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Abstract
Lipid bodies (LBs), multifunctional organelles present in most eukaryotic cells, are sites of
eicosanoid formation in leukocytes; but little is known about the composition of leukocyte LBs or
the biogenesis and internal structures of LBs from mammalian cells. Proteomic analyses of LBs
purified from human monocytic U937 cells detected, common to LBs in other cells, proteins involved
in cholesterol and triglyceride metabolism, Rab GTPases, and many membrane and endoplasmic
reticulum (ER)-associated proteins. Newly lipid body (LB)-associated proteins included MRP-14,
potentially involved in arachidonate transport, and ribosomal subunit proteins and translation
regulatory proteins. Ultrastructurally, in U937 cells as well as human neutrophils and eosinophils,
ribosomes are attached to and distributed within LBs, and LBs contain extensive ER-like membranes.
The presence of ribosomes, ER-like membranes and many membrane-associated and ER luminal
proteins within LBs, supports a new model by which enveloped ER-membranes and domains form
LBs and indicates that LBs may be sites of protein synthesis.

Lipid bodies (LBs), also known as lipid droplets, are increasingly recognized as dynamic
organelles (1,2). In adipocytes and steroidogenic testicular, ovarian, and adrenal cells, LBs
were recognized early for their roles in the storage and metabolism of fatty acids and
cholesterol. The central core of LBs contains triglycerides. Lipid body (LB)-stored cholesterol
in steroidogenic cells is a synthetic precursor of steroid hormones, and in other cells is important
in atherogenic and other activities of cholesterol (3). LBs, rich in triglycerides and cho.lesterol
(1), are surrounded not by a typical bilayer membrane but by a monolayer of phospholipids
(4). Specific LB-associated proteins of the perilipin, adipophilin, TIP47 (PAT) family,
perilipins, adipophilin, tail-interacting protein of 47 kDa (TIP47), and S3–12 (5–8) are involved
in LB triglyceride metabolism (9).

Proteomic studies of LBs from Chinese hamster ovary K2 cells (10), squamous carcinoma
A431 cells (11), hepatoma cells (12,13), and 3T3-L1 adipocytes (14) provided broader insights
into the functioning of LBs. For instance, recognition that several Rab GTPase proteins are
associated with LBs (10–12,14,15) suggests roles for these LB-associated proteins in
membrane trafficking or other regulated processes. Indeed, LBs have more roles than simply
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as depots of neutral lipids (16). While LBs are assumed to be derived from the endoplasmic
reticulum (ER), critical aspects of LBs, including their internal structure and mode of derivation
from ER membranes, have been unsettled. Although PAT proteins and caveolin were initially
immunofluorescently localized to circumferential surfaces of LBs, recent freeze-fracture
immunogold electron microscopy (EM) revealed that caveolin-1 in smooth muscle cells (17)
and TIP47 and adipophilin (16,18) in macrophages are present within LBs and localized to
freeze-fractured lamellae within LB cores (16–18).

LBs have additional functions in leukocytes. Leukocyte LBs form in macrophages, neutrophils,
and eosinophils associated with infectious and inflammatory responses (19). Specific
pathogen- and ligand-initiated, receptor-mediated pathways activate intracellular signaling that
leads to enhanced LB formation. For instance, Mycobacterium bovis bacillus Calmette-Guérin
induces TLR2-mediated formation of LBs in macrophages (20), platelet-activating factor
through its receptor induces LB formation in neutrophils and eosinophils (21,22), and the
chemokines eotaxin (CCL11) and RANTES (CCL5), acting via CCR3 receptors, stimulate LB
formation in eosinophils (23). Leukocyte LBs contain esterified arachidonate (24,25) and
possess enzymes to liberate [e.g., cytosolic phospholipase (cPL) A2] (26) and metabolize
[e.g., 5-lipoxygenase (5-LO), prostaglandin H synthases (PGHSs, cyclooxygenases), and
leukotriene (LT) C4 synthase] (20,22,27,28) arachidonate to synthesize eicosanoids. Increased
leukocyte LB numbers have correlated with enhanced production of PGHS (PGE2) and 5-LO
(LTB4 and LTC4) -derived eicosanoids (21,22,29). Moreover, as evidenced by
immunolocalizations of newly synthesized eicosanoids, LBs are specific sites of de novo
formation of LTC4 and PGE2 in leukocytes (20,23). Roles for LBs in eicosanoid formation
even in nonleukocyte cells have been indicated. For instance, cPLA2, PGHS-2, and microsomal
PGE synthase were localized to LBs in human fetal epithelium and fibroblasts (30), and
PGHS-1 and -2 were localized to LBs in the corpus luteum (31). In addition, neutrophil LBs
rich in arachidonate are motile and transiently associate with phagosomes, potentially
providing arachidonate to activate phagosome-associated NADPH oxidase (32).

