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Abstract Regulatory T cells (Tregs) are a critical subset

of T cells that mediate peripheral tolerance. There are two

types of Tregs: natural Tregs, which develop in the thymus,

and induced Tregs, which are derived from naive CD4?

T cells in the periphery. Tregs utilize a variety of mecha-

nisms to suppress the immune response. While Tregs are

critical for the peripheral maintenance of potential auto-

reactive T cells, they can also be detrimental by preventing

effective anti-tumor responses and sterilizing immunity

against pathogens. In this review, we will discuss the

development of natural and induced Tregs as well as

the role of Tregs in a variety of disease settings and the

mechanisms they utilize for suppression.
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Introduction

The immune system uses many mechanisms to maintain

immunologic self-tolerance and protect the host against

exacerbated responses to foreign antigens. The existence of

regulatory T cells (Tregs) that actively suppress the func-

tion of conventional T cells is a key mechanism by which

the immune system limits inappropriate or excessive

responses. The concept of ‘suppressor’ T cells has been

around since the early 1970s [1, 2], but because of the

difficulty in proving their existence, due to the absence of

the molecular and cellular tools we enjoy today, this concept

was largely forgotten and relegated to phenomenology. In

1995, a landmark study by Sakaguchi and colleagues

described a unique CD4?CD25? T population that had

potent regulatory activity [3]. In order to avoid the lin-

gering skepticism that still surrounded ‘suppressor’ T cells,

this subpopulation was referred to as regulatory T cells

[Tregs]. This discovery reawakened interest in the concept

that there were specific subpopulations that could inhibit

and regulate the immune response. In 2003, the Treg field

made another significant leap forward with the discovery of

Foxp3, a forkhead family transcription factor, as a critical

regulator of Treg development, function, and homeostasis

[4–6]. Genetic mutations in the gene encoding Foxp3 have

been identified in both mice and humans [6, 7]. The

importance of Tregs first became apparent in patients with

mutations in Foxp3 who develop a severe, fatal systemic

autoimmune disorder called Immune dysregulation Poly-

endocrinopathy Enteropathy X-linked (IPEX) syndrome,

[8]. IPEX patients present the disease at an early age in

males which causes severe enlargement of the secondary

lymphoid organs, insulin-dependent diabetes, eczema,

food allergies, and concomitant infections. Currently, the

only cure is bone marrow transplantation. A spontaneous

Foxp3 mutation in mice, known as ‘‘scurfy’’, results in

symptoms that are very similar to that seen in IPEX

patients. It quickly became apparent that Tregs were very

important regulators of peripheral tolerance and immune

responses.

There are two types of CD4? Tregs, ‘natural’ Tregs

(nTregs) and induced Tregs (iTregs), which are primarily
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defined by where they develop. nTregs develop in the

thymus during the course of positive and negative selec-

tion, while iTregs develop in the periphery from

conventional CD4? T cells following antigenic stimulation

under a variety of conditions. Both nTregs and iTregs must

achieve a fine balance between maintaining peripheral

tolerance by suppressing potential autoimmune responses,

while also controlling responses to infections. Often

achieving this balance can be contradictory with Tregs

overperforming or underperforming. For instance, Tregs

have been shown to dampen local antitumor responses and

prevent sterilizing immunity against certain chronic

infectious agents. On the other hand, Tregs can occasion-

ally be ineffective in mediating peripheral tolerance

leading to an exacerbated inflammatory/allergic reaction or

autoimmunity. Given this paradigm, therapeutic targeting

of Tregs will have to be carefully controlled to ensure

that cancer, for instance, is not replaced with rampant

autoimmunity.

In this review, we will cover the development and

function of both nTregs and iTregs, providing a brief

overview of the various mechanisms used by Tregs to

mediated suppression. We will illustrate the role of both

Treg populations, as well as the mechanisms they utilize, in

several contrasting disease settings. While most of the

focus of this review is on murine Tregs, studies with human

Tregs have been highlighted throughout.

Development of nTregs

nTregs, like all T cells, arise from progenitor cells in the

bone marrow and undergo their lineage commitment and

maturation in the thymus (Fig. 1). nTregs comprise a small

population, only *5–10% of peripheral CD4? T cells [9];

however, their existence is vital. nTregs migrate from the

thymus into the periphery after day 3 of life, and thy-

mectomy of mice at day 3 results in lethal autoimmunity

due to the lack of peripheral Tregs [10].

While there is no cell surface marker that uniquely

identifies nTregs, there are a number of cell surface pro-

teins that are preferentially expressed on nTregs (Fig. 1).

The first identified was the high affinity IL-2 receptor a
chain, CD25 [3]. This seminal discovery suggested that

CD25 could be used as a marker for Tregs. However, CD25

is not unique to nTregs, as conventional T cells express

CD25 when activated by T cell receptor (TCR) ligation.

Since this original publication, numerous studies have been

dedicated to the identification of specific cell surface

markers expressed by nTregs. Purification of human

nTregs, but not murine nTregs, can be enhanced by

excluding T cells that express CD127. It has recently been

shown that CD127 expression is inversely correlated with

Foxp3 expression and suppressive capacity of nTregs [11].

It is well known that activation of a conventional T cell

requires both TCR ligation as well as signaling through co-

stimulatory molecules. Therefore, it is not surprising that

nTregs express both effector molecules, such as CTLA-4,

LAG-3, CD39, and CD73, and co-stimulatory molecules,

such as CD28, CD80/86 (B7), CD40, OX40, and 4-1BB

[12–14]. However, none of those described to date are

restricted to Tregs [14]. Other molecules that may be useful

surface markers of nTregs, but whose functions are not yet

clearly elucidated, include neuropilin-1 and folate-receptor

4 (FR4). The most specific marker of Tregs is Foxp3, which is

expressed exclusively in thymus-derived nTregs, and certain

peripheral iTreg populations that have suppressive capabili-

ties. However, due to its nuclear expression, Foxp3 cannot be

used to purify or mark nTregs [5, 6]. In contrast to murine

Fig. 1 Development of nTregs and iTregs and the relevant markers

associated with each. nTregs (top) differentiate from naive conven-

tional T cells to Foxp3? Tregs in the thymus. In the periphery, natural

Tregs express a number of cell surface markers, indicated in the box
below the depiction of the natural Treg. However, none of these cell

surface markers are unique to Tregs as they are also found on

activated conventional T cells. Natural Tregs utilize the cytokines

IL-10, IL-35, and TGFb to exert their suppressive effects upon

conventional T cells. TGFb and IL-2 have also been shown to be

important to the maintenance and fidelity of the Treg signature. iTregs

(bottom) can be generated from conventional T cell precursors. Once

in the periphery, naı́ve conventional T cells can be induced to become

Foxp3- Tr1 cells or Foxp3? Th3 cells via IL-10 and/or TGFb
secreted by APCs such as dendritic cells and macrophages. These

induced Tregs share similar cell surface markers as natural Tregs.

Foxp3?-induced Tregs can accumulate in the gut through upregula-

tion of CCR9 and a4b7 via TGFb and retinoic acid produced by

CD103? dendritic cells. TEC Thymic epithelial cell, Tconv conven-

tional T cell, DC dendritic cell, RA retinoic acid
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T cells, human CD4?CD25- T cells that are activated can

upregulate expression of Foxp3 without acquiring suppressive

capacity [15]. However, genetic mutations in the gene

encoding Foxp3 are fatal for both mice and humans [6, 7].

These findings suggest that, although not all Foxp3? human

T cells are suppressive, Foxp3 still appears to be the ‘‘master

regulator’’ of nTreg development and function. In accordance

with its important role in nTreg function, it was also demon-

strated that conventional T cells forced to express Foxp3 via

retroviral transduction acquired regulatory capacity both in

vitro and in vivo [4, 5].

