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Summary
Objective—The objective of Part II is to analyze the dataset of extracted hemodynamic features
(Case 3 of Part I) through computational intelligence (CI) techniques for identification of potential
prognostic factors for periventricular leukomalacia (PVL) occurrence in neonates with congenital
heart disease.

Methods—The extracted features (Case 3 dataset of Part I) were used as inputs to CI based
classifiers, namely, multi-layer perceptron (MLP) and probabilistic neural network (PNN) in
combination with genetic algorithms (GA) for selection of the most suitable features predicting the
occurrence of PVL. The selected features were next used as inputs to a decision tree (DT) algorithm
for generating easily interpretable rules of PVL prediction.

Results—Prediction performance for two CI based classifiers, MLP and PNN coupled with GA are
presented for different number of selected features. The best prediction performances were achieved
with 6 and 7 selected features. The prediction success was 100% in training and the best ranges of
sensitivity (SN), specificity (SP) and accuracy (AC) in test were 60-73%, 74-84% and 71-74%,
respectively. The identified features when used with the DTalgorithm gave best SN, SP and AC in
the ranges of 87-90% in training and 80-87%, 74-79% and 79-82% in test. Among the variables
selected in CI, systolic and diastolic blood pressures, and pCO2 figured prominently similar to Part
I. Decision tree based rules for prediction of PVL occurrence were obtained using the CI selected
features.

Conclusions—The proposed approach combines the generalization capability of CI based feature
selection approach and generation of easily interpretable classification rules of the decision tree. The
combination of CI techniques with DT gave substantially better test prediction performance than
using CI and DT separately.
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1. Introduction
In Part I, a companion paper [28], the postoperative hemodynamic and blood gas data of
neonates after heart surgery at Children’s Hospital of Philadelphia (CHOP) were used to
identify the prognostic factors for the development of PVL through logistic regression (LR)
and decision tree (DT) algorithms. Among three cases of datasets - original (without any
preprocessing), partial (with only three values from each) and extracted (additional statistical
features representing central tendency and distribution over the observation period for each
monitoring variable) - Case 3 dataset with extracted statistical features was found better than
others for predicting the occurrence of PVL.

Recently, there has been a growing interest in applying data mining and CI techniques in the
biomedical domain [1-7]. The techniques include data mining algorithms like DT [8-10], CI
based approaches like artificial neural networks (ANNs), fuzzy logic (FL), support vector
machine (SVM), genetic algorithms (GA) and genetic programming (GP) [11-20]. Ref. [5]
presents a recent review on some of these techniques in clinical prediction. The statistical basis
of LR makes it one of the most popular prediction techniques in medical domain. However,
the main limitations of LR include the assumption of linear relationship between the
independent variables and the logarithm of odds ratio of the dependent variable, and the
mandatory dichotomous nature of the dependent variable, which at times restrict the
applicability of LR. There are also studies comparing LR and DT for medical domains [9,
10]. The main advantages of decision tree (DT) based approach are the ability to handle both
continuous and categorical variables, and the generation of classification rules that are easy to
interpret. In addition, DT algorithms, being based on the principle of maximizing information-
gain, are expected to produce robust models than LR in case of ‘noisy’ or missing data. These
features enhance the potential applications of DT in clinical setting [5]. However, the main
disadvantage of DT is the poor performance with unknown test data although the training
success can be reasonably good. On the other hand, most of the CI techniques have good
generalization performance (with reasonably acceptable test success) because of their inherent
capability of accommodating complex nonlinear relationships among the independent and the
dependent variables. But most CI techniques suffer from the lack of interpretation of the results
leading these to be termed as ‘blackbox’ techniques. Another aspect of the commonly used CI
techniques is the manual selection of the classifier parameters and the relevant features
characterizing the patient/disease condition. In some recent work, the automatic selection of
the classifier parameters and the characteristic features has been proposed for diagnosis,
monitoring and prognostics of machines and patients, and modeling surface roughness in
machining [21-28].