Cytokines and signaling kinases are present in leukocyte LBs (26,33–35). Although
immunofluorescent localizations of PAT proteins to surfaces of LBs under-detect PAT proteins
within LBs (18), immunolocalizations of eicosanoid-forming enzymes to LBs have
consistently documented labelings within LBs (22,23). By immunogold, EM 5-LO localized
throughout eosinophil LBs (22). Moreover, EM has at times revealed honeycomb-like internal
ultrastructures within eosinophil LBs (22), and transmembrane spanning proteins, such as
LTC4 synthase, were localized throughout eosinophil LBs (22). Thus, at least in leukocytes,
LBs likely contain as yet undefined membranous structures and membrane-associated proteins
within LB cores.

Given the broader functional roles recognized for LBs in leukocytes, we used human monocyte
U937 line cells to evaluate proteins associated with isolated LBs doubly purified by subcellular
fractionation. We complemented proteomic analyses of isolated LBs with transmission EM
studies of LBs in U937 cells as well as native blood-derived human eosinophils and neutrophils.
We find that leukocyte LBs share a number of proteins associated with LBs in other cells and
also contain proteins involved in protein translation, a finding corroborated by EM studies
showing ribosomes associated with and within leukocyte LBs, contain ER luminal proteins
and possess membranous internal structures within LB cores. These findings support a novel
model for the formation of LBs from the ER.
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Materials and Methods
Purification of lipid body proteins

Human U937 cells (CRL-1593.2, American Type Culture Collection; Manassas, VA, USA)
cultured at ≤2 × 105 cells/ml overnight in RPMI 1640 medium, 10% FBS, 100 U/ml penicillin,
100 μg/ml streptomycin (37°C, 5% CO2) contained numerous LBs. Disrupted U937 cells were
subjected to two cycles of subcellular fractionation for isolation of buoyant LBs by
modifications of prior methods (24). Cells were resuspended at 108 cells/ml in cold disruption
buffer (25 mM Tris-HCl pH 7.4, 5 mM ethylenediaminetetraacetic acid, 1 mM ethylene glycol-
bis-tetraacetic acid, 0.2 mM phenylmethylsulfonyl fluoride, 50 μg/ml Nα-p-tosyl-L-lysine-
chloromethyl ketone, 1 μg/ml leupeptin, 1 μg/ml pepstatin A, and 1 μg/ml aprotinin). After
nitrogen cavitation (800 psi, 10 min, 4°C), disrupted cells were mixed with sucrose to a
concentration of 0.54 M sucrose. Nuclei and intact cells were removed by centrifugation (1000
g, 30 min, 4°C). The cavitate was overlaid with 0.27, 0.135, and 0 M sucrose solutions and
subjected to ultracentrifugation (150,500 g, 3–4 h, 4°C). Cytosolic and buoyant LB-containing
fractions were harvested from the 0.54 M sucrose and uppermost layers, respectively.

To minimize contamination of LBs, initially isolated LB fractions were adjusted to contain
0.35 M sucrose and 0.15 M NaCl and placed under layers of 0/0.135 M/0.27 M sucrose
solutions for a second ultracentrifugation. As controls, initially isolated cytosolic fractions
containing equal amounts of protein were likewise placed under the same layered sucrose
solutions. After ultracentrifugations as above, sucrose-free upper layers containing buoyant
LBs or control proteins were collected. Fractions from multiple isolations derived from >2 ×
109 cells were pooled and mixed with chloroform and methanol at volume ratios of 1:1.25:2.5
(sample:chloroform: methanol). Proteins were pelleted by centrifugation, resolved on 4–12%
NuPAGE SDS reducing gels (Invitrogen, Carlsbad, CA, USA), and stained with GelCode Blue
(Pierce, Rockford, IL, USA). Purity of doubly isolated LBs was ascertained. Specific organelle
markers—nuclear lamin B, endosomal annexin VI, and lysosomal cathepsin D—were not
detectable in isolated LB fractions by Western blot, nor were enzyme activities of cytosolic
lactate dehydrogenase and microsomal sulfatase C.