Signals that influence the development of nTregs in vivo

are not entirely clear. However, it is known that nTreg

development is influenced by co-stimulatory molecules and

cytokines, TCR and antigen affinity, and the location and

context within the thymus where antigen is encountered.

Co-stimulatory molecules and cytokines

Like conventional T cells, Tregs are selected by peptides

presented by antigen-presenting cells (APCs) in the thy-

mus. However, co-stimulatory molecules such as CD28

[16], CD80/86 (B7), CD40 [12], and IL2Rb [17] appear to

be especially critical for the development of nTregs. Mice

deficient in these molecules have reduced numbers of

nTregs with impaired suppressive capacity. Also critical to

the development of nTregs are IL-2 and, to a lesser degree,

TGFb. Although nTregs express the high-affinity IL-2

receptor CD25, they do not make IL-2 themselves due to

chromatin inaccessibility of the IL-2 locus [18]. Conse-

quently, nTregs are absolutely dependent upon paracrine

IL-2 for survival and growth. In addition to IL-2, TGFb
also appears to play a role in the development of nTregs. It

was originally thought that nTreg development was inde-

pendent of TGFb since Treg development is unaltered in

TGFb receptor dominant negative mice [19]. However, it

was recently shown that sustained TGFb signaling is

required to maintain Foxp3 expression and suppressor

function of peripheral nTregs both in vitro and in vivo [20].

Clearly, further studies will need to be performed to

determine whether TGFb has an analogous role in the

thymus.

TCR ligation, strength of signal and self-peptides

Conventional T cells undergo selection in the thymus based

on the strength of signal they receive from thymic APCs

[DCs, medullary (mTEC) or cortical epithelial cells

(cTEC)] presenting self-peptides. Strong signals due to

high affinity or avidity interactions between the TCR and

MHC:peptide complexes results in negative selection. No

or very low signal leads to thymocyte death by neglect.

Positive selection of thymocytes that will survive and

populate the periphery occurs when intermediate to weak

signals are delivered via engaged TCR (reviewed in [21]).

However, it has been suggested that nTregs differ in the

selection process in that they are positively selected on a

TCR affinity/signal strength that is between those required

for the positive and negative selection for conventional

T cells [22]. Like conventional T cells, nTregs have a

polyclonal TCR repertoire and are selected on self-pep-

tides. However, unlike conventional T cells, Tregs appear

to have more exacting requirements regarding the compo-

sition of self and the amount of signal required for their

development as they usually do not develop in mice that

express a single TCR [23]. However, Treg development is

restored if a significant amount of the cognate antigen for

which the TCR is specific is expressed in the thymus. To

further study the affinity of nTregs for self-peptides, TCR

genes from a large cohort of conventional T cells and

nTregs were cloned and sequenced [24]. Like TCRs from

conventional T cells, nTreg TCRs were extremely diverse,

but the overlap between TCR sequences of conventional T

cells and nTregs was minimal, approximately 15–20%.

However, unlike conventional T cells, nTregs were capable

of recognizing and signaling in response to self-peptides.

More recently, hundreds of conventional T cell and nTreg

TCRs were sequenced and quite different conclusions

drawn [24, 25]. In these studies, the data suggest that

nTregs do not preferentially recognize self-antigens, but

instead express a polyclonal TCR repertoire that is com-

parable to conventional T cells. Collectively, these

contrasting conclusions suggest that significantly more

analysis will be required before firm conclusions can be

made.

While some of these data suggest that nTregs have

‘‘self-reactive’’ TCRs, an alternative theory is that nTregs

simply have a lower activation threshold than that of

conventional T cells. It is important to note that in essence

all selected TCRs are self-reactive. If they were not, they

would not have driven positive selection. So the more

important criterion might be the combination of TCR

affinity for self, coupled with the differential ability of

conventional versus regulatory T cells to propagate a signal

that mediates a functional outcome. Indeed, it has been

shown that human Tregs are responsive to TCR stimulation

at 10- to 100-fold lower antigen concentrations than that

required to activate a human conventional T cell [26]. This

sensitivity may, in part, be the result of their expression of

additional or enhanced levels of certain co-stimulatory

and/or accessory molecules. Alternatively, there may be

differences in the strength or efficiency of the TCR:CD3

signaling cascade. While it has been previously demon-

strated that nTregs require activation to achieve optimal

suppression regardless of the antigen specificity of the

target cell [27, 28], recent evidence suggests that nTreg
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activation may not be required to achieve some level

of suppression [29]. This suggests that the requirements

needed to initiate trademark responses, proliferation or

suppression, are different between conventional T cells and

nTregs, respectively. Moreover, when bone marrow cells

were transduced to express a nTreg-derived TCR and

adoptively transferred into irradiated mice, the ratio of

nTreg:conventional T cell was dramatically increased [30].

However, such analysis has so far only been conducted on

a very limited number of Treg-derived TCRs, and thus

additional studies are required before a definitive conclu-

sion can be drawn.

It has also been suggested that the self-peptides that

mediate selection of nTregs in the thymus may also pro-

mote their expansion and the conversion of conventional

Tregs into iTreg in the periphery [31]. However, as high-

lighted above, more recent studies have suggested that

there is nothing ‘unique’ about the TCR repertoire

expressed by nTreg and that they do not preferentially have

a higher affinity for self-antigens [24, 25]. Moreover,

nTregs recognize foreign antigens with the same frequency

as conventional T cells, leading some to suggest that thy-

mic peptides that participate in selection may be different

from peptides that drive proliferation and function of

peripheral nTregs [25]. Therefore, it has recently been

proposed that the stage at which T cells are committed to

the Treg lineage occurs prior to TCR-mediated selection

and that even weak TCR–self-peptide–MHC interactions

are sufficient to allow survival in the thymus [32–34].

Site of nTreg development

In addition to TCR signal strength and affinity for peptide,

the context within the thymus where antigen is encountered

may have an impact on whether a thymocyte is selected,

deleted, or becomes a Treg. Using an inducible promoter

system to quantitatively alter the degree of thymic

expression of an MCC-derived T cell epitope, it was shown

that the absolute number of nTregs remained constant

despite different degrees of expression [34]. The authors

found that the number of conventional T cells that were

deleted increased with increasing thymic antigen; however,

the number of nTregs was unchanged, owing to resistance

to deletion. This suggests that it is not the affinity for self-

peptide, but rather the context or niche in which the T cells

encounter antigen that is most important in determining

whether the cell is selected or deleted [34].

Control of the peptide repertoire that is expressed in the

thymus undoubtedly affects the T cells that develop. The

autoimmune regulator gene (Aire) promotes the expression

of tissue-specific self-antigens by thymic medullary

epithelial cells [35]. Aire expression is critical for the

establishment of central tolerance toward certain self-

peptides, allowing thymocytes that are strongly self-reac-

tive to be deleted [21, 36]. Aire-deficient mice develop

multi-organ autoimmunity due to compromised negative

selection. However, it has also been suggested that other

forms of tolerance, such as impaired development of

nTregs, may play a role in this autoimmunity. A number

of reports suggest that in addition to promoting deletion of

self-reactive conventional T cells, Aire-expressing stromal

cells may also enhance Foxp3 upregulation in CD4? thy-

mocytes and nTreg development in response to self-

peptides [37–39]. However, other studies have shown that,

in the absence of Aire, antigen specificity of the nTregs is

modestly altered, but the number, frequency, and function

of nTregs remain intact [21, 35, 40, 41]. Therefore, while it

seems possible that Aire-dependent antigens may play a

role in the thymic development of nTregs, this issue is

controversial and still remains to be resolved.

