolic signals to the nucleus in a
variety of cellular contexts. Signalling through the canon-
ical Wnt pathway leads to the activation, accumulation
and nuclear translocation of 

 

β

 

-catenin (Widelitz, 2005). In
mice, Wnt ligand secreted by the blastocyst activates the
Wnt/B-catenin signalling pathway in the luminal epithe-
lium of the uterus, inhibition of which severely reduces the
rate of embryo implantation (Mohamed et al. 2005). 

 

β

 

-
Catenin expression has been observed in both prolifera-
tive and secretory phase human endometrium (Fujimoto
et al. 1996; Shih et al. 2004) and mRNA data support the
possibility that Wnt/

 

β

 

-catenin signalling may play a role
during the receptive phase (Tulac et al. 2003).

The mucin MUC1 is highly expressed in secretory phase
endometrium (Hey et al. 1994, 1995, 2003); its cytoplasmic
domain interacts with 

 

β

 

-catenin at a serine-rich motif
(Yamamoto et al. 1997; Li et al. 1998) and the presence of
associated adaptor proteins suggests a role in signal trans-
duction (Wen et al. 2003). 

 

β

 

-Catenin has also been found
to be associated with EGFR at the cell surface and EGFR has
been shown to phosphorylate MUC1 (Li et al. 2001). The
MUC1 cytoplasmic domain has been localized to the
nucleus in association with 

 

β

 

-catenin. At sites of attach-
ment of embryos to primary epithelial cells 

 

in vitro

 

, MUC1
is observed to be cleared from cells beneath and adjacent
to the embryo (Singh et al. unpublished observations;
Meseguer et al. 2001), perhaps as a result of the proteolytic
action of ADAM17 or MMP14 (Thathiah & Carson, 2004).
These results raise the possibility that MUC1 cytoplasmic
tail in association with 

 

β

 

-catenin may be translocated to the
nucleus, disrupting cadherin mediated cell–cell adhesion
(Wen et al. 2003) and allowing the embryo to invade the
epithelium.

Another mucin component of the luminal epithelial
surface is MUC16, which inhibits cell–cell adhesion. Removal
of this mucin during formation of uterodomes (bulbous
projections from the apical surface of the epithelium that
are often found during the implantation period) facilitates
trophoblast adhesion 

 

in vitro

 

 (Gipson et al. 2008).

 

Desmosomes and tight junctions

 

Desmosomes are mechanical contacts associated with
lateral epithelial borders (Dockery et al. 1988; Preston
et al. 2004). The desmosomal plaque protein desmoplakin
decreases in the luminal uterine epithelium during the
preimplantation period of pregnancy in mice (Illingworth
et al. 2000). The incidence of desmosomes (and also gap
junctions) in lateral membranes is decreased at the time of
implantation (Dockery & Burke, 2008), probably facilitat-
ing opening up of spaces and penetration of the luminal
epithelium by trophoblast cells at implantation. There is
sharing of apical junctional complexes and desmosomes
between trophectoderm and luminal epithelial cells in

 

in vitro

 

 attachment sites (Bentin-Ley et al. 2000; Lopata
et al. 2002).

Desmosomal plasma membrane proteins (desmocollins
and desmogleins) are members of the cadherin super-
family but have cytoplasmic regions that differ from the
classical cadherins, allowing the recruitment of plakoglobin
(

 

γ

 

-catenin), desmoplakin, and plakophilin (but not 

 

β

 

-
catenin), which form links to the intermediate filament
cytoskeleton. There are three subtypes of desmocollins
and desmogleins, which are expressed in a tissue- and
differentiation-specific manner. Desmosomal cadherins form
heterotypic interactions, in contrast to the homotypic
interactions of classical cadherins. Desmosomal cadherins
can initiate and maintain cell–cell adhesion in the absence
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of classical cadherins. Desmoglein-2 null mice and a pro-
portion of heterozygotes fail at implantation because of
inner cell mass defects (Eshkind et al. 2002). Desmoglein 1
and 2 are observed in rat uterine epithelium (Preston et al.
2004). Further analysis is required of the tissue phenotype
in human endometrium.