MS/LS analyses
Six protein-containing zones from doubly isolated LB fractions, excised from gels, were
subjected to trypsin digestion (36). Digested samples reconstituted in 5% acetonitrile, 0.005%
heptafluorobutyric acid, 0.4% acetic acid were loaded on nanoscale C18 reverse-phase HPLC
capillary columns (37). Peptides, eluted with increasing concentrations of 95% acetonitrile,
0.005% heptafluorobutyric acid, 0.4% acetic acid were subjected to electrospray ionization
and entered into a LCQ DECA ion trap mass spectrometer (ThermoFinnigan, San Jose, CA,
USA). Peptide sequences were determined by matching protein or translated nucleotide
databases with acquired fragmentation patterns by the Sequest program (ThermoFinnigan).
Proteins were identified based on two or, more commonly, multiple peptide sequences (except
where noted in Table 1). Potential membrane insertion domains were assessed through TMAP
prediction (http://bioinfo.limbo.ifm.liu.se./tmap) based on single sequence alignment (38).

Electron microscopy
U937 cells—Cultured U937 cells were fixed in 1% paraformaldehyde/1.25% glutaraldehyde,
processed for EM and examined as detailed before (39). Seventy-five electron micrographs
ranging from 8000× to 75,000× were evaluated.

Neutrophil and eosinophil isolation and stimulation—As approved by the Committee
on Clinical Investigation, blood granulocytes were isolated and eosinophils were purified by
negative selection as described (39). Eosinophils (106 cells/ml) were stimulated with
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recombinant human eotaxin or RANTES (100 ng/ml, R&D Systems, Minneapolis, MN, USA)
or medium alone (RPMI 1640, 0.1% ovalbumin) at 37°C for 1 h. Cells were processed for EM,
as above.

Results
U937 lipid body protein composition

To minimize contamination, initially isolated LB fractions were resuspended in higher
concentration (0.15M NaCl) salt and reisolated from buoyant fractions on second
ultracentrifugations. The stained protein profiles of doubly isolated LBs (Fig. 1, lane 1) differed
both from those of initial cytosolic fractions (Fig. 1, lane 3) and from control cytosolic fractions
that were subjected to second subcellular fractionations (Fig. 1, lane 2) (the latter of contained
50–75 kDa proteins identified as contaminating cytokeratins). From the six excised lane 1
zones, MS/LS analyses identified proteins listed in Table 1.

U937 cell LB-associated proteins included many associated with LBs in other cells, such as
the LB proteins, adipophilin, TIP47, CGI-49, and CGI-58, various enzymes involved in
cholesterol, triglyceride, and retinyl lipid synthesis, and ER chaperone/folding proteins (heat
shock protein 70, BiP, calnexin, and protein disulfide isomerase P5) (Table 1). Two
cytoskeletal proteins, tubulin-α and actin, previously associated with LBs, were identified
(Table 1). Several proteins potentially involved in vesicular trafficking were identified,
including Ras-related Rab family member proteins (Table 1), previously associated with LBs,
as well as three (VAT-1, transmembrane traffic protein, and GTP binding protein SAR1a) not
known to be associated with LBs. In addition, other proteins (Table 1, see Miscellaneous) were
identified, including some not yet recognized to be associated with LBs, S100 calcium binding
protein A9, hypothetical proteins FLJ21820 and MGC10084, and HSPC028.

Novel findings for LB-associated proteins were several ribosomal component proteins and
proteins involved in regulation of ribosomal protein translation. Ribosomal proteins were 60
S acidic ribosomal protein, 60 S ribosomal proteins L11 and L23, and 40 S ribosomal protein
S20; translational control proteins were eukaryotic elongation factors 1-α, 1-γ, and 4A-1 (Table
1).

