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Abstract
The autism spectrum disorders (ASD) are a heterogeneous set of developmental disorders
characterized at their core by deficits in social interaction and communication. Current psychiatric
nosology groups this broad set of disorders with strong genetic liability and multiple etiologies into
the same diagnostic category. This heterogeneity has challenged genetic analyses. But shared patient
resources, genomic technologies, more refined phenotypes, and novel computational approaches
have begun to yield dividends in defining the genetic mechanisms at work. Over the last five years,
a large number of autism susceptibility loci have emerged, redefining our notion of autism’s
etiologies, and reframing how we think about ASD.

Introduction
Autism is a neurodevelopmental disorder defined by three categories of deficits: 1) abnormal
development or impairment of social interaction, 2) abnormal development or impairment of
communication skills, and 3) stereotypic and repetitive behaviors [1]. Autism is part of a larger
family of neurodevelopmental disorders categorized by the Diagnostic and Statistical Manual
IV-R under the term Pervasive Developmental Disorders (PDD) [1]. PDD includes Asperger
Syndrome (AS), where language appears normal, and pervasive developmental disorder not
otherwise specified (PDD-NOS) in which children meet some but not all criteria for autism.
Collectively, these disorders are known as the autism spectrum disorders (ASD) [1]. Rett
syndrome and Childhood Disintegrative Disorder also are classified as a PDD, but are
exclusionary for a diagnosis of autism.

Hypothesized by Kanner to be an innate or inborn disorder in his original description, autism
was not formally determined to be a genetic disorder until Folstein and Rutter demonstrated a
greater than 50% concordance for monozygotic, versus 0% for dizygotic twins. More recent
twin studies have observed as high as 90% trait heritability for monozygotic twins [2], and
family studies suggest a 22 fold increased risk over the general population for first-degree
relatives [3], although this does not use the current CDC prevalence estimate of 1/152 for ASD
[4]. Taken together, these studies indicate a high genetic liability, while leaving some room
for environmental factors that may influence the penetrance or expressivity of these disorders
with respect to genetic risk factors.

Although ASD is highly heritable, the identification of candidate genes has been hindered by
the heterogeneity of the syndrome and insufficient numbers of participants, as compared to
whole genome association studies in other complex genetic disorder. The establishment of
collaborative groups, such as the International Molecular Genetic Study of Autism Consortium
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(IMGSAC) and Autism Genome Project Consortium [5,6], and shared resources, such as the
Autism Genetic Resource Exchange Consortium (AGRE) [7], were therefore important steps
in facilitating the identification of candidate genes. Linkage peaks on chromosomes 7q22–32
[5,8] and chromosome 17q21 [9–11] have been replicated. However most linkage signals have
not been replicated, despite large increases in sample size, consistent with significant genetic
heterogeneity [6,12]. Recently, a whole genome association study involving over 1500 cases
and controls combined from different cohorts has identified and replicated at least one locus
at genome-wide significance [13]. This demonstrates the promise of this approach, while at
the same time, suggesting that very large sample sizes will be needed to identify additional
genetic risk due to common alleles. Currently, there are over 25 different loci that may be
considered autism susceptibility candidate genes (ASCG) and many more implicated loci are
under investigation [12]. Most of these are rare, Mendelian mutations, including copy number
variation (CNV) or syndromic forms of autism, and only a few are due to common genetic
variation. In this brief overview, we will try to highlight some of the major advances in the
study of autism, as well as discuss what the known ASCG can tell us about the
neurodevelopmental mechanisms that may be causative.

A Phenotypic Renaissance
During the 1970s, psychiatric disorders were defined as deviations from the normal spectrum
of behavior, but due to practical and economic factors, diagnostic schemes eventually became
highly categorical. This categorization, while necessary from a clinical and educational
standpoint, resulted in large groups of heterogeneous patients with diverse etiologies being
defined by a single terminology. This clinical diagnostic schema based on the DSM was the
primary means of phenotypic classification for early genetic work. But for modern genome-
wide studies, clinical impression gave way to improved schema for classification using
standardized and reliable research tools such as the ADOS and ADI [14,15]. Still the lack of
formal replication of most autism linkage peaks [12], despite more than a 10-fold increase in
sample size [6], indicates genetic heterogeneity. This, in conjunction with the wide range of
phenotypes observed within the categorical classification of autism, suggests that methods
reducing these two sources of complexity would increase power to identify ASCG [16].