Tight junctions are evident in endometrial luminal
epithelial cells in the apical junctional complex, and their
depth and complexity are higher at days 14–16 than at
days 24–25 (Murphy et al. 1992; Dockery & Burke, 2008).
In rats there is a transformation of the apical plasma
membrane at the time of implantation with increased depth
of tight junctions, flattening of microvilli and associated
changes in the apical cytoskeleton (Lindsay & Murphy,
2008). The fencekeeping function of tight junctions in
endometrium is deserving of further examination – many
adhesion molecules that could be involved in interactions
with trophectoderm at implantation are located prin-
cipally, though not exclusively, in the lateral membrane
domain (Aplin, 2006) such that regulated diffusion to the
apical domain may be of potential functional importance.
Previous authors have suggested some loss or alteration
of epithelial polarity may occur in the receptive phase
(Denker, 1993, 1994; Lindsay & Murphy, 2008).

 

Immunoglobulin superfamily members

 

Members of the immunoglobulin superfamily (IgSF) are
involved in the control of cell behaviour by acting as
cell–cell adhesion receptors or signal transducing recep-
tors or both (Aricescu & Jones, 2007). IgSF members can
be involved in homophilic binding or act as ligands for
integrins to mediate heterophilic cell–cell adhesion.

 

ICAM-1

 

Intercellular adhesion molecule-1 (ICAM-1 or CD54) is a
ligand for 

 

β

 

2

 

 integrins. ICAM-1 adhesive interactions medi-
ate transendothelial migration of leukocytes and various
other immunological functions (van de Stolpe & van der
Saag, 1996). ICAM-1 is immunolocalized to the apical
surface of endometrial epithelial cells throughout the
menstrual cycle (Thomson et al. 1999).

A soluble circulating form of ICAM-1 (sICAM-1) is released
from the cell surface by proteolysis of transmembrane
ICAM-1. In addition, sICAM-1 interferes with immunological
functions by which refluxed endometrial cells escape
immune surveillance and its shedding may be related to
the pathogenesis of endometriosis (Defrere et al. 2005).

 

C-CAM and N-CAM

 

Other IgSF family members present on the surface of tro-
phectoderm at the time of implantation are homophilic
cell–cell adhesion molecule 105 (C-CAM) (Svalander et al.

1987) and neural cell adhesion molecule (N-CAM) (Kimber
et al. 1994). C-CAM protein expression is also detected in
the luminal epithelium under the influence of estrogen,
whereas expression is down-regulated in the progesterone-
primed uterus (Svalander et al. 1990).

 

CD146

 

CD146 (Mel-CAM; MUC18) is expressed in invasive cytotro-
phoblasts in the first trimester of pregnancy but not in
non-invasive trophoblast (Shih et al. 1998b; Liu et al.
2004). A functional role in trophoblast invasion 

 

in vitro

 

 has
been demonstrated (Shih et al. 1998a). In mice, CD146 is
specifically expressed in receptive maternal uteri and
invasive embryonic trophoblasts, but is completely absent
in non-pregnant uteri. Blocking CD146 function by anti-
body 

 

in vivo

 

 and 

 

in vitro

 

 potently inhibited blastocyst
attachment and subsequent trophoblastic invasion, leading
to pregnancy failure (Liu et al. 2008a).

 

Basigin

 

Basigin (BSG) is also known as EMMPRIN or CD147. It is a
highly glycosylated transmembrane protein with multiple
binding partners at the cell surface. It may be activated by
homotypic interaction between adjacent cells, but is also
known as an activator of matrix metalloproteinase (MMP)-
mediated proteolysis. It is involved in multiple molecular
associations at the cell surface including complexing with
caveolin, monocarboxylate transporters and 

 

β

 

1 integrins
(Iacono et al. 2007).