Another currently debated issue is that of the timing and

location of nTreg development. Using Foxp3gfp reporter

mice it was shown that Foxp3? cells are found only in the

thymic medulla suggesting that nTreg development

occurred relatively late in thymic development [42]. In

addition, a group of epithelial cells expressed in the thymic

medulla called the Hassall’s corpuscles were suggested to

play a role in the differentiation and development of human

nTregs. Human Hassall’s corpuscles express thymic stro-

mal lymphopoietin (TSLP) which conditions thymic DCs

to express CD80 and CD86. Ligation of MHC and CD80/

86 by CD4? thymocytes induced differentiation of CD4?

thymocytes into Foxp3? nTregs [43]. However, recent

studies have challenged the idea that nTreg differentiation

occurs this late in thymic development. Although Foxp3 is

not detected in the thymic cortex, some studies suggest that

commitment to the nTreg lineage might occur in the cortex,

at an earlier point in thymic development [25, 40, 44, 45].

Indeed, by limiting the expression of MHC to mTEC,

cTEC, and/or DCs it has been shown that multiple acces-

sory cell types in both the thymic cortex and medulla are

capable of mediating Treg development [45]. In further

support of this hypothesis, researchers have shown that

limiting the capacity of CD4?CD8? (DP) thymocytes to

influence early cd T cell or ab T cell progenitors leads to

preferential differentiation of T cells into Foxp3? nTregs

[33]. Moreover, this appears to occur prior to, and inde-

pendent of, agonist selection. Another study elegantly

showed that, within the thymic CD4? population, there

exists a CD25high population that represents the immediate

precursors to nTregs which are primed and ready to express

Foxp3 following stimulation with IL-2 or IL-15 [46]. Not

only does this suggest that a precursor population exists

that are poised to become nTregs, but it also suggests that,

in addition to TCR engagement, IL-2 and the IL-2R play a

pivotal role in the development of nTregs.
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Maintenance of nTreg homeostasis

Signals that are important for nTreg development also

appear to be important for their maintenance in the

periphery (Fig. 1). By generating mice with a stop codon in

the Foxp3 gene, investigators were able to monitor the

transcription of the Foxp3 allele in the absence of Foxp3

protein synthesis [38]. In comparing these Tregs to nTregs,

which transcribe and translate Foxp3 protein, and to con-

ventional T cells, the authors could decipher Foxp3

protein-dependent features from those associated with

Foxp3 expression. Their results indicated that Foxp3 plays

a critical role in the peripheral maintenance of nTreg

phenotype stability, including anergy and dependence on

IL-2. Therefore, it appears that, in addition to its role in

nTregs development, Foxp3 helps to maintain the stability

of nTreg features in order to preserve the nTreg lineage.

TGFb signaling in peripheral nTregs is critical to their

ability to suppress a variety of cell types including Th1

cells, CD8? cytotoxic T cells, and NK cells [47]. In

addition to this role in the function of nTregs, TGFb is also

important in maintaining Foxp3 expression, and nTreg

homeostasis and maintenance in the periphery [20].

Perhaps most critical to the maintenance of nTregs are

CD28 and IL-2. Owing to their dependence on paracrine

IL-2 for survival [18], nTregs are beholden to conventional

T cells for peripheral maintenance. Cd28-deficient mice

have reduced numbers of nTregs in the spleen and lymph

nodes, and the resulting nTregs have reduced suppressive

capacity when compared to wild-type nTregs [48]. CD28

appears to support the survival of nTregs by enhancing IL-2

production by conventional T cells in addition to main-

taining CD25 expression on nTregs [42, 49]. IL-2 signaling

seems to be critical, not just for survival of nTregs but also

for their generation and function in the thymus and the

periphery. Utilizing mice that were deficient in IL-2, IL-

2Ra, and IL-2Rb, studies show that while IL-2 and IL-2Ra
were dispensable for nTreg thymic development, IL-2Rb
was absolutely required [42]. Genetic deficiency of CD25

in humans results in similar clinical manifestations as

IPEX, underscoring the importance of IL-2 in nTreg

function and maintenance [50]. In addition, in both murine

and human studies, neutralizing anti-IL-2 induces multi-

organ autoimmunity and significantly reduces the number

of nTregs in the thymus and periphery [51, 52]. This

suggests that both thymic development and peripheral

expansion of nTregs absolutely require IL-2.

Development of iTregs

While thymically-derived nTregs play a critical role in

immune homeostasis, it is clear that regulatory T cells can

be induced from conventional, naive CD4? T cells both in

vitro and in vivo. One of the challenges in the field of

regulatory T cells is determining the relative contributions

of nTregs versus iTregs in vivo. Indeed, it appears that the

main difference between the two subsets is their origin of

development (thymus vs periphery) (Fig. 1). However, it

has been proposed that nTregs and iTregs differ not pri-

marily in their origin, but rather as a consequence of

differentiation through antigen exposure and specific fac-

tors that are highly expressed in distinct settings [53]. The

importance and contribution of each particular iTreg subset

is most likely dictated by the context of the antigen and

environment. Two main subsets of iTregs that are gener-

ated in the periphery have been described, based upon the

cytokines that cause their induction: type 1 regulatory

T cells (Tr1), which are induced by IL-10 [54, 55], and

T helper 3 (Th3), which are induced by TGFb [56]. While

both subsets are generated in the presence of different

cytokines, they exert their suppressive activity through

secretion of the same cytokines that are responsible for

their induction, IL-10 and/or TGFb, respectively. While

TGFb and IL-10 are the primary cytokines involved in

iTreg formation, it has also been demonstrated that IL-4

and IL-13 can induce the development of Foxp3? Tregs

from Foxp3- naı̈ve T cells independently of TGFb and

IL-10 [57]. Both IL-4 and Il-13 signal through the IL-4Ra
chain, suggesting an essential role for this receptor in the

generation of Tregs in the periphery.

There has been considerable interest in determining the

role of each Treg subset in immune function, primarily

because iTregs represent a powerful therapeutic tool for

autoimmune disease, inflammation, and antitumor treat-

ment. While they are distinct, both subsets have similar

phenotypes and utilize overlapping mechanisms of sup-

pression. Both nTregs and iTregs share cell surface

markers characteristic of an activated T cell, such as CD25,

CTLA-4, GITR, CD62L, and CD45RBlo (reviewed in

[58]). The transcription factor Foxp3 is expressed by Th3

cells following induction. However, Tr1 cells do not

express Foxp3, either constitutively or following activation

either in vitro or in vivo [55]. Transfer of either iTregs or

nTregs has been shown to prevent the development of

autoimmune disease in several models as well as help

promote transplantation tolerance [3, 59–62]. While their

phenotype and modes of suppression may be similar,

nTregs and iTregs in mice appear to have different

requirements for their development. While nTregs may

develop in response to self-antigen, or at least strongly

ligating peptides in the thymus, iTregs develop in response

to weaker, suboptimal TCR stimulation and exogenous

antigens in the periphery [63, 64]. Although it remains

possible that the TCR repertoire of iTregs includes high

affinity for self-antigens, these cells are primarily generated
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in inflammatory settings in the presence of anti-inflam-

matory cytokines. Co-stimulation through CD28 is also

required for the generation of nTregs while iTregs are able

to develop in the periphery in its absence [64, 65]. Fur-

thermore, in vitro conversion of iTregs can occur in the

absence of CD28 stimulation and result in cells that remain

functional following in vivo transfer [66]. In fact, recent

studies have indicated that co-stimulation can actually

hinder iTreg development in vitro, which may explain the

reduced stability of Foxp3 expression and limited lifespan

of iTregs stimulated in the presence of anti-CD28 anti-

bodies [67, 68]. Because of the potential for therapy, there

has been a great deal of interest in generating and

expanding human iTregs in vitro. Human iTregs have been

generated in vitro using a variety of conditions, including

allogeneic DCs [69, 70], anti-CD3 and 4C8 administration

[71], and SEB exposure [72]. Furthermore, human iTregs

could be generated in vitro in the absence of TGFb [73,

74]. Finally, one study has shown that human Tr1 cells can

be generated from CD4? T cells in the presence of IL-2

through the engagement of CD3 and the complement

regulator CD46 [75].