In the present work, the CI based approach of [21-28] is combined with DT to predict the
occurrence of PVL. The dataset of extracted statistical features (Case 3 of Part I) was used as
inputs to CI based classifiers like multi layer perceptron (MLP) and probabilistic neural
network (PNN) in combination with genetic algorithms (GA) for selection of classifier
parameters and most suitable features predicting the occurrence of PVL. The selected features
were then used as inputs to decision tree induction algorithm for generating rules of
classification. The present approach combines the advantages of higher generalization
capability of the CI based classifiers and better interpretability of the DT based rules. The
present paper is a first attempt to combine CI and DT techniques for identification of potential
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risk factors in the prediction of PVL occurrence with easily interpretable decision rules. The
schematic of the overall procedure is shown in Fig. 1.

The paper is organized as follows. In Section 2, the CI based methods of MLP and PNN
combined with GA are discussed briefly in the context of the present work. Section 3 deals
with the selection of features using CI and the correlations among the selected features. The
classification results of CI with and without DT are discussed next. The performances of CI
and LR in terms of feature selection and PVL prediction are also compared. The conclusions
are summarized in Section 4.

2. Computational intelligence (CI) techniques
CI techniques include a number of machine learning, artificial intelligence (AI) and
evolutionary algorithms. In this section, two popular categories of ANN along with GA are
briefly discussed in the context of the present work.

2.1. ANN
Artificial neural networks (ANNs) have been developed in the form of parallel-distributed
network models based on the biological learning process of the human brain. There are
numerous applications of ANNs in data analysis, pattern recognition and control [29]. Among
different ANNs, two popular types, namely, multi-layer perceptron (MLP) and probabilistic
neural networks (PNN) were used for the present work. Brief introductions to MLP and PNN
are given here for completeness; readers are referred to texts [29,30] for details.

2.1.1. MLP—MLPs consist of an input layer of source nodes, one or more hidden layers of
computation nodes or ‘neurons’ and an output layer. The number of nodes in the input and the
output layers depend on the number of input and output variables, respectively. The number
of hidden layers and the number of nodes in each hidden layer affect the generalization
capability of the network. For a smaller number of hidden layers and neurons, the performance
may not be adequate, while with too many hidden nodes, the network may have the risk of
over-fitting the training dataset resulting in poor generalization on the new dataset. There are
various methods, both heuristic and systematic, to select the number of hidden layers and the
nodes [29]. A typical MLP architecture consists of three layers with N, M and Q nodes for
input, hidden and output layers, respectively. The input vector x = (x1, x2, ..., xN)T is transformed
to an intermediate vector of ‘hidden’ variables u using the activation function ϕ1. The output
uj of the jth node in the hidden layer is obtained as follows:

(1)

where  and  represent respectively the bias and the weight of the connection between the
jth node in the hidden layer and the ith input node. The superscript 1 represents the connection
(first) between the input and the hidden layers. The output vector y = (y1, y2, ..., yQ)T of the
network is obtained from the vector of intermediate variables u through a similar
transformation using activation function ϕ2 at the output layer. For example, the output of the
neuron k can be expressed as follows:

(2)
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where the superscript 2 denotes the connection (second) between the neurons of the hidden
and the output layers. There are several forms of activation functions ϕ1 and ϕ2, such as logistic
function and hyperbolic tangent function given by Eqs. (3) and (4), respectively:

(3)

(4)

The training of an MLP network involves finding values of the connection weights and bias
terms which minimize an error function between the actual network output and the
corresponding target values in the training dataset. One of the widely used error functions is
mean square error (MSE) and the most commonly used training algorithms are based on back-
propagation [29].

The feed forward MLP neural network, used in this work, consisted of three layers: input,
hidden and output. The input layer had nodes representing the normalized features extracted
from the monitored variables of the patients’ biomedical data. The number of input nodes was
chosen in the range of 4-7 based on the authors’ related work on the dataset [28]. One output
node was used with target values of 1 (0) representing the presence (absence) of PVL. The
number of hidden nodes was varied between 10 and 30. In the MLPs, the activation functions
of tansigmoid and logistic (log-sigmoid), were used in the hidden and the output layers,
respectively. The range of hidden layer nodes and the activation functions were selected on
the basis of training trials. The MLP was created, trained and implemented using Matlab neural
network toolbox with back-propagation and the training algorithm of Levenberg-Marquardt.
The MLP was trained iteratively to minimize the performance function of mean square error
(MSE) between the network outputs and the corresponding target values. At each iteration, the
gradient of the performance function (MSE) was used to adjust the network weights and biases.
In this work, a mean square error of 10-3, a minimum gradient of 10-6 and maximum iteration
number (epoch) of 100 were used. The training process is designed to stop if any of these
conditions were met. The initial weights and biases of the network were generated
automatically by the program.