In both mice and rats, basigin is expressed in luminal
epithelium on day 1 of pregnancy under the influence of
estrogen, is down-regulated but then reappears locally in
response to an embryonic stimulus on day 4 (Xiao et al.
2002a,b). It has been reported that basigin expression is
regionally elevated at the site of embryo apposition in the
uterine endometrium, and mutant mice lacking the basi-
gin gene show severely compromised implantation rates
(Igakura et al. 1998).

In human endometrium it is weakly expressed on lumi-
nal (lateral) epithelial surfaces with strong expression on
both glandular and stromal cells (www.proteinatlas. org/).
Moderate apical distribution is also observed in Ishikawa
cells by immunofluorescence and cell surface proteomic
analysis. Menstrual cycle-dependent molecular variants
have been observed in human endometrium (Noguchi
et al. 2003).

 

ALCAM (CD166)

 

ALCAM (CD166), an activated leukocyte-cell adhesion
molecule, is a transmembrane glycoprotein belonging to
the immunoglobulin superfamily and a ligand for CD6 that
is expressed on T-lymphocytes. ALCAM–ALCAM homotypic

http://www.proteinatlas. org/
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adhesion has been shown to play an important role in
regulation of stem cell differentiation (van Kempen et al.
2001). ALCAM is expressed on endometrial luminal and
glandular epithelial cell surfaces and also the blastocyst
cell surface (Fujiwara et al. 2003). It activates MMP-
mediated proteolysis (Lunter et al. 2005). Expression is
significantly decreased in endometriosis compared to
normal endometrium (Zhang et al. 2006). ALCAM–ALCAM
interaction in endothelial cells is involved in tube forma-
tion in angiogenesis (Ohneda et al. 2001). Null mice are
overtly normal and fertile.

 

Trophinin

 

Trophinin is an apical transmembrane glycoprotein identi-
fied based on its involvement in the adhesion of human
trophoblastic and endometrial cell lines (Fukuda et al.
1995; Fukuda & Sugihara, 2008). The trophinin cytoplasmic
domain forms complexes with the proteins bystin and
tastin. Trophinin appears to mediate calcium-dependent
homophilic cell adhesion and acts as a molecular switch for
trophoblast activation; its ligation leads to ErbB4 phos-
phorylation in the presence of HB-EGF, a signalling event
that is suggested to promote proliferation and motility
in trophoblast. Although trophinin is absent from cycling
endometrium, the combination of chorionic gonadotrophin
(produced by the implanting embryo), and interleukin (IL)-
1

 

β

 

 delivers a juxtacrine signal leading to local up-regulation
of trophinin in luminal epithelium (Sugihara et al. 2008).
In mice, trophinin is expressed by both the blastocyst and
uterus between 3.5 and 5.5 days 

 

post coitum

 

; however,
it is not absolutely required during early implantation
(Fukuda & Sugihara, 2008). At macaque and rhesus mon-
key implantation sites, trophinin expression is observed at
the apposed apical surfaces of both luminal epithelium
and trophoblast.

 

CD164

 

CD164 (endolyn, MUC24) is a highly O-glycosylated type I
transmembrane protein containing two extracellular mucin
domains (I and II) interrupted by a cysteine-rich non-mucin
domain (Chan et al. 2001) and a short cytoplasmic tail of
13 amino acids (Ihrke et al. 2000). Alternative splicing leads
to production of molecular variants including a soluble
form. CD164 regulates the proliferation, adhesion, and
migration of human haematopoietic stem cells (Zhou
et al. 2006). Blocking CD164 on prostate cancer cell lines
reduced their adherence to bone marrow endothelial cells
and invasion of extracellular matrices (ECMs) (Havens et al.
2006).

Immunolocalization studies on endometrial epithelial
cells and endometrial biopsies indicate that CD164 is
expressed on the apical surface of luminal epithelial cells
along with glandular and stromal cells, suggesting that it

could play a role during embryo attachment. However,
indirect immunofluorescence of embryo attachment site

 

in vitro

 

 with anti-CD164 showed no perceptible disturbance
in distribution (Singh et al. unpublished observations).

