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ABSTRACT

The proximal promoter consists of binding sites for
transcription regulators and a core promoter. We
identified an overrepresented motif in the proximal
promoter of human genes with an Initiator (INR)
positional bias. The core of the motif fits the INR
consensus but its sequence is more strict and
flanked by additional conserved sequences. This
strict INR (sINR) is enriched in TATA-less genes
that belong to specific functional categories.
Analysis of the sINR-containing DHX9 and ATP5F1
genes showed that the entire sINR sequence,
including the strict core and the conserved flanking
sequences, is important for transcription. A conven-
tional INR sequence could not substitute for DHX9
sINR whereas, sINR could replace a conventional
INR. The minimal region required to create the
major TSS of the DHX9 promoter includes the sINR
and an upstream Sp1 site. In a heterologous con-
text, sINR substituted for the TATA box when posi-
tioned downstream to several Sp1 sites. Consistent
with that the majority of sINR promoters contain
at least one Sp1 site. Thus, sINR is a TATA-less-
specific INR that functions in cooperation with
Sp1. These findings support the idea that the INR
is a family of related core promoter motifs.

INTRODUCTION

The promoter of RNA polymerase II genes consists of two
types of DNA regulatory sequences, enhancers and core
promoters. Enhancer elements, which are gene specific,
serve as the binding sites of transcription regulatory fac-
tors and can be divided into two classes: those that
function independently of their position relative to the
transcription start site (TSS) and those that can activate
transcription only when located proximal to the TSS.

The core promoter is situated around the TSS and is the
site on which RNA polymerase II and general transcrip-
tion factors (GTFs) assemble into a preinitiation complex
[for review see (1)]. Each gene has a unique transcriptional
control program that is determined by a specific combina-
tion of regulatory elements that vary between individual
genes. Among these sequences are features common to
many genes, in particular proximal elements and core pro-
moter motifs, which contribute to the overall expression of
the gene.

The best-characterized core promoter elements are the
TATA box and the Initiator (INR), which are regarded as
universal elements (1,2). However, recent bioinformatics
studies revealed that the TATA box is present in a smaller
fraction of pol II genes than initially estimated: between
20% to 46% in yeast, depending on the definition of the
TATA box sequence (3,4), �30% in Drosophila genes (5)
and 10–24% in human genes (6–8). The TATA box has a
strict location at �35 to �25 relative to the TSS and is
recognized by the TATA binding protein (TBP) subunit of
the GTF TFIID. The INR is located around the TSS (9)
and is recognized by the TAF1 and TAF2 subunits of
TFIID (10–12). Additional documented core promoter
elements are the DPE that is located at +28 relative to
the TSS (13,14), two TFIIB recognition elements (BREs)
(15,16) and a TAF1 recognition element DCE (17). The
two BREs and the DCE function only in conjunction with
a TATA element.

In this study, we combined bioinformatics with molec-
ular analysis to investigate the core promoter region of
mammalian genes. We focused on an INR-like element
that is present in 1.5% of human genes and is character-
ized by a strict sequence compared with the more diverged
INR, and is enriched in TATA-less promoters of genes in
specific functional categories. Detailed molecular analysis
indicates that this strict INR (sINR) cooperates with Sp1
to direct accurate transcription initiation of TATA-less
promoters. Our findings suggest that the INR is a family
of core promoter motifs that share a common basis and
have in addition specific distinguishing features.
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MATERIALS AND METHODS

Bioinformatics analysis of the human proximal promoter

Human proximal promoter regions from �60 to +40 rel-
ative to the TSS were retrieved from the EPD (http://
www.epd.isb-sib.ch/), HPD (http://zlab.bu.edu/�mfrith/
HPD.html) and the DBTSS (http://dbtss.hgc.jp/), and
analyzed by the MEME (Multiple EM for Motif
Elicitation) program (18), using the default parameters,
inquiring for the most significant motifs of 6–12 nt. For
the gene functional annotation clustering, the Database
for Annotation, Visualization and Integrated Discovery
(DAVID), fifth version (http://david.abcc.ncifcrf.gov/
gene2gene.jsp) was used, with default parameters at
medium classification stringency.