Newer work has returned to the concept of disease-related spectrums in a more refined manner
based on the concept of endophenotypes [17]. In autism, endophenotypes such as presence or
lack of language, age at first word, age at first phrase, social cognition, gender, restrictive
repetitive behaviors, and best estimate IQ, have been used in an attempt to increase power [9,
16,18,19]. Alarcón and coworkers initially utilized this approach to identify a locus related to
language delay on chromosome 7q [16,20]. Subsequent linkage directed association identified
CNTNAP2 as an ASCG using an age at first word endophenotype, one of the first ASCG
identified from a comprehensive evaluation of common variants within a linkage region
defined by a whole genome linkage scan [21]. Other support for the more general involvement
of this gene in language development were the findings that it is associated with Specific
Language Impairment and is related to monogenic disorders affecting language [22,23]. Thus,
the further identification and use of endophenotypes related to other autism-related domains
will likely increase power to detect ASCG.

The Genomic Revolution
Structural chromosomal variations, including CNVs, have been shown to play an important
role in the etiology of ASD [24]. De novo CNVs, hypothesized to be ASD-specific, have been
identified in up to 7–10% of sporadic ASD [24,25] De novo CNVs are less frequent in multiplex
families, occurring only in about 2% of families screened [24,26], possibly suggesting different
genetic liabilities in simplex and multiplex ASD. Recurrent CNVs at 15q11–13 (1–3% of ASD
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patients), 16p11 (~1% of ASD patients), and 22q11–13 [6,24,25,27,28] have been confirmed
in multiple studies. Many of the CNVs identified overlap with previously identified mental
retardation (MR) loci or chromosomal syndromes. For example, Phelan-McDermid Syndrome
defined by deletions of 22q13 overlaps with deletions and duplications of the gene SHANK3,
an ASCG [29]. This is not a surprise as 94% of the original Phelan-McDermid Syndrome
patients met ASD criteria via the CARS phenotyping tool. Therefore, analyses of genomic
syndromes like Phelan-McDermid Syndrome or other syndromes that are comorbid with ASD
diagnoses indicate important genes in the etiology of ASD [12,30].

The syndromes of structural chromosomal abnormalities also may provide insight into the
mechanism behind sporadic ASD. For example, advanced paternal age is an established risk
factor for ASD [31], and genetic instability through altered recombination efficiency increases
as a parent ages. The increased recombination acts as a mechanism for multiple MR-associated
syndromes [32]. Therefore, while it is unknown if paternal-age related recombination is a
causative agent in CNV formation in autism, it is an attractive hypothesis. Our preliminary
analysis of AGRE and other cohorts suggests that this may be the case (Abrahams and
Geschwind, unpublished data).

Candidates and Compatriots
Epistasis is a basic and ubiquitous genetic paradigm well known within the developmental
biology community. With the advent of large protein-protein interaction maps, full genome
expression profiles and large-scale computing resources, network and pathway analyses offer
promise of dealing with autism’s complexities. Iossifov and coworkers [33] utilized the idea
that interacting proteins involved in linear signaling pathways would have a similar chance of
being involved in the etiology of ASD. By overlaying protein interaction datasets with linkage
analysis, they were able to identify 24 putative novel ASCG [33], which need further
confirmation.

Pathway analysis has also been used to identify novel associations with ASD utilizing a more
standard biological approach. In 2006, Campbell and coworkers identified MET as an ASCG
[34]. Utilizing knowledge of the MET signaling pathway, they investigated genes involved
with this pathway and identified that SERPINE and PLAUR, two components critical for HGF
(MET’s ligand) regulation, potentially increase the risk of ASD [35]. Furthermore, MET
signals through the PI3K-AKT pathway that contains two known ASCG (PTEN and CYFIP1)
and contains three genes that are known to be causative for syndromes that co-occur with ASD
[Tuberous Sclerosis (20% diagnosed with ASD) and Fragile X (25% of the males and 6% of
females diagnosed with ASD)] [12] (Figure 1). Therefore, it is possible that alleles of
SERPINE, PLAUR, MET, PTEN, TSC complex, FMR1, and CYFIP1 might contribute to
autism via epistatic interactions. Other than autism, there is not a large overlap of the
phenotypes related to each of these genes, but this could be explained by the pleiotropic nature
of each of these genes. Therefore, one could hypothesize that the ASD phenotype is common
to a large number of epistatic interactions, but due to pleiotropy of the individual loci, a
heterogeneous phenotype emerges.