Several proteins mediating glycosylation and often associated with the ER were identified
(Table 1), including two not previously associated with LBs: oligosaccharyl transferase subunit
and dehydrodolichyl diphosphate synthase. These latter proteins are membrane-associated, and
of the varied proteins identified in U937 LB fractions, more than half were recognized as
membrane-spanning proteins or contained predicted membrane-inserting domains (Table 1).

Ultrastructural studies of lipid bodies in situ
Findings of ribosomal and ER-related proteins associated with isolated U937 LBs and the
identification of many membrane-inserting proteins with LBs, that nominally possess only a
delimiting phospholipid monolayer (4) and lack heretofore identified internal membranes, led
us to examine the ultrastructure of LBs. As we found with isolated eosinophil LBs (24), the
inherent buoyancy of isolated U937 LBs precluded their sedimentation into pellets amenable
for transmission EM. Thus, we used EM of intact U937 cells, neutrophils, and eosinophils to
examine the ultrastructure of LBs.

U937 cell lipid bodies in situ
LBs within U937 cells appeared to be composed of amorphous lightly dense core material (Fig.
2A,B) and frequently showed an electron-dense rim devoid of a bilayer membrane (Fig. 2A,
arrowheads), features typical of LBs in other leukocytes (40, 41). U937 LBs were frequently
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closely associated with the ER. LBs were partially (Fig. 2B, C) or completely (Fig. 2D)
surrounded by ER cisternae, with some clear attachments between them (Fig. 2B, C, arrows).
Cytoskeletal filaments were inserted onto LBs (Fig. 2E, F, arrowheads) or encapsulated these
structures (Fig. 2F, arrows).

Ribosomes are associated with lipid bodies
Associations between LBs and ribosomes were evident in U937 cells. Free ribosomes (Fig.
3A, arrowheads) or rough ER profiles (Fig. 3A) were lining or attached to borders of LBs.
Moreover, ribosomes or ribosome subunit-like particles were present within the lipid-rich cores
of LBs (Fig. 3A, B, arrows). To further ascertain associations of ribosomes with leukocyte
LBs, we studied human blood-derived granulocytes, neutrophils, and eosinophils by EM. These
granulocytes were chosen for three reasons: 1) they are native leukocytes (in contrast to the
U937 cell line), 2) they can contain prominent LBs, and 3) they exhibit differential LB
osmiophilic staining when examined by EM. Eosinophil LBs characteristically are very
electron-dense whereas neutrophil LBs are more electron lucent (40), like those in U937 cells.

Clear associations between LBs and ribosomes were observed in both neutrophils and
eosinophils. Free ribosomes were lining or attached to LB borders, often with heavy clusters
of ribosomes (Fig. 4A). In addition, ribosome-like particles were present within LBs (Fig.
4Aii). In both granulocytes and U937 cells, some LBs devoid of associated ribosomes were
observed concomitantly with heavily ribosome-associated LBs (Fig. 4Ab, B). To provide
additional evidence that LBs interact with ribosomes, eosinophils were stimulated with eotaxin
or RANTES and examined by EM. Eosinophils activated by eotaxin or RANTES in vitro, like
those recruited during inflammatory processes in vivo, exhibit morphological changes
associated with activation, including the induction of new LB formation (23). Stimulated
eosinophils contained large LBs with ribosomes not only attached to the circumferential
surfaces of LBs, but also spread within their core contents (Fig. 4C). Ribosomes were also
associated with ER cisternae wrapping around LBs (Fig. 4Cb, arrows). Thus, EM studies of
U937 cells and two human leukocytes provided evidence of intimate associations of ribosomes
around and within LBs, in support of proteomic findings of ribosomal subunit proteins in
isolated U937 LBs.

Internal structure of leukocyte lipid bodies
EM of U937 LBs at times demonstrated subtle variegated inhomogeneous densities within LB
cores (e.g., Fig. 2D) and at times indicated membranous structures extending within LB cores
(Fig. 5A). Such findings, while suggestive, did not clearly reveal internal membranes in LBs.
In contrast, EM of LBs from eosinophils provided clear evidence of extensive networks of
membranous structures within LBs in both resting (Fig. 5B) and agonist-stimulated eosinophils
(Fig. 5C). The same complex membranous structures present within LBs (Fig. 5B, C) were
also visualized outside of and adjacent to LBs (Fig. 5D, E, arrows). Typical ER cisternae were
also revealed within LBs (Fig. 5Ba, Bb, arrowheads).

