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Abstract
Microbes evolved to produce natural products that inhibit growth of competing soil microorganisms.
In many cases, these compounds act on fungi, which are eukaryotes closely related to metazoans,
including humans. The calcineurin inhibitors CsA and FK506, the Tor inhibitor rapamycin, and the
Hsp90 inhibitor geldanamycin all act via targets conserved from yeast to humans. This allows use
of genetically tractable fungi as models to elucidate how these drugs and their targets function in
yeast and human cells. They also enable studies to harness their intrinsic antimicrobial activities to
develop novel antifungal therapies. Extensive studies have revealed a globally conserved role for
Tor in regulating growth and proliferation in response to nutrients, and targeting its essential functions
results in robust antifungal action. Similarly, a conserved and essential role for calcineurin in fungal
virulence has been discovered that could be targeted by inhibitors in therapeutic use in a variety of
clinical settings. Finally, the discovery that inhibitors of calcineurin or Hsp90 result in dramatic
synergism with either azoles or glucan synthase inhibitors (candins) provides another therapeutic
vantage point. Taken together, these fungal targets and their inhibitors provide a robust platform
from which to develop novel antimicrobial therapies.
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Introduction
The limited drug armamentarium and increasing drug resistance to some current antifungal
therapies based on 5-flucytosine, polyenes, azoles and candins, has created a need for novel
molecular targets and drugs to combat fungal infections. The central roles of the Tor kinase
and the Ca2+/calmodulin-dependent protein phosphatase calcineurin and its modulator Hsp90
in regulating cell growth and responses to stress in fungi have raised interest in the use of their
inhibitors: rapamycin (Tor), FK506 and cyclosporin A (CsA) (calcineurin), and geldanamycin
(GD) (Hsp90), as antifungal drugs. The potent immunosuppressive effects of these inhibitors
have fueled development of novel, less immunosuppressive analogs, several of which are now
under preclinical and clinical study. Recent findings reveal an interesting interplay between
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Tor, calcineurin and Hsp90 in regulating polarized growth and stress responses, which suggests
that combination therapies with inhibitor analogs could confer synergistic antifungal effects
(Figure 1). Here we present an overview of the Tor, calcineurin and Hsp90 signaling pathways
in the model yeast S. cerevisiae and pathogenic fungi and discuss recent developments in
targeting these pathways for antifungal therapy.

Tor in Saccharomyces cerevisiae
The Tor kinases were first identified in S. cerevisiae as the targets of the antifungal and
immunosuppressive drug rapamycin, a cyclic macrolide produced by the soil bacterium
Streptomyces hygroscopicus [1]. When rapamycin diffuses into the cell it forms a complex
with the FKBP12 prolyl isomerase, which subsequently binds to the Tor kinase and blocks its
functions. Both FKBP12 and Tor are ubiquitously conserved in eukaryotic organisms from
yeasts to humans.

Aside from the protein kinase domain, the Tor proteins have putative domains for protein-
protein interactions, including multiple N-terminal HEAT repeats and the FAT domain [2–4].
Overexpression of the FAT domain is toxic in S. cerevisiae and mutations in this domain in
Schizosaccharomyces pombe tor1+ or mammalian Tor renders Tor constitutively active [2,5].
In addition, the Tor proteins feature the highly conserved FRB domain, which serves as the
binding site for FKBP12-rapamycin [6].

The Tor proteins populate two multi-protein complexes in S. cerevisiae: TOR complex 1
(TORC1) formed by either Tor1 or Tor2 in association with Kog1, Lst8, and Tco89, and Tor
complex 2 (TORC2) consisting of Tor2, Lst8, Avo1, Avo2, Avo3, Bit2 and Bit61 [7–9].
Recently, novel components of these complexes have been identified in the fission yeast S.
pombe and several TORC components have putative homologs in the fungal pathogens C.
albicans and Cryptococcus neoformans [10,11](Table 1). Importantly, except for S.
cerevisiae and S. pombe that possess two Tor homologs, other eukaryotic organisms ranging
from fungi to mammals have only one Tor protein. However, where examined, this single Tor
protein is capable of forming two distinct protein complexes equivalent to TORC1 and TORC2.

TORC1 is rapamycin-sensitive and essential to promote growth by regulating transcription and
translation whereas TORC2 is insensitive to rapamycin and regulates actin cytoskeleton
polarization and responses to stress [7]. However, recent studies have shown that mutations in
TORC1 components and rapamycin treatment also result in actin depolarization [12–14]. This
functional overlap between these two complexes was previously unnoticed and underscores
the complexity embedded within this signaling network.