 

Integrins and their binding partners

 

Integrins are a family of transmembrane glycoproteins,
formed by non-covalent association of 

 

α

 

 and 

 

β

 

 subunits.
Each subunit comprises an extracellular domain, a trans-
membrane region and an intracellular domain. They act as
receptors for ECM components, secreted glycoproteins,
complement and other cells. The assembly of integrins
into focal adhesion sites in response to ligand binding
leads to the recruitment of a network of cytoskeletal
proteins and intracellular signalling complexes (Arnaout
et al. 2007). The role of integrins in implantation has been
widely reviewed (Aplin, 1997, 2006; Lessey, 1998, 2000,
2002; Lessey et al. 2000; Aplin & Kimber, 2004; Kimber,
2008) so key points are here summarized briefly.

ββββ

 

1

 

 Integrins

 

Integrins 

 

α

 

2

 

β

 

1

 

 and 

 

α

 

3

 

β

 

1

 

 are constitutively expressed during
the menstrual cycle, and, as receptors for collagen and
other components of interstitial ECM, may be used in
re-epithelialization after menstruation. Integrins 

 

α

 

1

 

β

 

1

 

and 

 

α

 

4

 

β

 

1

 

 are expressed on days 20–24 of the cycle. Subunit
localization data suggests that integrins are present, albeit
in varying amounts, at apical, basal and lateral epithelial
surfaces. However, 

 

β

 

1

 

 often shows a pronounced lateral
distribution (Quenby et al. 2007).

Mouse blastocysts lacking the integrin 

 

β

 

1

 

 subunit fail to
implant, apparently because of an inability to adhere to or
invade the subepithelial stroma (Brakebusch et al. 1997).
Antibody inhibition experiments suggest a role for integrin

 

α

 

4

 

β

 

1

 

 in mouse implantation (Basak et al. 2002).

αααα

 

v

 

 Integrins

 

α

 

v

 

 Integrins bind ECM or secreted proteins containing
an arginine-glycine-aspartic acid (RGD) peptide motif.
Mid-secretory phase increase in endometrial epithelial

 

α

 

v

 

β

 

3

 

 results from an increase in 

 

β

 

3

 

 abundance after day 19
(Lessey, 2002). This is an indirect effect of steroids medi-
ated by the transcription factor HoxA10 (Daftary et al.
2002). Aberrant 

 

α

 

v

 

β

 

3

 

 integrin has been associated with
unexplained infertility and other endometrial pathologies
(Lessey et al. 1992, 1994, 1995, 1996; Apparao et al. 2002;
Tei et al. 2003). Up-regulation of 

 

β

 

3

 

 subunit by the blasto-
cyst has been demonstrated in cocultured human endome-
trial epithelial cells, an effect possibly mediated by the
embryonic IL-1 system (Simon et al. 1997). Integrins 

 

α

 

v

 

β

 

5

 

and 

 

α

 

v

 

β

 

6

 

 are also present in endometrium (Aplin et al. 1996).
Integrins of this family are expressed by trophectoderm at
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the time of implantation (Campbell et al. 1995b; Bloor
et al. 2002). Blocking 

 

α

 

v

 

β

 

3

 

 interactions in mouse or rabbit
models impairs implantation (Illera et al. 2000; Illera et al.
2003). However, mice null for 

 

α

 

v

 

 are fertile.