In addition to strength of signal, many other factors can

contribute to the generation of iTregs, including antigen

and route of exposure, cytokines, tissue specific factors,

and APCs. Intranasal or oral exposure to antigen tends to

selectively induce the generation of iTregs [76, 77]. APCs

play an important role in iTreg generation. Monocyte-

derived DCs, including plasmacytoid dendritic cells

(pDCs), can induce Treg formation [70, 78, 79]. DCs in

the gut-associated lymphoid tissue (GALT) are particu-

larly efficient at inducing Treg formation [76, 77, 80] as

well as DCs present in tumor microenvironments [81]. It

has been shown that Tregs can induce DCs to become

tolerogenic [82], which in the GALT provides a positive

feedback loop, in the presence of TGFb, that leads to

further induction of iTreg formation [80]. In addition, it

has been shown that a population of macrophages

(CD11b?F4/80?CD11c-) in the lamina propria (LP)

could induce Foxp3? Tregs in a retinoic acid (RA)-,

TGFb- and IL-10-dependent manner [83]. Finally, studies

have shown that NKT cells can play a role in iTreg gen-

eration by induction of tolerogenic APCs in response to

oral antigen [84] as well as in EAE [85]. Tregs have been

shown to induce suppressive properties in other T cell

populations, a process often referred to as ‘infectious

tolerance’. Early studies showed that T cells from toler-

ized animals could be transferred and retain their tolerant

state [86]. It was later shown that the maintenance of this

transplantation tolerance was due to Tregs inducing the

conversion of the suppressed T cells into iTregs [87].

Others have shown that co-culture of nTregs with naı̈ve

CD4? T cells leads to iTreg formation whose suppressive

ability was dependent on the cytokines IL-10 or TGFb
[88, 89].

Tregs also exhibit considerable plasticity in the periph-

ery. There have been a number of studies that have

demonstrated a reciprocal relationship between Th17 cells

and Tregs (reviewed in [90]). While TGFb induces the

conversion of naı̈ve CD4? T cells into iTregs, the addition

of IL-6 and IL-21 inhibits this process and promotes Th17

conversion [91]. Furthermore, activated Tregs, which pro-

duce high levels of TGFb, differentiate into Th17 cells in

the presence of IL-6 [92]. In contrast, RA drives the

induction of Tregs and inhibits Th17 differentiation, pre-

sumably by enhancing TGFb signaling and inhibiting IL-6

signaling [76].

Type 1 regulatory T cells

Tr1 cells are defined by their requirement for IL-10 for

their induction and their ability to produce high levels of

IL-10 and TGFb to mediate suppression (Fig. 1) [54, 93].

Co-culture of both mouse and human CD4? T cells with

Tr1 cells in transwell assays reduced the proliferative

response of the CD4? T cells. The addition of neutralizing

antibodies to IL-10 and TGFb reversed the action of Tr1

suppression, indicating an essential role for these cytokines

in Tr1-mediated suppression [54]. While the true hallmark

of Tr1 cells is high level IL-10 production, additional

cytokines such as IL-5 and IFNc are also secreted by Tr1

cells depending upon the experimental conditions [93].

Thus far, no specific markers have been identified for Tr1

cells. While their proliferative capacity is low, they can

expand in the presence of IL-2 and IL-15, due to the high

levels of receptors for these cytokines expressed following

activation [94]. However, Foxp3 is not expressed by Tr1

cells [55] and, like TGFb-dependent converted Tregs, Tr1

cells can be generated in the absence of nTregs [95],

suggesting Tr1 cells may also be developmentally distinct

[55].

The induction of Tr1 cells is primarily mediated by

IL-10-producing APCs which occur in a variety of

immunological settings. Studies have shown that produc-

tion of IL-10 by immature DCs (iDC), tolerogenic myeloid

DCs and pDCs induces the generation of Tr1 cells in

transplant settings and in response to allergens, pathogens

and tumor antigens in mice and humans [89, 93]. The

secretion of IL-10 has been shown to be important in

mediating suppression of murine and human T cells in

vivo, such as those responsible for the development of

inflammation in the gut [54, 96]. Mice deficient in Il10

succumb to inflammatory bowel disease (IBD), which can

be prevented in young mice by the addition of exogenous

IL-10. As Tr1 cells produce high levels of IL-10, transfer

of these cells can prevent induction of IBD by CD4?
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effector T cells [96]. In addition to IBD and mucosal

immunity, Tr1 cells have been shown to play a key role in

regulating allergic immune responses in a wide range

experimental conditions (reviewed in [93]).

Th3 cells and the role of TGFb in iTreg development

Perhaps the most prominent factor in the conversion of

naı̈ve CD4? T cells to iTregs is the cytokine TGFb. These

iTregs, defined by some as Th3 cells, develop both in vitro

and in vivo in the presence of TGFb. It is well established

that antigen stimulation of naive murine CD4? T cells in

vitro in the presence of TGFb leads to the induction of

Foxp3 expression and regulatory activity [59, 63, 64].

Furthermore, a substantial number of studies have dem-

onstrated that TGFb induces conversion of CD4? T cells in

vivo in both mice and humans. These iTregs are particu-

larly important in a variety of disease settings and in

maintaining tolerance to antigens expressed in the intesti-

nal tissue, which has been described as a ‘‘privileged site’’

for iTreg differentiation [59, 63, 97–100]. Interestingly, the

TGFb-dependent generation of iTregs can occur in mice

that completely lack nTregs [59, 64, 87], providing support

that iTregs are developmentally distinct from nTregs.

TGFb-deficient mice succumb early on to spontaneous

autoimmune disease [101]. Similarly, mice expressing a

dominant-negative form of the TGFbRII manifest a simi-

lar, systemic disease, characterized by spontaneous T cell

activation and infiltration [19]. The importance of Tregs

in mice lacking TGFb was not fully appreciated prior to

the discovery of TGFb-induced Treg formation. nTregs

develop normally in TGFb-deficient mice, indicating pro-

duction of TGFb by nTregs is not required for suppression

of inflammation [102]. Their maintenance and function in

the periphery, however, is adversely affected in the absence

of TGFb [20]. The importance of TGFb-induced iTreg

generation in controlling disease is evident from studies

showing that CD4? and CD8? T cells from mice resistant

to TGFb signaling are unable to be controlled by Tregs

upon transfer, resulting in IBD [103] and reduced tumor

rejection [104], respectively. These data indicate that

TGFb plays pivotal roles in regulating tolerance via the

maintenance and function of nTregs and by directly regu-

lating conventional T cells.

As mentioned, a great deal of research in the iTreg field

has focused on the mucosal tissues of the small intestine, as

it has many features that make it a highly tolerogenic, and

thus suitable, environment for iTreg formation. In partic-

ular, high concentrations of anti-inflammatory cytokines

such as TGFb, IL-4, and IL-10 increase the generation of

both TGFb-induced Th3 and IL-10-induced Tr1 cells [54].

Recently, however, exciting new research had shed addi-

tional light on the mechanism of iTreg formation in the

GALT, including factors that specifically promote the

immune integrity of this highly antigenic environment. It

has been known for some time that T cells express homing

receptors that mediate migration into the gut, namely the

integrin a4b7 and the chemokine receptor CCR9 [105,

106]. Several groups have shown that these gut homing

receptors are induced on T cells by a key metabolite of

vitamin A, retinoic acid (RA), that is generated by DCs in

the GALT [106]. Reduced numbers of T cells were found

to home to the gut tissues in mice that were either deficient

in vitamin A or retinoic acid receptor (RAR) signaling

[106]. TGFb produced by a variety of cells in the intestine

also induces the up regulation of the integrin aEb7

(CD103) on DCs, a population of cells that are particularly

capable of producing RA [76, 80]. Work by several groups

has now shown that RA enhances the TGFb-dependent

conversion of T cells into iTregs [67, 77, 80].