Nutrient sensing and Tor
Treatment of yeast cells with rapamycin triggers events that mimic the effects of nutrient
starvation, including inhibition of ribosome biogenesis and protein translation, and inducing
autophagy and G0 entry (reviewed in [15]). These and other observations support the model
that the Tor pathway responds to nutrient cues to regulate cell growth.

Several lines of evidence link amino acid sensing and Tor signaling to membranes of the
vesicular trafficking system in S. cerevisiae (reviewed in [16]). First, Tor1 has been proposed
to sense glutamine [17]. Second, Tor proteins and TORC components localize to internal
membranes, including the vacuole, which is the major cellular amino acid reservoir [8,13,
18]. Third, TORC1 and the vacuolar EGO/Gse complex, which in response to amino acids
regulates sorting of the general amino acid permease Gap1, orchestrate microautophagy [19,
20]. Fourth, a role for the class C Vps complex, which functions in vesicle trafficking between
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endosomes and the vacuole, has been proposed in mediating intracellular amino acid
homeostasis for efficient Tor signaling [21].

The link between Tor and amino acid sensing is not limited to S. cerevisiae and has also been
documented in S. pombe where tor1+ regulates amino acid uptake in a rapamycin-sensitive
fashion controlled by Tsc/Rheb signaling [22,23]. Interestingly, homologs of the TORC1
upstream regulators Tsc1/Tsc2 and Rheb are also conserved in S. pombe, C. albicans and C.
neoformans (Table 1). These findings suggest that amino acid sensing is a conserved regulatory
mechanism among several pathogenic fungi and further understanding will lead to new
discoveries in Tor regulation that can be exploited to control the pathogenesis associated with
these particular organisms.

TORC1 effectors of transcription and translation
The transcriptional response to inhibition of TORC1 with rapamycin revealed global roles in
positively regulating ribosome biogenesis, while blocking the expression of nitrogen catabolite
regulated (NCR), retrograde response (RTG), and stress responsive (STRE) genes [24–28].

The Tap42-Sit4 PP2A-like phosphatase mediates both TORC1 inhibition of transcription and
activation of translation and cell growth [25,29]. The prevailing model is that, under ample
nutrient conditions, TORC1 phosphorylates Tap42, thereby favoring Tap42-Sit4 complex
formation [30]. Nutrient deprivation or rapamycin treatment results in dissociation of this
complex and targeting of Sit4 towards specific substrates. An alternative model posits that
inactive Tap42-Sit4 complex is tethered to membranes via TORC1, and rapamyicn treatment
or nitrogen starvation releases activated Tap42-Sit4 complex into the cytosol [31]. However,
this model is not supported by TORC1 characterization studies and awaits further confirmation.
The NCR genes, regulated by the transactivators Gln3 and Gat1 and the repressor Ure2, are
among the best-studied examples of TORC1 transcriptional regulation. TORC1 activity
prevents Sit4-mediated dephosphorylation of Gln3 and Gat1 and thereby blocks nuclear
translocation [25]. However, recent findings indicate this pathway is even more complex. Gln3
nuclear localization in response to nitrogen source quality requires Golgi to endosome
trafficking, and regulation of Gat1 is not strongly Ure2- or Sit4-dependent [32–34]. In general,
control of nuclear translocation has emerged as a common mechanism by which Tor regulates
gene expression.

In addition, Tap42-Sit4 and Sit4 interactions with its associated proteins, Sap185 and Sap190,
regulate the phosphorylation levels of Gcn2 and eIF2α to control the rate of translation and in
particular Gcn4 translation [35,36].

Both the TORC1 and the cAMP-PKA pathways govern ribosome biogenesis in response to
nutrients. This process entails the coordinated expression of ribosomal protein, Ribi, rRNA,
and tRNA genes, and therefore involves the activity of Pol I, Pol II, and Pol III, respectively
[37]. Recent studies have identified Sch9 kinase as an important TORC1 effector of ribosome
biogenesis [38,39]. Moreover, Sch9 partially mediates TORC1 effects on the Rim15 kinase
and control over G0 entry [40].