 

Osteopontin and other integrin ligands

 

It may be that integrins present on both the trophoblast
and uterine epithelial surface bind to a bifunctional extra-
cellular bridging ligand to mediate embryonic adhesion.
Osteopontin (OPN; also known as SPP1) is a secreted gly-
coprotein that contains an RGD motif and is capable of
multimerization (Johnson et al. 2003). It is regulated by
progesterone and reaches a maximum in the secretory
phase of the cycle (Apparao et al. 2001; Quenby et al.
2007) when it immunolocalizes predominantly to apical
LE and GE cells. In pregnant ewes osteopontin mRNA
in glands is progesterone-dependent and the resultant
protein is secreted between day 11 and 17, a period that
corresponds to the adherence and attachment phase of
early implantation in this species (Johnson et al. 2000;
Spencer et al. 2004). Indeed, OPN localizes precisely to the
interface between trophectoderm and luminal epithelium
(Johnson et al. 1999). mRNA encoding osteopontin is also
up-regulated by progesterone in human trophoblasts
(Omigbodun et al. 1997). OPN has multiple binding part-
ners including integrins 

 

α

 

4

 

β

 

1

 

, 

 

α

 

v

 

β

 

3

 

, 

 

α

 

v

 

β

 

5

 

, 

 

α

 

v

 

β

 

6

 

 and specific
variants of CD44 (v3, v6). The increase in its expression
matches increased expression of integrin 

 

α

 

v

 

β

 

3

 

 in luminal
epithelium during the mid-secretory phase in humans.
Thus, complexes of OPN with receptors including 

 

α

 

v

 

β

 

3

 

and CD44 (see below) may occur at the apical surface of
luminal epithelium to promote embryo attachment. OPN
is also expressed in mouse endometrium (White et al.
2006). However, OPN-null mice are fertile.

Other integrin ligands are also present. Fibronectin has
been described in association with the zona pellucida of
human embryos (Turpeenniemi-Hujanen et al. 1995). The
heparan sulphate proteoglycan (HSPG) perlecan is present
on the outer surface of the mouse blastocyst (Carson et al.
1993) and its core protein can act as a ligand for 

 

α

 

v

 

β

 

3

 

integrin. Thrombospondin is a ligand for 

 

α

 

v

 

β

 

3 

 

and is
expressed by trophectoderm as well as by glandular epi-
thelium and decidua (O’Shea et al. 1990).

 

Integrin αααα

 

6ββββ

 

4

 

Integrin 

 

α

 

6

 

β

 

4

 

 is basally expressed in endometrial epithe-
lium (Murray et al. 1999). It acts as a receptor for laminins,
mediating cell adhesion to the basement membrane and
regulating cell polarity. It can also be involved in migration
over basement membranes. Integrin 

 

α

 

6

 

β

 

4

 

 occupancy can
amplify intracellular signalling from erbB2 and confer
resistance to apoptotic stimuli (Guo et al. 2006; Friedland
et al. 2007).

 

CD9

 

A member of the transmembrane-4 superfamily, CD9 is a
receptor for pregnancy-specific glycoproteins (PSG) pro-
duced by trophoblast (Park et al. 2000; Wynne et al. 2006)
and associates with integrins 

 

α

 

6

 

, 

 

α

 

3

 

 and 

 

β

 

1 in endometrial
epithelial cells (Hirano et al. 1999; Park et al. 2000). It is
predominantly distributed in lateral membranes of luminal
epithelial cells as well as being expressed in blastocysts.
Functional analysis using blocking antibodies to CD9 in an
in vitro mouse embryo attachment model demonstrated
no effect on attachment rate, but stimulated trophoblast
outgrowth. In mice, an increase in implantation sites was
observed after antibodies to CD9 were injected on day 4
of pregnancy (Liu et al. 2006). Antibody to CD9 increases
migration of BeWo choriocarcinoma cells, perhaps sug-
gesting that the integrin association is function-inhibiting
(Hirano et al. 1999). Embryos without CD9 implant
normally in CD9-null mothers (Wynne et al. 2006) in agree-
ment with the hypothesis that CD9 is an inhibitor or regu-
lator of implantation.