Following this logic, we utilized the Ingenuity pathway analysis software to identify published
direct binding partners, transcriptional regulators, and translational regulators for a set of
ASCG [12,26,35–37] to determine if the connections might suggest epistatic relationships. Of
33 candidate genes, direct or indirect interactions (2 degrees of separation at most) can be
established, with the obvious caveat that some genes have been recently identified and display
a reduced connectivity due to reduced publication volume (Figure 2). The limitations to this
analysis lie in validation of the interactions and a realization that interactions are often
temporally and spatially specific events. Therefore, while the interaction may be possible, it
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may not occur in the right tissue or at the right time to affect the pathology of ASD. Despite
its limitations, this preliminary network of genes suggests true interconnectedness of several
currently known ASCG. The potential for non-linearity and feedback loops suggested by even
these simple relationships may obscure phenotypic effects from single polymorphisms or
mutations.

Continuing Quandaries
Despite great advances in the genetics of ASD, there are still at least two major unanswered
quandaries: the basis of the skewed sex ratio and the effect of the environment on ASD. Early
studies demonstrated that males are diagnosed with ASD four times as often as females, and
gender skewing becomes more pronounced in high-functioning autistic and Aspergers patients
as the ratio approaches ten males to every one female [38]. Some of the gender bias might be
explained by a larger than average number of ASCG on the X chromosome [12], as is the case
with candidate loci for other forms of mental retardation. Marshall and coworkers observe that
inherited X-linked CNVs are maternally transmitted and suggest this as a possible mechanism
for the gender bias [25]. Sebat and coworkers found equal numbers of de novo CNVs between
the genders [24], suggesting the bias is not due to increased mutability of the sex chromosomes,
at least in terms of de novo structural variation. A second factor that may lead to the increased
gender ratio is influence of autosomal loci that preferentially affect males or females, as
originally demonstrated by Stone and coworkers [9]. In the largest linkage study to date, the
AGP also found evidence for autosomal, but not X chromosome, sex related autism loci [6].

A non-genetic hypothesis has also been proposed to explain the gender difference. “The
extreme male brain hypothesis” [39] is based on the fact that fetal testosterone acts as an
environmental agent and alters sex-specific neuronal development in utero causing a decrease
in function within the social and communication spectrums, thereby predisposing an individual
with a susceptible genotype toward the diagnosis of ASD [39]. Our Ingenuity network,
presented here, may be consistent with this hypothesis or at least suggests a role for the
androgen receptor as it is regulated by PTEN, directly binds UBE3a, and inhibits the
transcription of SERPINE, three ASCG (Figure 2, orange lines). However, there is as of yet
no direct evidence for “the extreme male brain hypothesis”, as most of the evidence is
correlative in nature.

The second quandary is the role of the environment. Given that the concordance of
monozygotic twins is not 100%, and certain perinatal factors increase the risk for ASD, a role
for environmental factors needs to be considered, eg. parental age [31], premature birth [40],
or immune interaction [41]. Herbert and coworkers overlaid the linkage peaks identified from
several ASD full genome scans with environmental, toxicologic, and immune related gene
databases, finding an overlap of 135 genes [42]. While this analysis was perhaps overly
inclusive in the scope of the ASCG genes selected and lacks rigorous statistical substantiation,
it does indicate a potential set of gene-environment interactions to test.

Synthesis of an Integrated Model
We have recently discussed genetic models for the etiology of ASD [43] and provided a
neurodevelopmental synthesis of autism that is based on altered connectivity between higher
order cortical association areas, especially anterior frontal and temporal lobes [44]. Anatomical
evidence suggests that during the first three years of life, the trajectory of brain growth is
elevated in ASD, head circumference increasing from approximately normal to 10% larger
than age matched peers [45]. During this time period, ages two to four, this growth appears to
localize in the frontal cortex, temporal lobes, and amygdala [45]. Patients with Fragile X and
co-occurring ASD also have an increase in head circumference size compared to those with
Fragile X alone [46]. Diffusion tensor imaging shows that the axon tracts to these areas are
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disrupted [45], consistent with the notion of a developmental disconnection. It is notable that
rare mutations in PTEN cause syndromic forms of macrocephaly and autism in humans [47].
Mouse knockouts of PTEN also display macrocephaly and display differences in axon and
dendrite arborization. It is not yet know whether PTEN causes ASD directly via changes in
brain size, or via effects on axon and dendritic arborization, and the changes in brain size are
secondary.

A second major model for autism pathogenesis is that ASD is caused by a disruption of the
formation or maintenance of synaptic connections. This model is driven by the identification
of the synaptic proteins NLGN3, NLGN4X, NRXN1, and SHANK3 as ASCG [48]. As
predicted by this model, the gene ontology terms appear to suggest a significant enrichment of
genes that have a synaptic function annotation (Figure 3a,b). On the other hand, a model
proposing that ASD is a synaptic disorder may be too limiting. The distribution of gene
ontology functions spanning the entirety of nervous system development and function for the
33 ASCG analyzed suggests that broader biological functions may be involved (Figure 3a,b),
and many of these genes cause other neurodevelopmental syndromes. So, the broad notion of
synaptic dysfunction while clearly contributory may not be sufficient to account for the
specificity autism.