TORC2 effectors of actin polarization and stress responses
A requirement for TORC2 in actin polarization (via control of the Rho1/Pkc1/MAPK cell
integrity pathway) was first revealed by genetic studies indicating that TORC2 activates Rom2,
the guanine nucleotide-exchange factor for Rho1 [41]. Recently, the AGC kinase Ypk2 and
the PH domain proteins Slm1 and Slm2, all of which drive actin polarization, were shown to
be direct TORC2 substrates [42–44]. How these TORC2 effector branches coordinately
regulate cell integrity and actin polarization remains to be determined. In addition, the activities
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of both Ypk2 and Slm1,2 are influenced by phytosphingolipids and required to regulate
ceramide synthesis, a process important in stress response [43]. Interestingly, TORC2 mutants
show reduced ceramide syntheses and this defect and the inability of slm1 and slm2 cells to
cope with oxidative and heat stresses, are both alleviated by calcineurin defects [45–47].
Moreover, upon stress conditions Slm1 and Slm2 are dephosphorylated by calcineurin, and
this event is required to activate stress responses [46–48].

This illustrates that Ypk2 and the Slm proteins integrate nutrient (nitrogen) and lipid signals
and TORC2-Slm and calcineurin signaling antagonistically govern stress survival (Figure 1).

Rapamycin effectors in human fungal pathogens
Currently, systemic mycoses are treated with an armamentarium of antifungal drugs consisting
of nucleic acid inhibitors (5-flucytosine), polyenes (amphotericin B and nystatin), ergosterol
biosynthesis inhibitors (azoles) and echinocandins (caspofungin, micafungin) (reviewed in
[49]). A separate group of antifungal compounds are the immunophilin-targeting drugs CsA,
FK506 (tacrolimus), and rapamycin (sirolimus), which due to their immunosuppressive
activity have been less appreciated as potential antifungal agents [50]. Recently, there is
renewed interest in the antifungal activity of rapamycin fostered by the development of less
immunosuppressive rapamycin analogs and findings that lipid-formulated rapamycin,
amphotericin B, and 5-flucytosine act synergistically in vitro [50,51].

A single Tor homolog (Tor1) has been identified in the human fungal pathogens C.
neoformans and C. albicans and the fungicidal activity of rapamycin in these two species is
exerted via conserved FKBP12-rapamycin complexes that bind Tor1 and thereby inhibit its
activity [52,53].

Interestingly, at sublethal concentrations, rapamycin blocks filamentous differentiation in S.
cerevisiae, C. albicans, and C. neoformans [54,55] (Figure 2). In C. albicans filamentous
growth is essential for virulence and consequently is a potential target for antifungal therapy
[56–58]. In this pathogen, evidence-linking Tor1 to filamentous growth continues to mount
with several Tor1 signaling components being associated with this developmental transition.
A clear example is the link between nitrogen availability and filamentous growth in C.
albicans [59]. As discussed above, in S. cerevisiae Tor1 signaling mediates the cellular
response to nitrogen limitation via the Sit4 protein phosphatase and the GATA transactivators
Gln3 and Gat1, which regulate the expression of nitrogen utilization genes, including the
ammonium permease Mep2 [25–28]. In C. albicans, mep2/mep2 and gln3/gln3 loss of function
mutations block filamentous growth under limiting nitrogen conditions and gln3/gln3 mutants
are avirulent in murine models of disseminated disease [59–61]. Additionally, the protein
phosphatase Sit4 also plays an important role during filamentous growth and virulence of C.
albicans [29,62].

It is increasingly evident that the Tor1 nutrient sensing pathway regulates important virulence
traits in C. albicans. Furthermore, components of this pathway including TORC1 and TORC2,
upstream regulators (Tsc1,2 and Rheb) and effectors (Tap42, Sit4, Sch9, and Ypk2) appear to
be conserved among several fungal organisms, including pathogenic fungi (Table 1). This
conservation will ultimately allow the use of model and pathogenic fungi for further
characterization of Tor signaling and identification of fungal-specific Tor effectors that can be
harnessed as potential targets for antifungal therapy.

Calcineurin
The calcineurin inhibitors FK506 and CsA were initially isolated as potent immunosuppressive
drugs [63,64] and subsequently became cornerstones of therapy in solid organ and bone marrow
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transplantation. More recent evidence has suggested a role for these drugs, and non-
immunosuppressive analogs, as novel antifungal therapeutics [50,65]. Calcineurin is conserved
from yeasts to humans and is crucial for mediating cellular stress responses. Functional
calcineurin consists of two subunits, a catalytic A and a regulatory B subunit, both of which
are essential for function [66]. When Ca2+ fluxes into the cytosol from either intracellular stores
or extracellular sources, calcineurin is bound by Ca2+-calmodulin causing a conformational
change that relieves repression of the catalytic site by an autoinhibitory domain [66]. FK506
and CsA form intracellular complexes with FKBP12 and cyclophilin, respectively [67], and
these complexes then bind to and block calcineurin function [68–72](Figure 1). FK506-
FKBP12 and CsA-cyclophilinA also inhibit calcineurin in pathogenic fungal species including
C. neoformans, C. albicans, and Aspergillus fumigatus [70,73–79].