Plasmid construction

The promoter regions of the DHX9 and ATP5F1 genes
(from �150 to +50 and �155 to +60, respectively) were
cloned by genomic PCR into pGL2-Basic (Promega) via
SmaI and HindIII sites. Mutation of sINR and the DHX9
promoter deletions were carried out using PCR technique.
To construct sINR in a heterologous context, the SV40
early core promoter in the pGL2-promoter plasmid
(Promega) was replaced by sINR, the TATA box or a
random sequence by digesting the plasmid with NcoI
and StuI and inserting oligonucleotides with appropriate
restriction sites. Construction of the luciferase reporter
gene under the Pel98 promoter and its INR mutant are
described in K.Gazit et al. (submitted for publication). Pel
98 sINR mutant was generated by PCR. Primer sequences
used for plasmid construction are shown in Supplemen-
tary Data 1. All plasmids constructed in this study were
verified by sequencing.

Transient transfection assays and RNA analysis

The 293T and ts13 cells were maintained and transfected
as described (19). Twenty-four hours after transfection
total RNA was prepared using Tri-reagent (MRC Inc.).
Primer extension was performed as previously described
(20) using 20 mg of total RNA for the luciferase primer and
2 mg RNA for the puro-GFP primer. Primer extension of
endogenous genes was performed using 20 mg total RNA
prepared from nontransfected cells. The sequencing reac-
tion was carried out with the Sequenase Version 2.0 kit
(USB Corporation). Results were visualized with a
Phosphoimager (Fuji, BAS 2500). For determining the
effect of Ying Yang 1 (YY1) depletion on the activity of
the DHX9 promoter, 293T cells were grown on six-well
plate and transfected with 500 ng YY1 siRNA expression
plasmid, generously provided by Yang Shi (21), YY2
siRNA or with the pSuper parental plasmid as a control.
Forty-eight hours later RNA was extracted using the
RNeasy kit (Qiagen) and was quantified by real time
PCR. To analyze the effect of YY1 depletion on the repor-
ter gene, 293T cells grown in six-well plates were trans-
fected with 500 ng YY1 siRNA expression plasmid and
48 h later were transfected again with either 1.5mg of the
YY1 siRNA expression plasmid or a control, and with
100 ng reporter plasmid containing DHX9 luciferase

reporter plasmid together with EGFP-N1. After an addi-
tional 24 h, RNA was extracted using the RNeasy kit
(Qiagen) and was quantified by real time PCR. The neo-
mycin resistance gene under the control of the SV40 early
promoter within the EGFP-N1, was used to normalize
transfection efficiency.

Electrophoretic mobility shift assay

Fluorescently labeled oligonucleotides of the DHX9 sINR
sequence were annealed and used as probes in binding
reactions containing 2 mg of poly(dI-dC) and 2 mg of
HeLa nuclear extract prepared as described previously
(22), in binding buffer consisting of 25mM HEPES
(pH 7.9), 50mM KCl, 1mM DTT and 10% glycerol.
The reaction mix was incubated on ice for 10min after
which 50 femtomole probe was added for an additional
20min. Competitor DNAs were added prior to the addi-
tion of the probe. In the super shift reactions, 400 ng of
YY1 antibody (SantaCruz, C20) was added to the primary
mix and incubated for 15min at RT. Then the probe was
added and the mix was incubated on ice for an additional
20min. The reactions were separated by native electro-
phoresis at 48C in a 4.87% polyacryamide gel with 1�
Tris–Glycine buffer at 185V. The gel visualized with the
Typhoon 9400 instrument (Amersham Biosciencs).

Primers

Sequences of the primers used throughout the study are
shown in Supplementary Data 1.