2.1.2. PNN—A PNN consists of many interconnected processing units or neurons arranged
in three successive layers after the input layer. The vector x from the input layer is processed
in each neuron of the pattern layer to compute its output using a Gaussian spheroid activation
function which gives a measure of distance of the input vector from the centroid of the data
cluster for each class. The contributions for each class of inputs are summed up to produce a
vector of probabilities which allows only one neuron out of the m classes (in the summation
layer) to fire with all others in the layer returning zero. The major drawback of using PNNs is
the computational cost for the potentially large size of the hidden layer which may be equal to
the size of the input vector. The PNN can be Bayesian classifier, approximating the probability
density function (pdf) of a class using Parzen windows [30]. The generalized expression for
calculating the value of Parzen approximated pdf at a given point x in feature space is given as
follows:

(5)
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where p is the dimensionality of the feature vector x, Ni the number of examples of class Ci
used for training the network, xij represents the neuron vector in the pattern layer, i = 1, m, m
being the total number of classes in the training dataset. The parameter σ represents the spread
of the Gaussian function and has significant effects on the generalization of a PNN. The
probability that a given sample belongs to a given class Ci can be calculated in PNN as follows:

(6)

where hi represents the relative frequency of the class Ci within the whole training dataset. The
expressions of (5) and (6) are evaluated for each class Ci. The class returning the highest
probability is taken as the correct classification. The main advantages of PNNs are faster
training and its probabilistic output based on Bayesian statistics. The width parameter (σ) in
Eq. (5) is generally determined using an iterative process selecting an optimum value on the
basis of the full dataset. However, in the present work the width is selected along with the
relevant input features using the GA based approach, as in case of MLPs. The PNNs were
created, trained and tested using Matlab.

2.2. Genetic algorithms
GAs have been considered with increasing interest in a wide variety of applications. GAs
represent a class of stochastic search procedures based on the principles of natural genetics and
through simulated evolution process on a constant-size population of possible solutions in the
search space. Each individual member of the population is represented by a string known as
genome [31]. The genomes could be binary or real-valued numbers depending on the nature
of the problem. In this study, real-valued genomes have been used. The standard GA
implementation involves the following issues: genome representation, creation of an initial
population of individuals, fitness evaluation, selection of individuals, creation of new
individuals using genetic operators like crossover and mutation, and specifying termination
criteria. Readers are referred to [31] for details. The basic issues of GAs, in the context of the
present work, are briefly discussed in this section.

GA was used to select the most suitable features and one variable parameter related to the
particular classifier: the number of neurons in the hidden layer for MLP and the radial basis
function (RBF) kernel width (σ) for PNN. For a training run needing N different inputs to be
selected from a set of Q possible inputs, the genome string (g) would consist of N + 1 real
numbers given in the following equation:

(7)

The first N integers (gi, i = 1, N) in the genome are constrained to be in the range 1 ≤ gi ≤ Q.
The last number. The last gN+1 has to be within the range Smin ≤ gN+1 ≤ Smax. The parameters
Smin and Smax represent respectively the lower and the upper bounds on the classifier parameter.
In the present work, number of selected features was in the range of 4-7 (N). For MLP, the
number of neurons in the hidden layer (M) was taken in the range of 10 (Smin) and 30 (Smax).
For PNN, the range of kernel width was taken as 0.10 (Smin) and 3.0 (Smax). A population size
of 100 individuals was used starting with randomly generated genomes. A probabilistic
selection function, namely, normalized geometric ranking [31] was used such that the better
individuals, based on the fitness criterion in the evaluation function, have a higher chance of
being selected. Non-uniform-mutation function using a random number for mutation based on
current generation and the maximum generation number, among other parameters was adopted.
A heuristic crossover was chosen based on the fitness information producing a linear
extrapolation of two individuals. The maximum number of generations (100) was adopted as
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the termination criterion for the solution process. The classification success for the training
data was used as the fitness criterion in the evaluation function.