Conclusion
In this brief overview, we have outlined how genetic advances have led to a new level in
understanding ASD etiologies. Genomic tools allowing for the identification of de novo and
heritable CNVs have so far contributed the most to our understanding of ASD, explaining about
10% of sporadic ASD. The analysis of co-morbid phenotypes and endophenotypes also
provides a promising avenue of investigation, as evidenced by the association of common
variants in CNTNAP2 with language endophenotypes in ASD and SLI. Surprisingly, many of
the syndromic or rare ASCG appear to potentially interact at the level of molecular pathways,
making it likely that mutations of one ASCG may affect the expression and function of others
during development. This also provides hope that common treatments could be developed for
those with etiologically distinct genetic forms of ASD. Any useful model of ASD pathogenesis
will need to combine data from genetic, neurodevelopmental, and cell biological studies in
model systems with functional and anatomical studies in human populations. This is especially
true, because the majority of ASCG are not ASD specific and have been implicated in other
neurodevelopmental disorders such as intellectual disability, epilepsy or psychiatric conditions
[12,23,30,33,49]. The mechanism of the male gender bias and the degree and manner in which
environmental influences will contribute to the etiology of ASD remain open questions.
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Figure 1. Epistatic and Pleiotropic Relationships of Autism Susceptibility Candidate Genes
Analyzing the MET-PI3K-AKT pathway can identify epistatic relationships of ASCG. Genes
that are in gray have been associated with ASD, Tuberous Sclerosis (TSC1 and 2) or Fragile
X (FMRP), syndromes that are comorbid with ASD. In the left most pathway, MET is seen
interacting with PLAUR. PLAUR is the receptor for the tissue specific plasminogen activator
(PA), a protease that cleaves HGF into its active form. SERPINE inhibits PA from activating
HGF. After HGF binds MET, MET signals downstream through the canonical PI3K-AKT
pathway that has a potential terminal endpoint of translational regulation by FMR1 and CYFIP.
We propose that the core ASD phenotype may be represented by biological pathway
convergence, while the pleiotropic nature of each gene provides the overlying phenotypic
variability. For example, MET can signal through multiple receptor complexes that define the
functional outcome. For example, MET clustering of NMDA receptors can affect long-term
potentiation; while MET binding with members of the plexin receptor family dictate neural
migration or axon guidance functions.
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Figure 2. A social network for autism susceptibility candidate genes
Analysis of the relationships between 33 ASCG (pink emblems) and associated syndrome
genes (green emblems) were analyzed using the Ingenuity Pathway Analysis
(http://www.ingenuity.com). Direct (solid lines) and indirect (dashed lines) associations
between the ASCG demonstrate the close relationship, less than 2 interactions between each
ASCG. For clarity, we did not show all of the associations identified, but focus primarily on
direct associations that link ASCG. Recently published interactions linking FMR1, CYFIP1,
and JAKMIP1 by gene regulation, and A2BP1 (FOX1) with NLGN3 by splicing regulation
were added as custom interactions (blue lines). The androgen receptor (orange emblem) and
three of its interactions with ASCG (orange lines) are highlighted to demonstrate the correlation
with the extreme male brain hypothesis. This is a first attempt to explore the connectivity
between these genes, and therefore is not comprehensive. We do not mean to imply a single
pathway as causative, as there may be many pathways that could be implicated.
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Figure 3. Functional annotation of the autism susceptibility candidate genes
Annotation was performed using the gene ontology (GO) nomenclature assignments from the
National Center for Biotechnology Information (NCBI) for the 33 ASCG used for the Ingenuity
analysis (A). GO terminologies are divided into function, process and component. For easier
visualization, neuro-specific annotations were compiled using the DAVID Bioinformatics
database (http://david.abcc.ncifcrf.gov/) as a histogram (B). The 33 genes from the previous
analysis were divided by their GO category (blue bars), and as a percentage of the total genes
annotated within the same GO category (green bars). The significance of the enrichment is
denoted by p-values, shown adjacent to the GO category. The limitations of the GO
terminology are that the categories utilize general descriptors to categorize protein function;
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some functions are not present in the database, and some protein lack annotation, excluding
them from analysis. For example, FMR1 is known to function in dendritic morphogenesis; but
this function is not described in its GO annotation. Despite limitations, the GO annotations
clearly show that ASD affects multiple processes in the brain suggesting models that address
a single aspect of biological function are likely to be too limiting.
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