RESULTS

Identification of a strict INR element

To characterize the proximal promoter of human genes,
we retrieved promoter sequences with verified TSSs from
the EPD (1871 promoters), HPD (2004 promoters) and
the DBTSS (14 681 promoters), and, using the MEME
program (18), searched for motifs overrepresented in the
�60 to +40 region relative to the TSS. This program
looks for conserved un-gapped blocks in a set of query
sequences, and returns motifs of 6–12 nt. A motif with
the sequence GSCGCCATYTTG (Table 1) appeared in
the three databases with a frequency of �1.5% in the
proximal promoter region of human genes. The distribu-
tion of this motif relative to the TSS (Figure 1A) was
determined and found to be strictly localized around

Table 1. Features of sINR

Database Consensus No. of
sites

Frequency
(%)

E-value

EPD GSCGCCATYTTG 55 2.9 7.7e-32
HPD GSMGCCATYTTG 31 1.5 7e-10
DBTSS GSCGCCATYTTG 191 1.3 4.8e-18

The consensus of the sINR element identified by analyzing 1847,
2004 and 14 628 human proximal promoter sequences from �60 to
+40 relative to the TSS (from EPD, HPD and DBTSS, respectively),
by the MEME program. The frequency of the motif and the E-value
are shown.
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the TSS, from position �10 up to +5, similar to the
INR element. Indeed, the core sequence of this motif
(CCATYTT) shares 7 nt with the INR sequence
YYANA/TYY. However, the consensus of this motif is
less divergent and it has additional conserved flanking
sequences that are missing from the INR (Figure 1B).
Comparing the sequence of this motif to several experi-
mentally verified INR elements (23–28) confirms that the
consensus of this motif differs from the INR sequence of
the tested genes in the stringency of the INR core and the
flanking sequences (Figure 1C). We have therefore desig-
nated this motif sINR for strict INR.
Functional classification of sINR-containing genes

revealed statistically significant enrichment in specific bio-
logical activities associated with various aspects of RNA

metabolism such as RNA processing and synthesis, regu-
lation of transcription, nucleic acid metabolism and
chromosome organization and biogenesis (Table 2).
These categories differ from those found in TATA-
containing genes, which are enriched, for example, in
development, response to wounding, response to external
stimulus and inflammatory response categories (29), all
absent from sINR genes. These findings support the
notion that core promoter type is linked to specific gene
function.

sINR is an important transcriptional regulatory element

To assess the role of sINR in transcription, two sINR-
containing genes, DHX9 and ATP5F1, were selected.
First, we verified, by primer extension assay, that their
TSS is located within their sINR. We used primers corre-
sponding to +70 and +73 of DHX9 and ATP5F1,
respectively, relative to the TSS assigned by the databases.
In both genes, we found TSSs located within the sINR
motif (Figure 2A and B). The short products seen
in the analysis of DHX9 and ATP5F1 genes are RNA-
independent primer extension products (right panel, no
RNA lanes) and therefore are nonspecific. In the DHX9
gene an additional TSS, 2 nt upstream to the TSS specified
in the database, was also observed.

Next, the promoters of these genes (from �150 to +50
and �155 to +60 of DHX9 and ATP5F1, respectively)
were cloned in front of a firefly luciferase reporter gene,
and then site-directed mutagenesis was used to generate
sINR mutants. The constructs were co-transfected into
293T cells together with a RSV-renilla luciferase reporter
plasmid that serves as a reference for transfection effi-
ciency. Twenty-four hours post transfection, firefly and
renilla luciferase activities were measured. As shown
in Figure 2C, both promoters (WT columns) displayed
significant promoter activity compared with the
promoter-less control construct pGL2-basic (C columns).
The mutation in the sINR caused a dramatic decrease in
the activity of both promoters, indicating that the sINR
motif is important for transcription.