3. Results and discussion
CI techniques were used to select features for prediction of PVL incidence. The dependences
of ‘predictors’ were investigated through statistical correlation analyses. Next, CI selected
features were used as inputs to a DTalgorithm for generating the decision rules of PVL
prediction. The results of CI based approach were compared with DT and LR.

3.1. Prediction results of CI based classifiers
The datasets of normalized features were used for training and testing CI based classifiers,
namely, MLP and PNN. Genetic algorithm (GA) was used to select the most important features
from the feature pool and the classifier parameters, e.g., the number of neurons in the hidden
layer for MLP and the RBF width (σ) for PNN. Study was carried out to see the effect of the
number of selected features on the prediction performance. Each classifier was trained using
the training dataset and the prediction performance was assessed using the test dataset which
was not part of the training process. Table 1 shows the best results for 4-7 selected features
over a number of trials. In each case, the training success was 100%. For MLP, the ranges for
test sensitivity (SN), specificity (SP) and accuracy (AC) were 47-73%, 68-84%, 68-74%,
respectively. For PNN, the ranges of test SN, SP and AC were 60-80%, 63-84% and 71-74%,
respectively. For both classifiers, the overall performance (AC) improved with increased
number of features with similar performance for 6 and 7 selected features (listed in Table 2(a)
and (b)). Most of the selected features were from the same monitoring variables, e.g., diastolic
blood pressure (DBP), systolic blood pressure (SBP) and partial pressure of carbon dioxide
(pCO2), although there were some variations in the details of the statistical features. For
example, average values of DBP and pCO2 (DBPavg and pCO2avg), and SBPmax were selected
by both classifiers. Similarly, pCO2 was identified in both classifiers with maximum
(pCO2max) in MLPand admission and minimum values (pCO2adm and pCO2min) in PNN. The
significance of the identified variables is discussed in the following sections.

3.2. Correlation analysis
To study the independence of the selected features, statistical correlation was analyzed for each
group. Table 2(a) and (b) show correlations along with the significance level (p) for the selected
(7) variables in MLP and PNN, respectively. In each case, all 103 data points were used for
the analysis. In Table 2(a), DBPavg shows significant correlation (with p < 0.05) with other
variables (SBPmax, RAPskw and pO2max) though the correlation coefficients are relatively small
for the last two (0.199, -0.236). Similarly, pCO2avg and pCO2max show strong correlation
(coefficient of 0.731) which is quite expected from previous results [28]. In Table 2(b),
SBPmax shows strong correlations with SBPavg (0.885) and DBPavg (0.545), and somewhat
moderate to small correlations with pCO2min (0.358), pCO2avg (0.284) and HRadm (0.200).
Similarly, SBPavg shows correlations with DBPavg (0.538), pCO2min (0.348), pCO2avg (0.233).
There is also a strong correlation between pCO2min and pCO2avg (0.621). It implies that only
some from the correlated group of variables would be enough to predict the PVL incidence.
The implications of these correlations among the selected features for predicting the incidence
of PVL are further investigated in the next sections.

3.3. Results of decision tree algorithm with MLP selected features
3.3.1. Decision tree—Training dataset with MLP selected 7 features (SBPmax, DBPavg,
DBPkrt, RAPskw, pHskw, pCO2max and pCO2avg) was used for generating decision tree of Fig.
2(a). In the process of DT induction, only 4 significant features (DBPavg, DBPkrt, pCO2max
and SBPmax) out of 7 were retained in the generated DT. The elimination of RAPskw and
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pCO2avg can be explained in terms of the correlations with the retained features (e.g.,
RAPskw with DBPavg, and pCO2avg with pCO2max and SBPmax). However, pHskw was not
retained in the DT which may be explained from the paired t-test on the means (with and without
PVL).