Analysis of the cell types involved in iTreg conversion

revealed that DCs derived from the spleen were unable to

induce Foxp3 expression in naive T cells. However, DCs

from the peyer’s patches (PP), MLN, and LP of the gut

could induce the generation of iTregs [77, 80]. This

induction correlated with CD103 expression, as CD103?

DCs, but not CD103- DCs, were able to induce conver-

sion, and required TGFb, as neutralizing anti-TGFb
antibodies blocked this process [80]. While RA alone was

not able to induce conversion, inhibitors of retinol dehy-

drogenases greatly diminished the conversion process

[77, 80]. In addition, RA enhanced upregulation of a4b7 on

the converted iTregs allowing them to home to the GALT

more efficiently [67, 80, 107]. Lastly, RA was able to

enhance the TGFb-dependent conversion of iTregs in vitro

which, upon adoptive transfer in an IBD model, were able

to suppress the induction of colitis more efficiently than

TGFb alone treated cells [76]. These data indicate that, at

least in some disease models, the mechanisms by which

Tregs develop and function may be a possible way to target

Tregs for therapeutic benefit. While there is considerable

overlap with regards to cytokine usage, perhaps additional

tissue-specific and/or environmental factors may also play

a role in maintaining tolerance, similar to those found in

the GALT.

Role and mechanisms of Treg suppression in disease

How Tregs suppress has generated a tremendous amount of

research effort since Tregs were identified [3]. There have

been numerous manuscripts and reviews discussing and

dissecting the mechanisms of suppression used by Tregs

(see our previous reviews for a more in-depth discussion

of basic Treg mechanism: [14, 108]). From these studies,

it has become clear that Tregs do not rely on a single
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mechanism of suppression but rather have an arsenal of

regulatory mechanisms at their disposal. These can be

divided into four basic modes of action as depicted in

Fig. 2: inhibitory cytokines, cytolysis, metabolic disrup-

tion, and modulation of APC function [14, 109, 110]. For

the purpose of this review, we have provided a brief

summary of the mechanisms of suppression utilized by

Tregs followed by a more in-depth analyses of studies that

have contributed to our current knowledge of both the role

and mechanisms of Treg-mediated suppression in various

key disease settings. The six types of disease states that we

will focus on are inflammatory bowel disease (IBD),

allergy and asthma, type I diabetes (TID), multiple scle-

rosis (MS), tumors, and infections.

Mechanisms of Treg suppression

The inhibitory cytokines IL-10, TGFb, and the recently

described IL-35 are expressed by Tregs and are considered

a major mechanism of suppression utilized by Tregs.

Interestingly, the concept of a soluble factor mediating

Treg suppression is still controversial, considering the cell-

to-cell contact dependence that was thought to be required

to mediate suppression. However, there is a growing list of

in vivo studies describing the importance of Treg-derived

IL-10, TGFb, and IL-35 in the suppression of various

immune responses [14, 109, 110].

Cytolysis by Tregs is mediated by granzyme A in

humans and granzyme B in mice. While the dependence of

perforin remains in question, it is clear that in both in vitro

and in vivo models Tregs appear capable of killing target

cells in a granzyme-dependent manner [111, 112].

Recently, there have been several studies describing

novel mechanisms of Treg suppression mediated through

metabolic disruption. In these studies, the conventional

T cells were suppressed by: (1) IL-2-deprivation mediated

apoptosis, (2) the generation of pericellular adenosine by

CD39 and CD73 and the subsequent activation of the

adenosine receptor 2A on conventional T cells, and (3)

the transfer of the inhibitory second messenger cyclic

AMP (cAMP) into conventional T cells via gap junctions

[14, 109, 110].

Finally, Tregs can suppress target cells by augmenting

APC function. This is primarily mediated through the

interaction of cell surface molecules on Tregs such as

CTLA-4 and the lymphocyte activation gene 3 (LAG-3)

and their interaction with CD80/CD86 and MHC class II,

respectively, on APCs [14, 109, 110]. This interaction

results in the reduced ability of the APCs to activate con-

ventional T cells. Additionally, there is evidence to suggest

that Tregs can mediate the production of the immuno-

regulatory tryptophan-degrading enzyme, indoleamine

2,3-dioxygenase (IDO) by DCs [113]. Taken together,

these mechanisms provide a potent arsenal for Tregs to

utilize in maintaining peripheral tolerance and this is per-

haps a reflection of the fact that Tregs need to suppress

multiple cell types in a variety of distinct anatomical and

disease settings.

Inflammatory bowel disease

IBD encompasses Crohn’s disease and ulcerative colitis

which manifests as chronic inflammation of the gastroin-

testinal tract. Disease susceptibility is governed by genetic

and environmental factors. Individuals with IBD exhibit

aberrant inflammation towards the normal bacterial flora in

the gut. Several murine models, including DSS, TNBS, and

T cell-induced colitis, have been utilized to understand the

etiology and mechanisms underlying IBD. Among these

murine models, the T cell transfer model is a well-estab-

lished system in which the role of Tregs in protection

against IBD has been dissected. Therefore, for the purpose

of this review we have mainly focused on the studies

pertaining to the function of Tregs in mediating protection

Fig. 2 Mechanisms of Treg suppression. This diagram depicts the

four basic modes of Treg suppression. A primary mode of Treg

suppression is mediated through the inhibitory cytokines IL-10,

IL-35, and TGFb. Tregs also induce cytolysis through granzyme A/B

and perforin. They can disrupt metabolic function by IL-2 deprivation

which results in apoptosis, cAMP inhibition or by CD39/CD73-

generated A2A-mediated immunosuppression. Tregs can also mod-

ulate DC maturation or function via a CD80/86 and CTLA-4

interaction or through a LAG-3 and MHC class II interaction.

In addition, they can induce the upregulation of IDO in DCs.

Tconv Conventional T cell, GrzB/A granzyme B or A, Pfr perforin,

cAMP cyclic adenosine monophosphate, A2A adenosine-purinergic

adenosine receptor, IDO indoleamine 2,3-dioxygenase, DC dendritic

cell
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from IBD in this model. In the murine T cell transfer

model, a small number of naı̈ve CD4?CD45RBhi T cells

are transferred into immunodeficient Rag-/- or scid mice

which leads to Th1-mediated colitis in approximately

4–6 weeks. This condition can be prevented or reversed by

co-transfer of Tregs or by adoptive transfer of Tregs once

the pathology is established [61, 114]. The majority of

studies point to the cytokines IL-10 and TGFb as key

regulators used by Tregs to control IBD. In addition,

CCR4? and CCR7? Tregs are found to be important in

mediating the activity of Tregs at sites of inflammation in

an IBD setting. Recently, our laboratory has demonstrated

a critical role for IL-35 in regulating IBD [115].

The importance of IL-10 in immunoregulation became

evident upon analysis of Il10-/- mice, which develop

enterocolitis [116]. However, under germ-free or Helico-

bacter-free conditions this does not occur, suggesting that

IL-10 is important in controlling the inflammatory respon-

ses against certain commensal bacteria in the normal flora.

Indeed, administration of rIL-10 can protect scid mice from

colitis following transfer of CD4?CD45RBhi T cells in the

absence of Tregs [117]. While these studies indicate a role

for IL-10 in maintaining intestinal homeostasis, a direct link

between IL-10 and Treg function was not provided until it

was demonstrated that CD4?CD45RBlo T cells isolated

from Il10-/- mice failed to prevent IBD when co-trans-

ferred with CD4?CD45RBhi cells [118]. Moreover, the

CD4?CD45RBlo T cells from Il10-/- mice induced

inflammation in Rag-/- mice when administered alone.