In pathogenic fungi, calcineurin plays a crucial role in virulence. In C. neoformans calcineurin
mutants are attenuated for virulence in animal models of infection due to their inability to grow
at body temperature (37°C) [75,80]. Similarly, C. albicans calcineurin mutants are attenuated
in a murine systemic infection model [81–83]; in this case calcineurin mutants are not
temperature sensitive, but serum and cation sensitive and thus unable to survive calcium stress
imposed by serum [84]. Interestingly, the role of calcineurin in C. albicans virulence appears
to be host niche specific, as strains lacking calcineurin are attenuated for virulence in systemic
and ocular infection models [81–83,85], but fully virulent in murine pulmonary, vaginal, and
oropharyngeal models [86](Reedy, Filler, and Heitman unpublished data). In the pulmonary
pathogen A. fumigatus, calcineurin is required for morphogenesis. Strains lacking calcineurin
form short, blunted filaments and are thus significantly attenuated for virulence through a third
distinct mechanism of action [87].

The attenuated virulence of fungal calcineurin mutants suggests that inhibition of calcineurin
alone could have therapeutic potential; moreover, calcineurin inhibitors can also be utilized in
combination therapy with current antifungal agents. In in vitro studies with C. albicans, A.
fumigatus, C. neoformans, and the dermatophyte Trichophyton mentagrophytes calcineurin
inhibitors convert normally fungistatic azoles, as well as other clinically available antifungals,
into fungicidal compounds. This synergistic action extends to azole resistant fungal strains
[73,77–79,88–91]. An in vivo proof-of principle study demonstrated that a CsA-fluconazole
combination was more effective than either drug alone at treating candidal endocarditis
infection in rats [92,93]. Subsequent studies document improved survival and disease
resolution with combination rather than monotherapy in the treatment of C. albicans murine
keratitis [85], catheter biofilms [94], and treatment of T. mentagrophytes model skin infections
[90]. The clinical use of calcineurin inhibitors is limited by their immunosuppressive activity,
however non-immunosuppressive analogs (FK506: L-685,818 from Merck and CsA: 211–810
and 209–825 from Novartis) are available that still inhibit fungal calcineurin and spare host
calcineurin [73,74,88]. Research aimed at identifying additional components of the calcineurin
signaling that could bypass the immunosuppressive activity of calcineurin inhibition is
currently underway [65,95–100].

Hsp90
Recent studies reveal that Hsp90, a component of a chaperone complex induced by heat stress,
governs the trajectory of drug resistance in fungi [96]. Using genetically engineered yeast
strains in which Hsp90 expression can be reduced, or small molecule inhibitors of Hsp90
(geldanamycin), Hsp90 was shown to be required for both the rapid emergence of azole drug
resistance, and for its maintenance. Hsp90-dependent drug resistance involves alterations in
the ergosterol biosynthetic pathway targeted by azole drugs, whereas azole resistance conferred
by over-expression of pumps that extrude drugs is Hsp90-independent. Potent drug synergism
was observed between Hsp90 inhibitors and azoles in C. albicans, and with candins in A.
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fumigatus [96]. These findings parallel previous studies in which calcineurin inhibitors
exhibited synergistic antifungal activity with azoles against C. albicans [76,83]. A model has
been advanced suggesting calcineurin might therefore be a direct client protein of Hsp90
[101], and both genetic and protein interaction data suggests the two proteins physically and
functionally interact in S. cerevisiae [98,102].