At the root of DT is DBPavg which represents the most significant one of the retained variables.
In the next level is DBPkrt followed with pCO2max and SBPmax in the order of importance.
There are 8 terminal nodes (leaves) each with a class assigned (N: PVL = 0 or Y: PVL = 1)
based on the majority of the members at the terminal node. In Fig. 2(a), the class membership
is also shown at each leaf node corresponding to the training dataset for easy reference. For
example, node T1 is classified as Y with 8 cases of 1 (PVL = 1) and 1 case of 0 (PVL = 0).
The total number of decision rules is equal to the number of terminal nodes (leaves: T1-T8).
The rules can be generated following the decision nodes from the root to each leaf through the
corresponding branches. For example, the decision rule corresponding to the top most terminal
node on the left (T1) can be obtained as follows:

The set of decision rules for the full DTof Fig. 2(a) is given in Table 3(a). The above rule
corresponds to the Rule #1 in Table 3(a) for terminal node T1. The class membership of node
T1 is 8:PVL = 1 and 1:PVL = 0 with 90% as Y. Similarly, Rule #2 denotes the next leaf node
(T2) on the left. Likewise the remaining rules of Table 3(a) can be obtained from the DT of
Fig. 2(a). Rule #7 corresponds to leaf node (T7) on the right. This specifies a lower bound on
DBPavg (>42 mm Hg) and a bounded range for DBPkrt, i.e., -0.5 < DBPkrt < 1.9 for class Y
(PVL = 1) with a membership of 67% (6 out of 9). The classification success for the training
dataset was obtained collecting the proportion of correct classification of Y (corresponding to
nodes with class Y in Table 3(a)) for SN, as follows: SN = (8 + 4 + 6 + 2 + 6)/30 = 87%.
Similarly for SP and AC the performance indices were obtained as SP = (14 + 9 + 11)/39 =
87%, AC = (26 + 34)/69 = 87%. The generated DT was used to predict the PVL incidence for
the test dataset. The corresponding test classification success SN, SP and AC were obtained
as 87, 79 and 82%, respectively. These along with prediction results for DT using different
number of features (4-7) selected in MLP and PNN are presented later in Table 5. The test
prediction success of DTwith selected features using CI classifiers was reasonably acceptable
(about 80%) considering the limitations of the dataset.

3.3.2. Interpretation of decision rules—Rule 1 predicts PVL incidence if the DBPavg is
less than 42 mm Hg coupled with abrupt fluctuations in DBP (DBPkrt > 2.7). This simulates
the situation of hypotension with rapid changes in DBP. In a previous work [32] on the same
dataset with admission, maximum and minimum values of the postoperative monitoring
hemodynamic variables, the case of hypotension was predicted. It is significant that in the
present work, in addition to the threshold value on DBP, the distribution of DBP (DBPkrt) was
identified as an additional indicator of PVL incidence. Similarly, Rule #2 predicts incidence
of PVL if DBPavg is below the threshold value (42 mm Hg) and change in DBP is moderate
(DBPkrt < 2.7) but pCO2max is above 58 mm Hg. This corresponds to combined hypotension
and hypercarbia and is interesting to view in light of the prior work of Licht et al. [33].

In Licht et al. [33], MRI evidence of PVL was associated with low baseline values for cerebral
blood flow as well as with diminished reactivity of cerebral blood flow to a hypercarbic gas
mixture. It is interesting to note that some rules suggest lowest minimum or low admission
pCO2 may be important as risk factors for PVL, whereas Rule #2 above suggests
thathypercarbia may be important. The retrospective nature of the study design, and the low
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sampling rate both may play a role in making explanation of variation in risk with variation in
pCO2 purely speculative. The levels of pCO2 may have changed significantly inbetween the
4 h recording intervals. Although the design of this study prevents definitive ascertainment,
the postoperative management style in use during the study period tended to value lower
pCO2 to decrease pulmonary vasoreactivity. Patients in the dataset with higher pCO2 may have
had issues with their ventilatory support leading to altered gas exchange and neurological
susceptibility.

Similarly, Rule #3 corresponds to hypotension, both diastolic (DBPavg < 42 mm Hg) and
systolic (SBPmax < 73 mm Hg). This agrees with Rule #4 corresponding to the case of diastolic
hypotension (DBPavg < 30 mm Hg) even with SBPmax > 73 mm. Rule #5 predicts no PVL if
SBPmax is above 73 mm Hg and the DBPavg is within a range, i.e., 30 < DBPavg < 42 mm Hg
with moderate fluctuations in DBP (DBPkrt < 2.7). Rule #6 predicts no occurrence of PVL if
DBPavg is above 42 mm Hg and a flatter DBP (DBPkrt < -0.5). Rule #7 predicts incidence of
PVL (6 out of 9) if DBPavg > 42 mm Hg and bounded DBP variation, i.e., -0.5 < DBPkrt < 1.9.
Rule #8 predicts no PVL if DBPavg > 42 mm Hg and changes in DBP are moderate (DBPkrt >
1.9).