Consistent with these reports, treatment with anti-IL-10R

antibody abolishes the protection mediated by Tregs in a

T cell transfer model as well as in H. hepaticus-induced

intestinal inflammation, suggesting a critical role for Treg-

derived IL-10 in regulating intestinal inflammation. IL-10

produced by Tr1 cells does not appear to play a role in

controlling inflammation as wild-type CD4?CD45RBlo

T cells could protect against colitis induced by Il10-/- CD4?

effector T cells [119]. This suggested that differentiation of

IL-10-induced Tr1 cells from CD4? CD45RBlo effector

T cells is not critical for the control of inflammation. This,

however, does not exclude the possibility that IL-10 pro-

ducing cells develop from the CD4?CD45RBlo population.

Although these studies provided evidence for a major

role of IL-10 in the function of Tregs in IBD, treatment

with anti-IL-10R antibody did not completely abolish the

protection from colitis in CB-17-scid mice. In addition,

Il10-/- CD4?CD25- T cells were also protective [119],

thus providing contradictory evidence for the role of Treg-

derived IL-10 in the regulation of inflammation. However,

deletion of IL-10 specifically in Tregs shed insight into

these contradictory data. Conditional IL-10 deletion in

Tregs resulted in colonic inflammation. However, inflam-

mation, onset and incidence of disease were less severe

than were seen in the Il10-/- mice [120]. These studies

point to the fact that even though IL-10 derived from other

cell types partially alleviate the symptoms, IL-10 derived

from Tregs plays an important role in suppressing the local

inflammation. This is consistent with evidence that in IBD,

IL-10-producing Tregs are selectively enriched in the

colonic lamina propria (LP) and secondary lymphoid

organs [121]. Similarly in humans, Crohn’s disease patients

have intestinal CD4? T cells that are defective in produc-

ing IL-10 [122].

IL-10, however, is not the sole player in the control of

intestinal homeostasis. Other factors such as TGFb and

IL-35 also play a role. TGFb-deficient mice develop early

multifocal inflammatory disease which leads to their death

within 3–5 weeks of age [123]. In the absence of T cell

specific TGFb, mice develop colitis [101]. Tregs from

these mice potentiated disease rather than cause protection

in an IBD model [124]. Furthermore, anti-TGFb neutral-

izing antibodies abrogate the ability of wild-type Tregs to

mediate protection [125]. While it is clear that Treg-

derived TGFb is important in controlling colitis, there is

evidence that TGFb derived from other cells contributes to

this protection. CD4?CD25- T cells that express latency-

associated peptide (LAP) on the surface were found to

suppress colitis induced by naive T cells [126]. In addition,

co-administration of Tgfb-/- Tregs with anti-TGFb neu-

tralizing antibody could not protect from naı̈ve T cell

induced colitis [103]. Finally, anti-TGFb antibody was also

shown to enhance colitis induced by CD4?CD25- T cells

[127]. Taken together, these reports suggest that Treg-

derived TGFb, along with iTreg-derived TGFb and addi-

tional gut-specific factors, play a critical role in IBD [128].

Recent work from our laboratory described a novel

inhibitory cytokine, IL-35, that is preferentially expressed

by Tregs and important for maximal Treg function [115,

129]. IL-35 is a heterodimeric cytokine composed of Ebi3

and p35 chains and a new addition to the IL-12 family of

cytokines. Tregs from either Ebi3-/- or Il12a-/- mice

failed to cure IBD in Rag-/- mice suggesting an important

role for IL-35 in Treg-mediated protection from IBD [115].

Interestingly, initial studies with human Tregs suggest that

EBI3 and hence IL-35 is not constitutively expressed in

human Tregs [130]. However, further analysis is required

to determine whether IL-35 is upregulated in human Tregs

during an inflammatory response.

Taken together, it is apparent that IL-10, TGFb, and IL-35

are important mediators of suppression in Treg-mediated

protection in IBD. It will be important to determine the

relative contribution of each of these cytokines in IBD in

relation to one another. Furthermore, it remains unclear

whether other Treg mechanisms play a role in Treg-med-

iated protection against IBD. In addition, they may

ultimately form the basis of a future therapeutic modality.
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Allergy and asthma

The importance of Tregs in an airway hypersensitivity

reaction (AHR) was clearly demonstrated in a study in

which depletion of Tregs in allergen-sensitized mice

resulted in increased levels of Th2 cytokines, IgE, and

AHR [131]. In humans, Tregs from allergic donors have

been found to be functionally defective in their ability to

suppress the proliferation and IL-5 secretion of allergen-

stimulated CD4? T cells compared to Tregs obtained from

nonallergic donors [132]. In patients with atopic dermatitis,

the functional defect does not reflect the reduction in

numbers of Tregs [133]. However, children with asthma

have fewer Tregs than the nonasthmatic patients [134].

Both nTregs and antigen-induced Tr1 cells have been

implicated in controlling the allergen-induced Th2 response in

mice and humans. The importance of IL-10 in protection

against allergy became evident from human studies in

which nonallergic individuals have a higher numbers of

IL-10-producing activated T cells in response to IL-10 [135].

A role for Treg-derived IL-10 was clear when transfer of

antigen-specific Tregs prior to allergen challenge inhi-

bited allergic symptoms and Th2 cytokine production in an

IL-10-dependent manner [136].

A role for TGFb has also been described in allergic

immune responses. Membrane-bound TGFb was found to

be expressed in tolerized CD4? T cells in response to

respiratory antigens [137]. Consistent with the protection

mediated by nTregs, iTregs inhibit the development of

allergen-induced AHR [138]. Ovalbumin-specific T cells

producing IL-10 [139] and TGFb [140] could mediate

protection against Th2-mediated AHR. In an antigen-

dependent murine asthma model, adoptive transfer of Tregs

overexpressing TGFb effectively suppressed AHR [141].

However, an indispensable role for Treg-derived IL-10 was

evident as cells overexpressing TGFb but lacking IL-10

could not confer complete protection against AHR [141].

Similarly, from studies in humans, it was noted that indi-

viduals with high doses of allergen exposure demonstrate a

preferential switch towards IL-10-secreting Tr1 cells [142].

Another mechanism by which nTregs and Tr1 cells might

be indirectly contributing to suppression of allergy is by

inducing IgG4 and suppressing IgE production [143].

Due to the importance of Treg-derived IL-10 and TGFb in

curtailing allergic conditions, Tregs represent an attractive

cell type for therapeutic manipulation in these inflammatory

diseases. Recent studies suggest that recombinant IL-2 in

combination with anti-IL2 mAb reduces the severity of

allergen-induced inflammation in the lung following

expansion of Tregs ex vivo [144]. This outcome can be

correlated to the increase in the Treg numbers seen following

this treatment [145]. Collectively, these studies suggest that

Tregs are important in regulating inflammatory conditions

and that IL-10 and TGFb produced by Tregs represent

appealing candidates for therapeutic approaches. It should be

noted that, while IL-10 and TGFb appear to be important

contributors to Treg-mediated control of allergy and asthma,

it remains unclear whether other Treg mechanisms can also

control these inflammatory diseases.

Type I diabetes

Accumulating evidence suggests that failure of suppression

of autoreactive T cells by Tregs can result in autoimmune

disorders such as type 1 diabetes (T1D) [146, 147]. The

nonobese diabetic (NOD) mouse is one of the best and

most extensively studied spontaneous models of an auto-

immune disease. Type 1 diabetes appears in female mice

by 12–16 weeks of age and is preceded by a long phase of

asymptomatic prediabetes characterized by progressive

insulitis starting at 3 weeks of age. A protective role for

Tregs in preventing spontaneous diabetes in NOD mice as

well as diabetes induced by diabetogenic T cells has been

established [148, 149]. First, the occurrence of diabetes in

NOD mice is correlated with the reduced functional

capacity of Tregs over time [146, 150]. Additionally, the

reduced susceptibility of conventional T cells to Treg-

mediated suppression has been reported in diabetic humans

[151] as well as in NOD mice [147]. Second, induction of

disease by diabetogenic T cells in NOD.scid mice is pre-

vented by co-injection of Tregs from young, pre-diabetic

mice or islet-specific iTregs [152]. Lastly, depletion of

Tregs in young NOD mice with anti-CD25 mAb also

accelerates disease onset and increases incidence in both

male and female mice [153]. The protection mediated by

Tregs can be antigen-specific or nonspecific. However, the

suppression by islet antigen-specific Tregs, such as those

derived from BDC.2.5 transgenic mouse, is more potent

than that by the polyclonal Tregs as fewer are required to

suppress the disease [154].