Discussion
LBs in diverse prokaryotic and eukaryotic cells are multifunctional organelles (1), although
the origins and functions of LBs in leukocytes have not been fully considered in analyses of
LBs (2). In leukocytes, LBs are organelles at which phospholipid-esterified substrate
arachidonate, arachidonate-liberating phospholipases, and eicosanoid-synthesizing PGHSs
and 5-LO are colocalized to provide for the focal formation of eicosanoids (20,23,42). In
nonleukocytic cells, Chinese hamster ovary cells (10), squamous carcinoma cells (11),
hepatoma cells (12,13), and 3T3-L1 adipocytes (14), proteomic analyses of their LBs have
revealed a diversity of LB-associated proteins. In the present study, we used human U937
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monocytic cells for proteomic analyses of isolated LBs and combined these analyses with EM
of both U937 cells and human blood leukocytes. Together, these investigations yielded insights
into the protein compositions, organellar interrelationships, internal membranous structures,
and ER origins of leukocyte LBs.

Proteomic analyses of U937 LBs, doubly purified by subcellular fractionation to minimize
contamination, identified many proteins found with LBs as well as other proteins not previously
associated with LBs. U937 LBs contained four well-recognized LB-associated proteins:
adipophilin, TIP47 (mannose-6-phosphate receptor binding protein), CGI-49, and CGI-58.
PAT family proteins, including adipophilin and TIP47, pervade LB cores in other cells (18),
including macrophages (16); their functions in lipid metabolism in other cells have been
reviewed (9). CGI-58 may be involved in fatty acid transfer from triglycerides to phospholipids
(10), and its genetic defect underlies the Chanarin-Dorman syndrome characterized by
accumulations of triglyceride-rich LBs in multiple cells, including leukocytes (43). CGI-49 is
of uncertain function.

Other proteins common to U937 LBs and LBs of other cells were many related to lipid
metabolism (Table 1), including the synthesis, storage, utilization, and degradation of
cholesterol esters, triglycerides, and retinyl esters. Two cytoskeletal proteins, previously
localized to LBs, actin and tubulin-α, may have pertinence to the cytoskeletal insertions into
U937 cells demonstrable by EM (Fig. 2E, F) as well as the recognized capacity for neutrophil
LBs to exhibit rapid intracytoplasmic movement and kiss and run interactions with phagosomes
(32).

The findings of Ras-related Rab proteins in prior proteomic studies of LBs (10,11,13–15,44)
were recapitulated with the identification of Rabs 1A, 1B, 7, 10, 11, 14, and 18 in isolated
U937 LBs (Table 1). Other proteins, likely involved in vesicular trafficking, found with U937
LBs included some not previously associated with LBs: VAT-1 (synaptic vesicle membrane
protein) homologue, SNAP29 (vesicle membrane fusion protein), transmembrane traffic
protein, GTP binding protein SAR 1a, and Rap-1a. Human VAT-1 homologue is a member of
medium-chain dehydrogenases/reductases family (45). Protein p22, a calcium binding protein,
may mediate constitutive membrane traffic (46), have roles in microtubule and ER organization
(47), and interact with microtubules and glyceraldehyde-3-phosphate dehydrogenase (48), the
latter also identified in U937 LBs (Table 1). AMID, an apoptosis-inducing factor/homologous
mitochondrion-associated inducer of death, which lacks a mitochondrial localization signal,
was previously localized to the cytoplasm or the outer mitochondrial membrane, and induces
caspase-independent apoptosis (49), is of uncertain function in LBs. Transmembrane protein,
an integral membrane protein often localized to the lumen of the ER, may be involved in
vesicular trafficking (50). TD54 may be involved in vesicle trafficking; and in yeast, two-
hybrid screening binds perilipin (51). The functional roles of these candidate vesicular
transport-mediating proteins vis-à-vis LBs remain largely unknown, although overexpression
of Rab 18 has promoted LB association with the ER (44).