The sequence requirements for sINR to act as a tran-
scriptional element were examined in more detail by
mutating several successive blocks within the motif in
the DHX9 promoter. For substitution, nucleotides were
selected that occur least frequently in each position as
determined by the bioinformatics analysis. In addition,
two point mutations were generated in which the

A

TdT: CCCATCACACTT Smale & Baltimor, 1989 (ref. 23)
AdML: GTCCTCACTCTC Ren Dellin, et al. 2005 (ref. 28)
HPO: AGGCTCATCTGG Zhao Yenlin, et al. 2003 (ref. 23)
cPLA2: CTACTCAGGATA Cowan Mark, et al. 2004 (ref. 24)
PARP-1: CCAGGCATCAGC Laniel Marc-Andre, et al. 2004 (ref. 25)
Timp-4: CACCTCATAAAG Young David, et al. 2002 (ref. 27)
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Figure 1. (A) sINR is located mainly around the TSS. The distribu-
tion of sINR at 5 nt intervals throughout the proximal promoter region
(�60 to +40 relative to the TSS) as determined by the DBTSS. (B) The
sINR is a strict consensus and differs from other known INRs in its
flanking sequences. The upper panel shows a graphical representation
of multiple sequence alignment (http://weblogo.berkeley.edu/logo.cgi)
of sINR from 112 genes out of 191 that contain the element around
their TSSs. Alignment of all 191 genes resulted in the same consensus
(data not shown). Comparison of the sINR consensus to the broad
INR consensus (middle panel) and to INR sequences of subset of
genes that contain functional INR in their promoter (lower panel).

Table 2. Functional classification of genes bearing sINR element

Cluster Enrichment Term P-value

1 9.52 RNA processing 6.3e-23
1 9.52 RNA metabolism 1.6e-21
2 8.42 Regulation of transcription 4.6e-27
2 8.42 Nucleic acid metabolism 4.7e-22
3 5.54 Chromosome organization

and biogenesis
1.4e-7

The table describes clusters with the highest enrichment score within
the gene list and the most significant terms within each cluster with
their P-value.
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thymidine at position +2 was replaced by a guanosine
residue and the thymidine at position +3 was changed
to a cytosine residue (Figure 3A). The wild type and
mutated constructs were transfected into 293T cells and
their luciferase activity was measured. All the mutations
within the motif, including the nucleotides flanking the
core INR and single substitutions of the thymidine resi-
dues in positions +2 and +3, decreased transcription
(Figure 3B). The mutations in positions �3 to +6 of the
core INR had the most severe effect on transcription.
Figure 3C shows the effect of some of the mutations on
the TSS by primer extension. The mutation in position +1
to +3 changed the TSS and reduced transcription;
whereas, mutations in other positions affected the pro-
moter strength. These results show that the entire
sequence of the sINR is important for transcription. The
point mutation in position +2 (T to G) is of particular
interest as this position is dispensable in the broad INR
(YYANWYY); whereas, its mutation in sINR signifi-
cantly decreased DHX9 promoter activity.

DHX9 sINR was not efficiently substituted by
a conventional INR

To examine in more detail the functional relationship
between the general INR to sINR, we constructed a
DHX9 promoter in which sINR was mutated to a con-
ventional INR sequence derived from the AdML pro-
moter (TCACTCT), with or without the flanking
sequences of sINR (Figure 4A). These constructs were
transfected into 293T cells and their luciferase activity
was compared with that of the wild type DHX9 promoter.
Remarkably, a DHX9 promoter bearing the AdML INR
had very low activity (Figure 4A), comparable to the
activities of sINR mutants that do not match the INR
consensus (Figures 2 and 3). These findings suggest that
a conventional INR could not efficiently substitute for
sINR function, whether or not sINR flanking sequences
were present. We also constructed an AdML promoter
bearing sINR instead of its INR, but neither the wild
type nor sINR-containing promoter had significant activ-
ity relative to the promoter-less plasmid in transfected
cells. We therefore replaced the INR of another gene,
Pel98, that we showed to have a functional INR
(K.Gazit et al., submitted for publication), with the
DHX9 sINR (Figure 4B). Wild type, INR mutant and
sINR replacement mutant were transfected into MEFs,
where the Pel98 promoter is active, and their luciferase
activity was measured. The results confirm that the
Pel98 INR is functional, as when mutated luciferase activ-
ity is decreased 2-fold (Figure 4B). sINR fully compen-
sated for the Pel98 INR activity (Figure 4B). Thus,
sINR can effectively replace a conventional INR.