From NOD mouse models, there is evidence that Tregs

mediate their function in T1D through the action of CTLA-

4 and TGFb. The loss of activity of CTLA-4 and TGFb
adversely affects the incidence and acceleration of T1D

[147]. Additionally, a cocktail treatment of anti-CTLA-4

and anti-TGFb (but not anti-TNFa) antibodies results in

poly-autoimmune syndrome characterized by colitis, siali-

tis, and gastritis [147]. Furthermore, Cd28-/- NOD mice,

which lack Tregs, exhibit an increased rate of T1D onset

when treated with anti-CTLA-4 and anti-TGFb [155]. It is

unclear, however, if TGFb from other cellular sources may

be playing a role.

Therapies utilizing Tregs for treatment of T1D are an

area of active investigation. Two different approaches have

yielded promising results: induction of Tregs in vivo and

adoptive transfer of in vitro-cultured Tregs. Administration
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of nonmitogenic, CD3-specific antibodies in NOD mice

induces a population of Foxp3? Tregs that suppress T1D in

a TGFb-dependent manner [152]. This has proved to be

successful in clinical trials in humans where administration

of hOKT3c1(Ala-Ala) (a humanized Fc mutated anti-CD3

monoclonal antibody), halted disease progression for more

than one year [156, 157]. Recently, treatment with rapa-

mycin, which promotes the development of Tr1 cells and

Foxp3? Tregs, successfully prevented diabetes in mice

[158]. Finally, ex vivo-expanded antigen-specific Tregs can

suppress ongoing diabetes, providing a viable strategy for

therapy [159].

Multiple sclerosis

Multiple sclerosis (MS), results from autoimmune destruc-

tion of the myelin sheath and inflammation of the brain and

spinal cord [160]. The importance of Tregs in this disease

has been suggested by studies in humans documenting the

functional decline of Treg activity in MS patients [161]. The

frequency or number of Tregs present in the periphery

appears to be normal in MS patients [161–163] but the cells

are not functional in vitro [162, 164]. This reduced func-

tional capacity is correlated with reduced Foxp3 protein

levels [164]. Consistent with these reports, the presence of

Tregs in the CNS is associated with recovery of MS while

depletion of Foxp3? Tregs exacerbates the disease [165].

The mouse model of MS, experimental autoimmune

encephalomyelitis (EAE), shares many features with the

human disease. Both show involvement of encephalitogenic

myelin-specific T cells in the resulting pathology which

consists of perivenular lesions in the CNS and extensive

demyelination and axonal damage. In this model, adoptive

transfer of polyclonal or antigen-specific Foxp3? Tregs can

prevent disease progression.

At present, IL-10 and TGFb appear to be the primary

mediators of Treg function in the cure of, or protection

against, EAE. In an induced model of EAE, it was demons-

trated that anti-CD3-stimulated cells from naive SJL mice

secreted IL-10 and that treatment with a soluble IL-10R

antibody partially reversed the suppressive capacity of

Tregs [166]. The primary evidence for a role for IL-10 in in

vivo protection against EAE has been derived from adop-

tive transfer studies where wild-type but not Il10-/- Tregs

from unimmunized SJL/J donors partially protected reci-

pient mice from PLP139–151-induced EAE [166]. In support

of this, disruption of the Il10 or Il10r gene in mice resulted

in failure to inhibit MOG peptide-induced EAE suggesting

that IL-10 is important in mediating protection against

EAE [167]. Additionally, it has been demonstrated that

there is a significant accumulation of IL-10-produc-

ing Tregs in the CNS which correlated with the recovery

phase. These cells expressed Foxp3 and could mediate

suppressive activity in vitro [165]. Histological and flow

cytometric analysis by several groups have also revealed

that the Tregs localize to the CNS during inflammation

[168, 169].

The importance of TGFb in recovery from EAE was

demonstrated in two independent studies. First, it was

demonstrated that the percentage of CD4? cells expressing

TGFb LAP on the cell surface increased significantly in

blood and spleen of EAE-recovered mice as compared with

the naive mice [170]. Second, in vivo neutralization of

TGFb prevented recovery from disease [170]. Recently, it

was found that CD4?CD25?LAP? cells suppress MOG-

specific immune responses in a TGFb-dependent manner

by inducing Foxp3 and by inhibiting IL-17 production

[171]. Therapeutic approaches focusing on enhancing Treg

number or function for protection from EAE may be of

great benefit to patients suffering from MS. Recently,

genetically modified polyclonal Tregs expressing a chi-

meric receptor consisting of an MBP epitope bound to the

extracellular and transmembrane domain of the CD3f
chain results in functional Treg activation upon encounter

with the MBP specific autoreactive T cells. These receptor-

modified Tregs inhibited the onset as well as the progres-

sion of EAE in an antigen-specific manner [172].

Tumors

The primary objective of Tregs is to maintain peripheral

tolerance which involves policing and preventing antiself-

reactivity. However, tumors are seen as self and thus Tregs

try to prevent antitumor-specific T cells from clearing the

tumor, making Tregs a significant barrier for effective

immunotherapy. Both the adaptive and innate immune

responses are important in tumor clearance. If Tregs are

capable of suppressing the beneficial antitumor response,

they should be present in the tumor environment. Indeed,

there are numerous publications that report an increase in

the number of Tregs in the local tumor environment of

humans suffering from melanoma [173], lymphoma [174],

and ovarian [175–177], pancreatic [178], breast [178],

gastric [179, 180], and lung [175, 181] cancers. However,

there are conflicting reports as to whether the presence of

Tregs in the local tumor environment is indicative of a poor

prognosis [176, 177] or a positive prognosis [182–184].

Therefore, further analysis is required to correlate prog-

nosis with Treg frequencies in humans. While it is difficult

to discern these discrepancies, it is worth noting that, in

these studies, the presence of Tregs was determined by

staining for Foxp3, which does not necessarily correlate

with human Tregs as it has been shown that human con-

ventional T cells can express Foxp3 following activation

[185–187]. A recent paper clearly demonstrates that the

Foxp3? tumor-infiltrating T cells were Tregs by both
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staining and functional analysis [176]. Importantly, they

found that the presence of Tregs correlated with a poor

prognosis. In murine tumor models, there is strong evi-

dence to suggest that in the absence of Tregs a proper anti-

tumor response can be mounted resulting in the clearance

of the tumor. The original studies to demonstrate this were

done by depleting the Tregs in vivo with anti-CD25-

depleting antibodies [188, 189]. Together, the data gener-

ated with human cells and murine models strongly suggest

a role for Tregs in suppressing the anti-tumor response.

There are a number of studies that have attempted to

determine what mechanism Tregs use to suppress the anti-

tumor response, with the majority focusing on the inhibitory

cytokines TGFb and IL-10. It was initially demonstrated in

both humans and mice that Tregs are capable of suppressing

both adaptive and innate aspects of the antitumor immune

response in a TGFb-dependent manner by suppressing

CD8? T cells and NK cells, two of the immune system’s

primary weapons against tumors [104, 190]. More recently,

in a murine tumor model, an effective antitumor response

could be generated by blocking Treg function with a novel

peptide inhibitor that bound TGFb on the cell surface of

Tregs suggesting a direct role of TGFb in the antitumor

response [191]. Together with TGFb, it was demonstrated

that the potent inhibitory cytokine IL-10 was important in

the Treg-suppressive response in a UV-induced tumor

model using IL-10 deficient mice [192]. The reliance of

Tregs on IL-10 to suppress an antitumor response in humans

was also observed in an early study involving Tregs isolated

from head and neck squamous cell carcinoma [193].