Carbohydrate-binding receptors and 
implantation

A rich diversity of sugar structures in the secretory phase
glycocalyx and in secretory material has been demonstrated
using lectin- and immuno-histochemistry (Aplin, 1991; Hey
et al. 1994; Jones et al. 1998). Some structures are hormon-
ally regulated in a species-specific fashion (Jones et al. 1998).
A cell surface glycan code has been postulated to play a
role in regulating trophectoderm-epithelial attachment
(Jones & Aplin, 2008), which in species with epitheliochorial
placentation is much longer-lived than is the case in human
(Jones & Aplin, 2004). Carbohydrate-binding proteins at
the epithelial-trophoblast interface could provide one
way of mediating such an interaction.

CD44

CD44 is a single-pass transmembrane glycoprotein and
shows a complex pattern of alternative splicing with
several isoforms observed in endometrium (Behzad et al.
1994; Horne et al. 2002). It is associated with cell migration
and has numerous binding partners including hyaluronate
and osteopontin (Behzad et al. 1994; Poncelet et al. 2002;
Cichy & Pure, 2003).

In endometrium, CD44 shows a predominantly lateral
distribution in both glandular and luminal epithelium
(Behzad et al. 1994). Its expression on lateral membrane is
increased in the secretory phase (Albers et al. 1995) with
maximum levels during mid-secretory phase (Afify et al.
2006). In addition to the variability caused by differential
splicing of CD44, glycosylation introduces a degree of
structural polymorphism (Brown et al. 1991). The epithelial-
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specific sequences have the characteristics of mucin-
like domains, being rich in serine, threonine and other
hydrophilic amino acids, offering a high potential for
glycosylation. Specific extracellular domain splice variants
are associated with metastatic spread of carcinoma cells,
suggesting a role in epithelial cell adhesion or migration.
Thus it is possible that CD44 plays a role in the integrity of
the epithelial sheet (Cichy & Pure, 2003). CD44 is also
expressed in pre-implantation human embryos (Campbell
et al. 1995a). CD44-null mice are fertile.

Galectins

Galectins are a family of calcium-independent β-galactoside-
binding proteins that belong to the lectin superfamily.
Several functions have been described for galectins: immuno-
modulation, cell adhesion and chemotaxis (regulation of
endometrial leukocytes), cell surface receptor residency
and scaling of growth factor responses, and defence against
invading microorganisms. Galectins do not possess a signal
peptide or transmembrane spanning domain, and are
secreted from cells by a nonclassical pathway. They prob-
ably act by cross-linking carbohydrate chains on the cell
surface and/or the ECM (Lau et al. 2007; Rabinovich et al.
2007).

Cycle-dependent expression of galectin-1 (LGALS1) is
observed in human endometrial stromal cells and of
galectin-3 (LGALS3) in epithelial cells (von Wolff et al.
2005; Aplin & Singh, 2008). Galectin-1 is thought to have
both adhesive and anti-adhesive roles and is an immuno-
modulator with functions in maternofetal tolerance (Blois
et al. 2007). Expression of transcripts in the trophectoderm
of late blastocysts indicates that it may play a role in embryo
implantation. However, galectin-1-null mouse embryos
develop normally and do not produce any overt pheno-
typic abnormalities (Poirier & Robertson, 1993).

Galectin-3 (LGALS3) is a galactose-specific lectin, expres-
sion of which increases significantly during the secretory
phase of the menstrual cycle (von Wolff et al. 2005). It can
modulate cell adhesion by binding to ligands including
laminin, fibronectin and integrins after its secretion
from epithelial cells. Mice lacking both galectins-1 and -3
implant normally but a further family member, galectin-5,
is also present and may compensate (Colnot et al. 1998).

Galectins bind to both H-type I and type II sugar chains
(Leffler & Barondes, 1986) and lacto-N-fuco-pentaose I
(LNF-1), which is a potential ligand for both galectins-1
and -3 for which there is evidence for a role in mouse
implantation (Lindenberg et al. 1988). MUC1 bears the
Thomsen–Friedenreich disaccharide, binding of which to
galectin-3 causes redistribution of MUC1 on the cell surface
and promotion of cancer cell adhesion to endothelium by
revealing epithelial adhesion molecules such as E-selectin
and CD44H that are otherwise concealed by MUC1 (Yu
et al. 2007).