Upstream Sp1 site and a unique inverted repeat sequence
cooperate with sINR to activate the DHX9 promoter

The INR core promoter element functions in combination
with additional core promoter elements such as TATA or
DPE. Both DHX9 and ATP5F1 promoters, analyzed
above, lack these elements. To determine whether there
is an element(s) that cooperates with sINR and is located
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neath indicate the sequence of the mutation as shown in (C). (C) The
effect of sINR mutation on transcription. The promoters of the DHX9
and ATP5F1 genes (from �150 to +50 and �55 to +60 of DHX9 and
ATP5F1, respectively) were cloned in front of a firefly luciferase repor-
ter gene and then subjected to site-directed mutagenesis to create sINR
mutants. The wild type (WT) or mutated (mut) promoter or the pro-
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at a specific position and distance from it, we inserted a
5-nt linker either downstream or upstream to the sINR
motif in the DHX9 gene promoter as illustrated in
Figure 5A. Assuming the existence of an additional ele-
ment, insertion of the linker would determine whether it is
located at a fixed distance from the sINR, like the DPE

and the INR elements that are co-localized on the same
core promoter at a fixed distance (13). The 5-nt length of
the linker is expected to change the spatial proximity
of sINR with upstream or downstream elements, by a
half helical turn. Wild type and modified DHX9 promot-
ers were co-transfected into 293T cells and 24 h post
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transfection firefly and renilla luciferase activities were
measured. Both the downstream and the upstream
linker in the DHX9 promoter caused reduction in the
activity of the reporter gene (Figure 5B), but the effect
of the upstream linker was more severe (�2-fold
P=3.95� 10�8) than the reduction with the downstream
linker (�1.25 fold P=3.34� 10�7).

We next analyzed the effect of these linkers on TSS
location using primer extension (Figure 5C). We observed
that the main TSS (at the A residue position +1) of
the wild type construct appears in the construct with the
downstream linker that also has two more TSSs (the TSS
positions are shown in Figure 5A). In the presence of the
upstream linker, however, the main TSS at position +1

disappears and there is a shift of the TSS outside of the
sINR motif at position +7. These results confirm the pres-
ence of a cooperating element upstream to the sINR ele-
ment in the DHX9 promoter, which might be dependent
on the distance or the phasing of the sINR.
The DHX9 promoter contains three Sp1 sites upstream

to the sINR element. To define the minimal upstream pro-
moter sequence important for accurate transcription and
to determine whether the Sp1 sites cooperate with the
sINR element, constructs of the DHX9 promoter were
created through progressive dissections as illustrated in
Figure 6A (right panel) and the activity of these constructs
was measured (Figure 6A, left panel). The �21 to +50
construct containing the sINR element but without Sp1

Figure 5. (A) The sequence of DHX9 wild type and linker mutated
constructs. (B) Firefly luciferase reporter gene driven by the DHX9
promoter and the linker mutant derivatives and the promoter-less
reporter were transfected into 293T cells together with RSV-renilla
luciferase that served as control for transfection efficiency. Twenty-
four hours later firefly and renilla luciferase activities were measured
and the relative activity is presented as ratio of DHX9 wild type pro-
moter. Control indicates the activity of the promoter-less reporter, ‘ds’
and ‘us’ denote downstream and upstream, respectively. (C) The effect
of DHX9 promoter linker mutants on TSS selection. Wild type and
mutated constructs were transfected into 293T cells together with
puro-GFP and their mRNA levels were monitored by primer extension
and normalized with puro-GFP mRNA. Control indicates the activity
of the promoter-less reporter, ‘ds’ and ‘us’ denote downstream and
upstream, respectively. The positions of the TSSs are shown in (A)
by arrows.
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sites had no promoter activity as the observed level
of activity was no different from the promoter-less
pGL2-Basic. However, when the first upstream Sp1 site
was included in the �41 to +50 and �44 to + 50 con-
structs, there was a 4-fold activation of the promoter over
the pGL2 Basic. Addition of 5-bp upstream up to position
�49 caused a dramatic increase in activity, up to 30-fold
over the basic activity. These results show that the Sp1 site
around position �21 and an additional element between
positions �44 and �49 are critical for the DHX9 pro-
moter activity. Sequences upstream to �49 also contribute
to DHX9 promoter activity (Figure 6A).