Although the data were generated in vitro, it was clear that,

in humans, Tregs are capable of suppressing the antitumor

response in an IL-10/TGFb-dependent manner. Taken

together, there is convincing evidence to suggest that the

suppressive cytokines IL-10 and TGFb are important

mechanisms by which Tregs mediate suppression within the

tumor microenvironment of patients and murine tumor

models.

Interestingly, Tregs may also augment APC function

in a suppressive cytokine-dependent manner. Studies

with human Tregs describe a novel interaction between

IL-10-producing Tregs and APCs in which IL-10 causes

the upregulation of B7-H4 on APCs rendering them

immunosuppressive [194]. This was followed by a sub-

sequent paper that showed that B7-H4? tumor-infiltrating

macrophages were immunosuppressive in a human ovarian

carcinoma [195]. These papers provide evidence for a

cytokine-driven, APC-altering mechanism by which IL-10

produced by Tregs renders APCs immunosuppressive in

the tumor environment.

Another mechanism in the Treg arsenal is the suppres-

sion of APC function via direct contact within the local

tumor microenvironment resulting in the reduction of APC-

mediated activation events. In a recent paper, CTLA-4 on

Tregs mediated the downregulation of CD80 (B7.1) and

CD86 (B7.2) on APCs, thereby affecting the ability of the

APCs to activate other T cells by reducing CD28 co-

stimulation. This Treg-mediated CTLA-4/APC interaction

was important in suppressing the antitumor response, as a

robust antitumor response was mounted in the presence of

CTLA-4-deficient Tregs compared to wild-type Tregs

[196]. Additionally, there is evidence to suggest that Tregs

interact with APCs through CTLA-4 and cause the APCs

to upregulate production of the tryptophan-degrading

enzyme, IDO, which is a potent immunoregulatory enzyme

[197]. Interestingly, IDO-producing pDCs isolated from

tumor-draining lymph nodes activate Tregs which cause

the upregulation of the programmed cell death ligand 1

(PD-L1) and PD-L2 expression on target DCs resulting in

the suppression of the effector T cell response [198].

Additionally, this could also lead to a feedback mechanism

in which Tregs, through CTLA-4 interaction with DCs,

cause an increase in IDO production [113, 199] and sub-

sequently an increase in the number of IDO? pDCs which

could in turn activate Tregs.

The primary method of tumor clearance is granzyme

B-dependent cytolysis mediated by CD8? T cells and

NK cells. It was initially demonstrated that Tregs can also

kill conventional T cells in a granzyme B-dependent, perfo-

rin-independent pathway [111]. Subsequently, it was shown

that granzyme B was upregulated in Tregs in the tumor

environment, and that, in the presence of granzyme B-defi-

cient Tregs, an active tumor response was generated and

the tumor cleared [112]. These data suggest that Tregs can

suppress the antitumor response via a cytolysis-mediated

event.

Taken together, it is apparent that Tregs utilize a variety

of mechanisms to suppress the beneficial antitumor

response. While it is clear that suppressive cytokines are an

important part of the Treg arsenal, Tregs also suppress

APC function as well as kill their targets in a granzyme

B-dependent manner. Interestingly, the tumor environment

is the only disease state in which Tregs have been shown to

utilize their cytolytic capabilities to control the immune

response. It is important to note that this was demonstrated

in murine models, and further studies are required to

determine if it is the same in humans. However, cytolysis

does represent a potentially novel mechanism to target

Tregs in a disease-specific manner.

Infections

It is clear that Tregs play a significant role in the immune

response to infections as well as the clearance of the

invading pathogen. This has been demonstrated in both

humans and murine models [200]. In particular, the
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importance of Tregs has been shown in parasitic, fungal,

and bacterial infections such as Leishmania major [201],

Plasmodium yoelii [202], Candida albicans [203], Listeria

monocytogenes [204], and Mycobacterium tuberculosis

[205, 206]. Viral clearance is also altered by the presence

of Tregs. This has been seen during infection with herpes

simplex virus (HSV) [207, 208], hepatitis B and C virus

[209, 210], cytomegalovirus (CMV) [211], and human

immunodeficiency virus [212, 213].

The consequences of Treg-mediated suppression of the

immune response during infection are controversial. There

are studies that suggest Tregs, while limiting local tissue

damage, prevent sterilizing immunity against the pathogen

and thus allow for a persistent infection [201, 214]. In turn,

this persistent infection results in protective immunity

against a subsequent challenge with the pathogen [201].

While this ‘symbiotic relationship’ may be beneficial to the

host, there is also evidence to suggest that Tregs can be

detrimental to the host. For instance, Treg suppression of

the immune response to Plasmodium yoelli allows the

parasite to escape clearance [202]. In support of this,

sterilizing immunity in a Leishmania major model can be

achieved by depletion of Tregs [201]. However, depletion

of Tregs may not always be beneficial to the host, as a

recent study suggests that Tregs are critical in the early

stages of infection by HSV and that depletion of Tregs

accelerated the time to death as well as caused an increase

in viral loads [215].

The mechanisms by which Tregs suppress or alter the

immune response against viral, parasitic, fungal, and

bacterial infections is still unclear [216]. This is primarily

clouded by the fact that the immune response to foreign

antigens results in the production of a milieu of cytokines

and inhibitory factors, especially IL-10 and TGFb. While

it has been demonstrated that the majority of inhibition of

the immune response generated against certain pathogens

may be mediated by IL-10, this is not necessarily pro-

duced by Tregs [205, 217]. However, there is some

evidence to suggest that TGFb may be an important

cytokine utilized by Tregs in the suppression of the

immune response against Mycobacterium tuberculosis

[205].

It is clear that there is a need for further analysis to

understand the mechanisms involved in Treg-mediated

suppression of effective antipathogen responses in humans.

As the immune system is under constant assault from

pathogens, infection is the most common of all disease

states. Infection is also the only disease state in which Treg

activity can be both deleterious, because it prevents ster-

ilizing immunity, and helpful, by limiting rampant immune

responses that could be harmful to the surrounding tissue.

Therefore, it is possible that Tregs utilize all mechanisms

at their disposal to achieve a balanced immune response

so that proper pathogen clearance can be achieved.

Understanding the mechanisms and determining if certain

mechanisms are overutilized in certain infections may help

in the development of effective treatment and immuniza-

tion strategies against a wide variety of infectious agents.

Summary

Since the discovery of suppressor T cells, and their sub-

sequent ‘reinvention’ as regulatory T cells, research has

firmly established a role for Tregs in controlling immune

homeostasis and modulating a wide variety of disease

states. While a great deal of progress has been made in

understanding the development and mechanisms of sup-

pression of both nTregs and iTregs, there remain a number

of questions that need to be addressed. First, while it is

clear there are several mechanisms used by Tregs to

mediate their suppression, it remains to be determined if

additional mechanisms are used and whether any new or

previously described mechanism may be specific to a

particular disease state. Second, while the analysis of Tregs

in murine models has been indispensible in characterizing

their role in immune homeostasis, tolerance, and a variety

of diseases, it is clear that additional research needs to be

performed on human Tregs, particularly with regard to

specific markers with which to isolate and study them.

Answering these questions will not only bring us closer to

understanding how this unique population of cells develop

and function, but also how to exploit or mitigate their

suppressive activity for targeted therapy against a wide

variety of diseases.
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