3.3.3. Decision tree pruning—The DTof Fig. 2(a) was pruned at level 1 to reduce the
number of leaf nodes and the decision rules. The level 1 pruning combined all three terminal
nodes on the right (T6-T8) into one (T6) and kept all other nodes on the left intact, Fig. 2(b).
The leaf node on the right represented collectively the class N (PVL = 0) with a membership
of 23/29 or 79% for DBPavg > 42 mm Hg. The last 3 decision rules of Table 4(a) reduced to
one rule (Rule #6) in Table 3(b). The training classification performance of the pruned DT
(level 1) reduced with SN, SP and AC as 67, 95 and 83%, respectively. However, there was
no change in the prediction performance for the test dataset (SN, SP, AC as 87, 79 and 82%,
respectively). The DT of Fig. 2(b) was further pruned to the next level which combined terminal
nodes T4 and T5 into one (T4), as in Fig. 2(c). The rule set of Table 3(b) reduced to 5 combining
Rules #4 and #5 into one Rule #4 and with Rule #6 renumbered as #5 in Table 3(c). The
prediction performance reduced slightly with SN, SP, AC as 60, 95, 80% in training and 80,
79, 79% in test, respectively. The classification success was reasonable even with the simplified
(pruned) DT and the reduced set of decision rules. The pruning helped reduce the chance of
overfitting the training data.

3.4. Results of decision tree algorithm with PNN selected features
The procedure of generating the DT was repeated using the training dataset with PNN selected
7 features (HRadm, SBPmax, SBPavg, DBPavg, pCO2adm, pCO2min and pCO2avg) leading to
DTof Fig. 3(a). Here again, only 5 out 7 features were retained in the DT (DBPavg, pCO2adm,
pCO2min, SBPavg and SBPmax) and others were eliminated due to their correlations with
retained features. DT of Fig. 3(a) has 10 terminal nodes (T1-T10) with 10 decision rules as
shown in Table 4(a). The classification success (SN, SP and AC) was 90% in training and 73,
68, 71% respectively in test. When the DTwas pruned to level 1, terminal nodes (T5-T7) were
combined to one node (T5) and the right side nodes (T8-T10) collapsed to T6 leading to 6
decision rules of Table 4(b). The corresponding classification performance (SN and AC)
reduced to 77%, 84% in training and improved to 87%, 77% in test with no change in SP. This
confirms the effects of DT pruning on better generalization of test dataset with a moderate
deterioration in the training success. When the DTof Fig. 3(b) was further pruned to level 2,
leaf nodes T1, T2 collapsed into T1 and T4, T5 became T3 resulting in a much simpler DT of
Fig. 3(c) with only 4 terminal nodes (T1-T4). The prediction performance (SN, SP and AC)
changed to 80, 77 and 78% in training with no change in test (87, 68 and 77%). The
corresponding rule set is given in Table 4(c). Rule #1 of the level 2 pruned DT predicts PVL
corresponding to hypotension (DBPavg < 42 mm Hg and SBPavg < 73 mm Hg) even if
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pCO2adm is above 31 mm Hg. Rule #2 predicts no PVL if SBPavg is above 73 mm Hg even if
DBPavg is below 42 mm Hg. Rule #3 predicts PVL when DBPavg is below 42 mm Hg and
pCO2adm is below 31 mm Hg. This condition represents diastolic hypotension combined with
hypocarbia. The condition of hypotension agreed well with the results of previous section and
of [32]. The association of hypocarbia with PVL has been reported earlier [34,35] and is a topic
of interest in our centers as well as the subject of future analysis.