ER-associated proteins identified in U937 LBs included oligosaccharyl transferase subunit,
dehydrodolichyl diphosphate synthase, and dolichyl-phosphate-glucosyl transferase as well as
ER-associated chaperones or folding proteins. The latter included BiP, an intraluminal ER
protein, calnexin, a transmembrane ER protein, and protein disulfide isomerase; these have
been localized to LBs in other cell types (Table 1). EM studies demonstrated close associations
of ER with LBs in U937 cells (Fig. 2B–D). The points of LB contacts with ER cisternae have
been noted to be ribosome-rich, as we found, and have been suggested to be named as an ER
subdomain, “lipid droplet-associated membrane” (44). While close associations of ER with
LBs might contribute in part to the ER proteins identified in the proteomic analyses, LBs are

Wan et al. Page 6

FASEB J. Author manuscript; available in PMC 2009 July 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



considered to be derived from the ER and perhaps to have continuing interactions with it (3,
17).

Of the proteins identified with U937 LBs, several may have specific relevance for leukocyte
LBs. Two proteins may be related to their myeloid origin. HSPC028, a basic leucine zipper
protein, was first sequenced from CD34+ hematopoietic progenitor cells (52), and its function
is uncertain. Myeloid S100A9 (MRP14) can bind and transport arachidonate, and may shuttle
unsaturated fatty acids to membranes (53,54). With the activities of leukocyte LBs in
arachidonate-derived eicosanoid formation, SA100A9 might participate in local arachidonate
metabolism or delivering neutrophil LB-derived arachidonate to activate phagosomal NADPH
oxidase (32,55). Another protein potentially involved in arachidonate metabolism in LBs is
triglyceride lipase. Neutrophils store arachidonate in triglyceride pools in LBs (25) and transfer
arachidonate from triglycerides into phospholipids (56). Triglyceride lipase could release
arachidonate from triglycerides to enter LB phospholipids, from which regulated activation of
PLA2 would provide arachidonate for eicosanoid synthesis. Likewise, LB-associated CG-58
might also mediate fatty acid transfer from triglycerides to phospholipids (10).

Novel findings from proteomic analyses were the identification of several ribosomal subunit
proteins as well as translation initiation factors in isolated LBs. Although care was taken to
minimize contamination of isolated buoyant LBs, it is possible that some ribosomes were
durably associated with LBs throughout the isolation. EM analyses of U937 cells, neutrophils,
and eosinophils, however, were also informative. Free ribosomes or rough ER profiles were
attached to the borders of LBs (Fig. 3A), and ribosomes or particles resembling ribosomal
subunits were present within U937 (Fig. 3A, B) and neutrophil (Fig. 4Ab) LBs. In agonist-
stimulated eosinophils, which contained large LBs, ribosomes were both attached to the
periphery of LBs and distributed within LB cores (Fig. 4Cb). Thus, EM of U937 cells,
neutrophils, and eosinophils demonstrated ribosomes present around and within LBs, in
support of proteomic findings of ribosomal subunit proteins in isolated U937 LBs. Recently,
proteomic analyses of Drosophila and yeast LBs have likewise identified ribosomal proteins
(57,58), and proteomic analyses of LBs from hepatitis C virus core protein expressing
hepatoma cell have identified ribosomal and RNA-interacting (DEAD box) proteins (13).

That LBs in leukocytes may be sites of ribosomal function is consonant with prior
ultrastructural studies of LBs in human mast cells: 1) 3H-uridine accumulated in these LBs;
2) RNA was localized within LBs by affinity-staining with an RNase-gold probe and by anti-
ribosomal antibody (Ab) and antiuridine Ab immunogold labelings; 3) poly(A)mRNA was
detected within LBs by in situ hybridization with a poly(U) probe; and 4) several human
autoimmune sera to ribosomal component proteins immunolabeled LBs (59,60). Moreover,
our ongoing studies in a mast cell line transfected with a GFP-5-LO encoding plasmid are
demonstrating translation and de novo synthesis of GFP-5-LO protein within LBs (unpublished
results). Thus, ribosomal localization at and within LBs in leukocytes may be linked to
compartmentalized protein synthesis at LBs.