To determine which of the proximal elements contribute
to TSS selection we performed primer extension assays
(Figure 6B). The results show that the major TSS appears
only when the first Sp1 is added to the promoter in the
construct �41 to +50 and the intensity of this TSS is
significantly enhanced in the �61 to +50 construct.
These findings demonstrate the importance of the proxi-
mal Sp1 site for transcription initiation through sINR and
the contribution of the �44 to �49 positions for promoter
strength.

Inspection of the sequence of the enhancer element
at position �44 to �49 and its surroundings revealed an
inverted repeat between positions �37 to �49 (Figure 6C,
right panel). When we mutated part of the repeat, at
positions �37 to �41, promoter activity decreased
significantly compared with the �49 to +50 construct
(Figure 6C) suggesting that this inverted repeat is crucial
for efficient transcription activity.

Since the Sp1 site at position �21 to �27 and the
inverted repeat element at position �37 are both impor-
tant for transcription from the DHX9 promoter, we next
wanted to test which of these two upstream elements
cooperates with the sINR element in a distance-dependent
manner. We inserted a 5-nt linker just before the inverted
repeat sequence at position �37, and it did not decrease
the promoter activity (Figure 6D). In contrast, the linker
between sINR and Sp1 did decrease transcriptional activ-
ity and also altered the TSS (Figure 5). These results sug-
gest that sINR and Sp1 sites are responsible for accurate
and efficient transcription initiation and that the distance
between them is important. The inverted repeat element at
position �37 to �49 acts as a strong enhancer element.

We checked the relevance of these findings to other
sINR-containing genes by determining the tendency of
sINR to occur with an upstream Sp1 or with a TATA
box or DPE at their expected locations. The results
(Figure 6E) revealed that while only a very small fraction
of sINR genes bear TATA and DPE (4.4 and 4.2%,
respectively), the vast majority (68.3%) of sINR-
containing genes contain at least one Sp1 site.

sINR can substitute for a TATA element in
a heterologous context containing Sp1 sites

Investigating further the function of sINR as a core pro-
moter element, we tested whether it can substitute for
the TATA-like element of the SV40 early promoter,
which contains six upstream tandem Sp1 binding sites.
The core promoter region of the SV40 early promoter,

from �45 to +42, was replaced with an oligonucleotide
containing the sINR sequence. Oligonucleotides of the
same size bearing a canonical TATA box consensus or
an unrelated sequence were used as positive and negative
controls, respectively. The constructs were transfected into
293T cells together with CMV-puro-GFP and mRNA
levels of the transfected genes were analyzed by primer
extension. As expected, the canonical TATA box replace-
ment of the SV40 core promoter efficiently directed tran-
scription from a single major initiation site located 29 nt
downstream of the TATA box (Figure 7A). Likewise,
sINR exhibits core promoter activity as evident from
two visible initiation sites at the expected central A residue
(+1) and at �2 position within sINR, as seen in the
DHX9 promoter, whereas no activity was detected with
the control sequence (Figure 7A). Together, these findings
suggest that sINR, like the TATA box, is capable of
directing efficient transcription initiation when positioned
downstream to Sp1 sites. In this heterologous promoter
context, we also examined the influence of several muta-
tions in sINR (the mutations are illustrated at Figure 6B
top panel) using the luciferase assay. The results show
that all four mutations decreased promoter activity
(Figure 7B). The most severe decrease in activity is
observed in the mutations at position �3 to �1 and +1
to +3 of the sINR sequence, as occurred also with the
DHX9 promoter (Figure 3B).