Galectin-9, which has two non-identical carbohydrate-
recognition domains (Popovici et al. 2005), has been iden-
tified in mid- and late-secretory and decidual phases in
human endometrium, with expression in glandular and
luminal epithelial but not stromal or immune cells (Smalley
& Ley, 2005). Expression of galectin-9 on uterodomes
suggests that galectin-9 may play a role during the initial
events of human embryo implantation (Shimizu et al.
2008). Galectin 15 (OVGAL 11) is induced by progesterone
and secreted from the endometrial luminal epithelium in
sheep, where it has a prospective role in trophectoderm
attachment (Farmer et al. 2008).

Selectins

Selectins are calcium-dependent cell adhesion molecules
that contain a large, highly glycosylated extracellular
domain, a single transmembrane domain and a small
intracellular cytoplasmic tail (Barthel et al. 2007). Selectins
bind heterotypically to fucosylated and sialylated glyco-
proteins such as sialyl lewisx (sLex) and sialyl lewisa (sLea).
There is evidence for L-selectin expression on the blasto-
cyst (Genbacev et al. 2003) and the physiological import-
ance of an interaction with oligosaccharide ligand on the
maternal surface has been suggested. L-selectin ligands
(including sialyl lewisx associated with MUC1) are immuno-
localized to the luminal and glandular epithelium, with
increased expression during the window of implantation
(Hey & Aplin, 1996; Red-Horse et al. 2004; Lai et al. 2005).
Elevated L-selectin ligand has been associated with
improved implantation (Wang et al. 2008). Suppression of
the fucosyltransferase FUT7, which catalyzes the synthesis
of sLeX, both reduces sLeX and decreases implantation in
an in vitro model (Liu et al. 2008b). Conversely, implanta-
tion can be increased by FUT7 overexpression (Zhang et al.
2008). However, in homozygotic mutant mice null for each
of the three selectins, and in mice lacking two or all three
selectins, embryonic development, implantation and
pregnancy appear normal (Bullard et al. 1996; Robinson
et al. 1999; Collins et al. 2001).

Identification of molecular mediators of 
implantation

Advances in knowledge of the key attributes that confer
receptive status to endometrium suggest a cascade of adhe-
sive interactions beginning with carbohydrate-mediated
binding to the glycocalyx and progressing to tighter binding
involving OPN, members of the IgSF, integrin and cadherin
families, trophinin and CD44, each of which involves a set
of accessory molecules both within the plasma membrane
(basigin, CD9; growth factor receptors including Wnt, EGFR
and Erb4) and in association with molecules at its cytoplasmic
face (tastin, bystin, catenins). Activation of proteases
including MMPs and ADAMs may well be important in
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these molecular assemblies. Components of the lateral
epithelial membrane including desmosomes detach and
reassemble as trophectoderm extends between maternal
epithelial cells.

Uterine epithelial cells in the receptive state possess
cytoplasmic/membrane architecture of a modified type
with reduced apico-basal polarity and an apical cell pole
that is equipped with appropriate sets of adhesion mole-
cules. Perturbations in epithelial polarization that occur at
implantation may allow molecules which are otherwise
involved in epithelial cohesion to play a transient role in
embryonic attachment.

Thus an increasing body of data suggests that tropho-
blast binding initiates a cascade of signalling events in
epithelial cells to mediate progression to interstitial
implantation. Definitive functional information regarding
the adhesion molecules that determine uterine receptivity
to implantation has immediate translational application
to the improvement of pregnancy rates in IVF and the
possibility of a contraceptive method that targets the endo-
metrium. Novel in vivo approaches, including modifying
embryo culture, improved embryo selection, and intra-
uterine release of adhesion-promoting factors, are possible
approaches to increase implantation rates and diminish
embryo wastage.
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