Finally, a new finding from our ultrastructural studies was the identification of internal
membranous structures within LBs, especially notable within eosinophils. Robenek et al.,
whose freeze fracture EM studies demonstrated concentric lamellae within LBs when
conventional transmission EM revealed apparently homogenous lipid staining, have suggested
that vagaries in chemical fixation and/or lipid solvents have prevented recognition of internal
structures within LBs in most cells (17). Upon closer examination, EM images of LBs,
however, such as those from U937 cells (Fig. 2D), often demonstrated inhomogeneities within
the neutral lipid-rich cores of LBs. In eosinophils, our prior transmission EM at times revealed
honeycomb patterns within eosinophil LBs (see Fig. 3 in ref. 22); and EM immunogold staining
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for 5-LO, an enzyme that associates with membranes for its activation and catalysis, was
distributed throughout LBs (22).

One contemporary model of LB biogenesis has neutral lipids accumulating between the
cytoplasmic and luminal leaflets of ER membranes, followed by the budding off of LBs
surrounded by a phospholipid monolayer derived from the cytoplasmic leaflets of ER
membranes (17). This model, which has not been corroborated by EM images of developing
LBs, accords with the recognized phospholipid monolayer that surrounds LBs (4), but fails to
account for a solely noncircumferential topology of membrane-associated proteins in LBs.
More than half of the proteins identified in the U937 LB proteome were membrane-spanning
proteins or contained predicted membrane insertion domains (Table 1). With this model, these
proteins could insert only in the circumferential membrane of LBs. LTC4 synthase, localized
fully within eosinophil LBs (22), is a transmembrane-spanning protein, like the luminal ER
protein, calnexin, also commonly found in LBs (Table 1). The freeze fracture immunogold EM
studies of Robenek et al. demonstrated that caveolin-1 was located on the luminal leaflets of
ER membranes and distributed within LBs (17). The same group likewise localized TIP47 and
adipophilin within LBs, but noted how TIP47 and adipophilin, as polar proteins, and
membrane-associated caveolin-1 could partition within LB cores that were assumed to
contained only membrane-devoid neutral lipids, has been an enigma (16,17).

The freeze fracture EM studies that demonstrated lamellae, often in concentric circles, in LBs
in smooth muscle and macrophages (16–18) would be compatible with internalized ER-derived
membranes. Our findings that ribosomes, which are associated with cytoplasmic surfaces of
rough ER membranes, and several ER luminal proteins were also present within LBs suggest
a new model for LB formation (Fig. 6) by which LBs form by incorporating multiple loops of
ER membranes (both cytoplasmic and luminal leaflets of membranes within the developing
LB). Such a model would be in accord with the freeze fracture EM studies and our EM
demonstrations of membranes within leukocyte LBs. Such a model by incorporating
cytoplasmic membranes of the ER to which ribosomes are attached would provide a means for
ribosomes to become incorporated with LBs. Moreover, by providing for the inclusion of
luminal regions of the ER within LBs, this model would reconcile numerous heretofore
unresolved observations that include how luminal ER proteins, such as caveolin-1 and calnexin,
may be localized within LBs. Both PGHS-1 and -2 are integral membrane proteins and contain
C-terminal KDEL-like sequences that target PGHS to the luminal surfaces of the ER and to
nuclear envelope membranes, as confirmed by immunogold EM (61). In studies of LBs,
immunogold EM has localized PGHSs throughout LBs in multiple leukocytes (27,28). Loops
or sheets of ER-derived membranes within LBs would also provide the means for membrane-
associated or membrane-spanning proteins to be localized within LBs and not solely in the
circumferential membrane monolayer. Accumulations of neutral lipids would develop among
the membranes within LBs. Although such a model of LB organization might be germane
principally to LBs in leukocytes, it is also likely that LBs in other cells share a common
organization. As noted earlier, PGHSs have been localized to LBs in diverse nonleukocytic
cells (30,31). Both stanniocalcin and its membrane-associated receptor are present on LBs in
ovarian steroidogenic cells and adipocytes (62), but how a membrane receptor could be
associated with LBs had been uncertain. The presence of ER-derived membranes within LBs
in steroidogenic cells and adipocytes would provide a means for receptors and other membrane-
associated proteins to be localized within LBs.