Transcription factor YY1 binds to sINR, but is
dispensable for sINR function

To determine which transcription factor binds to sINR,
we employed the electrophoresis mobility shift assay
(EMSA) using a fluorescently labeled oligonucleotide cor-
responding to the sINR sequence of DHX9 as a probe
(Figure 8A, left panel) and nuclear extract prepared
from HeLa cells. The results (Figure 8A, right panel)
show that sINR formed two visible complexes with the
extract (lane 2). The lower complex is specific to sINR
since it is competed with by an excess of cold sINR but
not with an oligo corresponding to Sp1 binding site (lanes
3 and 8). The complex was not competed with by an oligo
bearing the +1 to +3 mutation or by substitution at
position +2, but an oligo containing the mutation in the
first 3 nt of the motif (�6 to �4 mutation) did compete
efficiently with the probe. Moreover, the complex was
slightly affected with by an oligo bearing the substitution
at position +3. These findings are partially compatible
with the functional analysis. The �6 to �4 mutation,
which caused a decrease in transcription, retained binding
activity; whereas, the other mutations (mut+3 to +1,
mut+2 and mut+3) that decreased transcription also
failed to bind the complex. In light of these results, it is
not clear whether the protein(s) that binds sINR in the
nuclear extract also mediates its transcription regulatory
function.
Previous studies have indicated that an INR sequence

can be bound either by TFIID (10–12) or by the YY1
transcription factor (30). To test which of these proteins
binds to sINR in nuclear extract, we added to the EMSA
reactions antibodies specific to YY1 and the TFIID
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subunit TBP. As can be seen the YY1 antibodies super-
shifted the sINR complex, whereas the TBP antibody had
no effect (Figure 8B). Thus, in vitro, YY1 appears to be the
major sINR binding protein.
To examine further the involvement of YY1 in sINR

function we used RNA interference (RNAi) to down-
regulate the levels of YY1 or its paralog YY2. 293T cells
were transfected with RNAi against YY1, YY2, both
YY1+YY2 or the parental expression vector pSuper.
RNAi depletion of YY1 was confirmed by immunoblot
(Figure 8C left panel). Since YY2-specific antibodies
were not available to us, its depletion was verified by
quantitative real time PCR using specific primers for
YY2 (Figure 8C right panel). The effect of YY1 and
YY2 depletion was determined on the mRNA levels
of DHX9 and the c-myc (that serves as a control of a
YY1 target gene), using quantitative real time PCR.
As expected, the c-myc levels significantly decreased

when YY1 was depleted (Figure 8D). In contrast, the
DHX9 levels were unchanged by depletion of YY1, YY2
or both. We also determined the effect of YY1 knockdown
on a luciferase reporter under the control of the DHX9
promoter. Forty-eight hours after transfection, total RNA
was prepared and DHX9 mRNA quantitated using real-
time RT PCR. We used the neomycin-resistant gene under
the control of the SV40 promoter to normalize transfec-
tion efficiency. The results in Figure 8E show that down
regulation of YY1 had no effect on the DHX9 promoter
activity, as was observed for the endogenous DHX9.
Thus, although YY1 binds the sINR in vitro and in vivo
(data not shown), it seems to be dispensable for sINR
function in transcription.

TAF1 is important for DHX9 promoter activity

It is well established that TFIID can recognize and
bind directly to the INR through the TAF1 and TAF2
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subunits (10–12). To examine the involvement of TAF1
in transcription mediated by the sINR element, we used
the ts13 temperature sensitive hamster cell line in which
a point mutation in TAF1 renders TFIID inactive at
39.58C. These cells were co-transfected with luciferase
reporter plasmid driven by the DHX9 promoter or the
TAF1-independent c-fos promoter. Twenty-four hours
after the shift to 39.58C luciferase activity was measured.
The results in Figure 9A show that after the shift to the
nonpermissive temperature, the DHX9 promoter activity
is significantly decreased while c-fos promoter activity is
being unchanged. This result implies that TAF1 and
TFIID are important for transcription mediated by the
DHX9 promoter.