An attractive feature is that several calcineurin inhibitors are already FDA approved for clinical
use and phase II and III clinical trials are ongoing for geldanamycin and its analogs (17-AAG ,
17-DMAG) for a variety of oncological indications based on their chemotherapeutic potential
[101]. Given limited success of current antifungal regimens for many systemic and topical
fungal infections, the emergence of drug resistance, and increasing numbers of susceptible
patients, combinatorial drug approaches hold considerable appeal. These combinations
potentiate activity of azoles or candins, in some cases rendering them fungicidal rather than
merely fungistatic, extend their therapeutic range, and concomitantly block emergence of some
classes of drug resistant mutants. It will be a challenge to combine drugs inhibiting targets
highly conserved between fungi and humans, and which in some cases have
immunosuppressive or toxic side effects. This is particularly relevant for the Hsp90 inhibitors
geldenamycin and radicicol that target Hsp90′s highly conserved ATP binding pocket to block
ATP-dependent chaperone activity [103]. Nevertheless, even minor structural differences in
conserved drug binding pockets can be exploited to develop target specific inhibitors. A
champion example is the Cox2 specific inhibitors that exploit a single amino acid difference
in the active site of Cox1 and Cox2 [104–106]. Additionally, the Hsp90 chaperone complex
includes not only Hsp90 but also many additional co-factors, which might be targets for fungal
specific inhibitors. Fungal specific calcineurin inhibitor analogs have also been identified
[74], and the wealth of structural and enzymatic data for these targets (FKBP12, cyclophilin
A, calcineurin, and Hsp90) renders these pathways attractive from a medicinal chemistry
perspective [107]. The challenge ahead is to translate these in vitro findings to studies in
heterologous host and animal models as a prelude to clinical testing as novel antimicrobial
approaches in humans.

Conclusions and outlook
Small bioactive compounds produced by soil microorganisms have potent and specific
activities against conserved cellular pathways providing molecular tools for dissection of
cellular functions. The immunosuppressive drugs cyclosporin A, FK506, rapamycin, and
geldanamycin are all microbial products that inhibit targets conserved from unicellular yeasts
and pathogenic fungi, such as S. cerevisiae, S. pombe, C. albicans and C. neoformans to
complex organisms including humans. The molecular targets of these drugs (cyclophilin A,
FKBP12, calcineurin, Tor, and Hsp90) function in conserved signaling cascades that couple
environmental stimuli to cell growth and proliferation (from yeasts to humans). Thus, studies
of natural product action in model genetic systems are contributing to our understanding of
therapeutic action in humans. Moreover, these agents have broad spectrum, potent
antimicrobial activities, both alone and in combination with established antifungal drugs
including the azoles and candins, and therefore represent novel, lead strategies for antifungal
therapeutic development.
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Figure 1. The antifungal drugs cyclosporin A, FK506, rapamycin and geldanamycin target
conserved signaling pathways with inter-related functions in regulating responses to nutrients and
stress
CsA and FK506 form stable complexes with the prolyl isomerases cyclophilin A (CycA) and
FKBP12 respectively, which subsequently bind to and inhibit calcineurin function. The Ca2+/
calmodulin-dependent protein phosphatase calcineurin is a complex, composed of a regulatory
and two catalytic subunits hypothesized to be stabilized (or maintained in a signaling competent
form) by Hsp90, and this effect can be blocked by Hsp90 inhibitors, including geldanamycin
(GD). Calcineurin plays important roles in responding to stress-induced Ca2+ signals and acts
by controlling transcription of stress responsive genes while counteracting actin cytoskeleton
polarization. Stress activates calcineurin to dephosphorylate the Slm PH domain proteins,
thereby antagonizing TORC2-Slm signaling. Under optimal growth conditions these
calcineurin functions are opposed by the rapamycin insensitive TORC2 kinase via direct
phosphorylation of Slm1 and Slm2. In complex with FKBP12, rapamycin binds TORC1 and
thereby blocks its functions in ribosome biogenesis, protein synthesis and actin polarization.
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Figure 2. Rapamycin inhibits hyphal growth of model and pathogenic fungi
Hyphal growth of model and pathogenic fungi is inhibited by rapamycin. S. cerevisiae wild
type (MLY61a/ α) and rapamycin resistant strain TOR1-4/TOR1[54] were grown for 3 days at
30°C on SLAD medium with or without 10 nM rapamycin. C. albicans wild type (strain
SC5314) and TOR1-1/TOR1 [53] strains were grown on Spider medium with or without 20
nM rapamycin for seven days at 37°C. C. neoformans teleomorphic forms (Filobasidiella
neoformans) were generated from JEC20 (MAT a) and JEC21 (MATα) matings and JEC20 and
JEC21 TOR1-1 [52] matings on V8 media (pH 7). Matings were performed in the presence or
absence of 150 nM rapamycin at room temperature for 3 days.
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Figure 3. The structure of 17-AAG
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