3.5. Decision tree prediction results
The selected features from the CI were used as inputs to the decision tree algorithm for
classification. In each case, the training dataset was used to train the decision tree and the
trained decision tree was tested using the test dataset. The classification success results are
shown in Table 5 for different numbers of CI selected features (4-7). With the introduction of
DT, the classification success in training reduced slightly compared to 100% for CI only. The
classification performance improved with higher number of selected features and the training
performance was reasonably good with 6 and 7 selected features. For DTwith MLP selected
features (6 and 7), the ranges of SN, SP and AC were 87-90%, 80-87% and 84-87%,
respectively in training. Corresponding test results were 80-87% (SN), 74-79% (SP) and
77-82% (AC). For DTwith PNN selected 6-7 features, the prediction success was 87-90% (SN),
90% (SP), 88-90% (AC) in training and 73-87% (SN), 68-74% (SP), 71-79% (AC) in test.
There was not much difference in test performance between MLP and PNN, though the feature
sets selected were slightly different.

3.6. Comparison of prediction performance
The prediction performance of CI was better than DT (of Part I) both in training (AC 100%
vs. 91-96%) and test (74% vs. 62-65%). The performance of DT with CI selected features
reduced slightly than CI only in training (AC 87-90% vs. 100%) but improved in test (AC
79-82% vs. 74%). For easy comparison, the best results of classification accuracy (AC) are
shown for CI classifiers (test) and CI with DT (CIDT), both training and test, in Fig. 4. The
better performance of the combined CI and DT based approach could be attributed to the
inherent noise rejection capability of the feature selection process using CI and further
refinement on the selected (more relevant) features using the information-gain algorithm of
DT. On the other hand, DT algorithm tries to accommodate all the training cases in the induction
of decision rules leading to a reasonable training success but with unsatisfactory test
performance, especially in the presence of noise and uncertainties in the dataset. The
introduction of DT with the CI selected features led to decision rule sets which are easy to
interpret and would be expected to have better acceptability in clinical setting. When used with
DT, the CI selected features gave better test performance than LR selected features (AC 79-82%
vs.65%) of Part I. The improved performance of CI may be attributed to the greater
generalization capability of CI than the inherent linear relationship of the independent variables
(predictors) and the logarithm of odds ratio (OR) of the dependent variable (incidence of PVL)
in LR. However, there is a need for more extensive dataset to investigate further the relative
advantages of the CI, DT, LR and their combinations. This also needs to be compared with a
direct information theoretical approach for optimal feature selection [36]. The use of other
classifiers and data mining techniques like Kohonen self-organizing map (SOM) and support
vector machines (SVM) needs to be considered in future studies.

4. Conclusions
The paper presents results of investigations through CI techniques for prediction of PVL in
neonates with CHD using postoperative hemodynamic and arterial blood gas data. The process
involved statistical feature extraction, feature selection using CI techniques and generation of
classification rules using DT algorithm. The CI based selection of prognostic features was
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further refined in DT algorithm resulting in a reduced set of decision rules that were quite easy
to interpret. The combination of CI and DT gave much better test results than using these
separately. The proposed combination also resulted in much better test performance than LR.
The results show the advantages of using the proposed techniques of combined CI and DT for
prediction of PVL, not only in terms of better prediction performance compared to LR but also
with easily interpretable decision rules. The improved performance of the present approach
may be attributed to the better generalization capability of the two-stage selection process of
CI and DT. The availability of reduced set of easily tractable decision rule would be expected
to have better acceptability of the present approach in the clinical setting.

The results confirmed the association of PVL incidence with hypotension, both diastolic
(DBPavg) and systolic (SBPavg and SBPmax), consistent with an earlier study using the same
original dataset. In addition to the average value, the temporal feature like kurtosis (DBPkrt)
was also selected as a potential risk factor in one of the models. The present models also
identified pCO2 as a potential risk factor as in Part I. Future work is planned for validation of
the proposed approach with a more extensive dataset and a direct information theoretic
approach for optimal feature selection.
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Figure 1.
Schematic of CI based process for PVL prediction.
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Figure 2.
Decision tree with MLP selected features (a) full, (b) pruned (level 1) and (c) pruned (level 2).
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Figure 3.
Decision tree with PNN selected features (a) full, (b) pruned (level 1) and (c) pruned (level 2).
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Figure 4.
Comparison of classification success of CI classifiers with and without DT.
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Table 1
Prediction results for different CI classifiers

Classifier No of features Test success (%)

SN SP AC

MLP 4 47 84 68

5 73 68 71

6 73 74 74

7 60 84 74

PNN 4 80 63 71

5 67 74 71

6 60 84 74

7 73 74 74
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