DISCUSSION

In this study, we have characterized sINR, a strict form of
the mammalian INR core promoter element. sINR was
found to occur in �1.5% of human promoters around
the TSS. While the core sequence of sINR fits the consen-
sus of the broad INR element consensus, it has several
additional features that distinguish it from other initiators.
The INR center of the motif is very strict and is flanked
by additional conserved sequences. The sINR is specifi-
cally enriched in TATA-less genes which belong to spe-
cific functional categories including RNA processing
and metabolism, regulation of transcription, nucleic acid
metabolism and chromosome organization and biogen-
esis. Consistent with sINR being a TATA-less core

promoter element, these functional groups are absent
from those found with TATA-containing genes (29). Our
findings provide support for the notion that core promoter
type is linked to features beyond transcription initiation.
For example, it has been reported that TATA box occur-
rence is correlated with increased divergence among yeast
species, most likely due to higher rate of evolution (31)
and that the TATA box is associated with a higher sensi-
tivity of gene expression to mutations (32). A recent study
from our lab demonstrated that in the NF-kB pathway,
core promoter type is linked to differential regulation
by transcription elongation factors (19). In addition, we
found that the presence and the strength of a TATA box is
tightly associated with gene length (29). Taking into con-
sideration that the TATA box is linked to particular traits,
it would be interesting to find the specific characteristics
associated with sINR genes.

Detailed analysis of the DHX9 promoter sINR, which
was used as a model, revealed that the entire sequence,
including the conserved flanking sequences and the strict
core, is important for transcription. Moreover, mutating
sINR to a conventional INR sequence derived from the
AdML promoter diminished DHX9 promoter activity to a
level similar to sINR mutants that do not match INR
consensus. In contrast, DHX9 sINR efficiently replaced
a conventional INR of the Pel98 promoter. The minimal
region of the DHX9 promoter required to drive promoter
activity and accurate transcription initiation was found
to include the sINR element and a proximal Sp1 site.
In addition, the spatial arrangement of sINR and Sp1
appeared to be important as increasing the distance
between the two elements decreased transcription and
changed the TSS. The unique inverted repeat sequence
at positions –37 to –49 is a strong enhancer of the
DHX9 promoter. The cooperation between sINR and
Sp1 is likely to be general as the sINR sequence could
function as a core promoter element in a heterologous
context when positioned downstream to several Sp1
sites. In addition the majority of native sINR-containing
promoters contain Sp1. Thus sINR can be regarded as a
TATA-less-specific INR that functions in cooperation
with Sp1.

The transcriptional activity of Sp1 is manifested
through several distinct activation domains (33,34),
which are able to activate transcription through different
core promoters (35). While full-length Sp1 activated tran-
scription with equal efficiency through a TATA box or an
INR core promoter, the isolated glutamine-rich activation
domains preferentially activate an INR but not a TATA
box containing core promoter suggesting that different
mechanisms are used by Sp1 to communicate with
the transcriptional machinery according to the core pro-
moter type.

Our study suggests that two possible factors may be
involved in sINR function. The YY1 protein was the
major and specific sINR binding protein in nuclear
extracts, and it also associates with the DHX9 promoter
in vivo in chromatin immunoprecipitation assays (data not
shown). However, YY1 and the related YY2 siRNA
experiments did not provide evidence that YY1 is the
major protein directing the activity of DHX9 sINR in
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transcription. This observation is also supported by the
finding that the effect of certain mutations in sINR did
not fully correlate with YY1 binding activity. YY1 has
been implicated in INR function in the adeno-associated
virus type 2 P5 promoter (30); however, its involvement in
the function of the initiator of the human DNA polymer-
ase b gene has been ruled out (36).

The second factor involved in sINR function is TFIID,
a basal transcription factor that can recognize and bind
directly to the INR through its TAF1 and TAF2 subunits
(10–12). We found that the activity of the DHX9 pro-
moter to be sensitive to TAF1 mutation suggesting that
in this promoter TAF1 is important for sINR activity.
However, considering the strict INR core and the con-
served and functional flanking sequences it is possible
that other TAFs or other factor(s) participate in the rec-
ognition of this element. The unique sequence and func-
tional properties of sINR compared with other INR
elements suggest that the INR core promoter element
can be regarded as a family of related core promoter ele-
ments with common and distinct features.
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