In summary, the evolving understanding of LBs as organelles extends beyond their
conventional roles in neutral lipid metabolism and their more recently indicated involvement
in vesicular trafficking. Based on proteomic and ultrastructural studies of human leukocyte
LBs, we propose a novel model for LB biogenesis and identify LBs as organelles containing
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ER-derived membranous domains and proteins as well as ribosomes, and with functional
capabilities that may include local protein synthesis.
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Figure 1.
Protein profiles of LB and cytosolic fractions isolated from U937 cells. Samples were resolved
on SDS-PAGE gels and protein stained, as described in Materials and Methods. After two
sequential subcellular fractionations, lane 1 contained LB proteins in uppermost buoyant
fractions of doubly isolated LBs whereas lane 2 contained proteins from uppermost subcellular
fractions isolated from second control fractionations in which initial cytosolic fractions were
subjected to a second ultracentrifugation. Lane 3 contained proteins from LB-depleted
cytosolic fractions after the first subcellular fractionation. Six zones (arrows) from lane 1 were
subjected to proteomic analyses of LB-associated proteins. Lane 1 LB proteins were
reproducible in three different LB purifications.
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Figure 2.
Morphology of lipid bodies (LBs) and their intracellular interactions in U937 cells. A) LBs
showed a light-dense core with an electron-dense rim (arrowheads) or an ill-defined periphery.
B–D) LB-endoplasmic reticulum (ER) interactions. ER partially (B, C) or entirely (D)
surrounded LBs, with areas of clear attachment (B, C, arrows). E, F) Cytoskeleton filaments
inserted onto (arrowheads) or encapsulated (arrows) LBs. Cultured cells were processed for
transmission electron microscopy (TEM) as described (39). m, mitochondrion. Scale bar, 500
nm (A–C), 480 nm (D, F), 360 nm (E).
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Figure 3.
Ribosomes are associated with lipid bodies (LB) within U937 cells. A, B) Clusters of ribosomes
were attached to the LB periphery (A, arrowheads) or distributed inside LBs (A, B, arrows).
Note that profiles of the rough endoplasmic reticulum (RER) (circles) interact with or surround
LBs. Scale bar, 400 nm (A), 500 nm (B).
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Figure 4.
Lipid bodies (LBs) from human blood leukocytes are sites for ribosomes. Aa) In resting
neutrophils, electron-lucent LBs (box) exhibited heavy ribosome clusters in both periphery and
core. Ab) Higher magnification of the boxed area. B) An endoplasmic reticulum (ER) -encircled
LB from the same sample does not show internal ribosomes. Ca) Eotaxin-stimulated eosinophil
shows a large electron-dense LB (box) with clusters of attached ribosomes at its periphery
(arrows in panel Cb). Note the presence of ribosomes in the LB core and the clear LB interaction
with the surrounding rough ER. Panel Cb corresponds to the boxed area in panel Ca. Eosinophil
specific granules with content losses (*) and eosinophil sombrero vesicles (EoSVs)
(arrowheads), morphological concomitants of eosinophil activation (39), are indicated
respectively in panels Ca and Cb. n, nucleus; gr, granule. Scale bar, 440 nm (Aa), 300 nm
(Aa, B, Cb), 1 μM (Ca).
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Figure 5.
Internal structure of lipid bodies (LBs) in human U937 cells and blood leukocytes. A) A large
and electron-lucent U937 LB shows internal membranous structures (arrowheads). Ba) An
organized membranous network (highlighted in red in panel Bb) is clearly seen within an
osmiophilic eosinophil LB. Note that typical ER cisternae (arrowheads) are seen as part of
another LB. C) Part of an elaborate membranous structure (circle) is revealed within a LB
(circle). D, E) The same membranous network (arrows) is observed in close apposition to other
apparently homogenous LBs. Arrowheads in panel E indicate a classical ER cisternum
wrapping around LB. Eosinophils were stimulated with RANTES (C, E) or eotaxin (D), or
medium alone (B). Cells were processed for EM as described (39). Scale bars, 600 nm (A, C),
330 nm (B), 800 nm (D), 300 nm (E).
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Figure 6.
Model of the structure of lipid bodies. LBs contain enfolded ER membranes, accounting for
the localization of luminal ER proteins within LBs and providing internal membranes into
which membrane-associated proteins may insert. The circumferential border of LBs is the
phospholipid monolayer of the cytoplasmic leaflet of the ER. Neutral lipids accumulate within
LBs and may obscure their internal membranes. Ribosomes associated with the ER are at the
periphery of LBs as well as within them.
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