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Abstract AFLP is a DNA fingerprinting technique,

resulting in binary band presence–absence patterns, called

profiles, with known or unknown band positions. We

model AFLP as a sampling procedure of fragments, with

lengths sampled from a distribution. Bands represent

fragments of specific lengths. We focus on estimation of

pairwise genetic similarity, defined as average fraction of

common fragments, by AFLP. Usual estimators are Dice

(D) or Jaccard coefficients. D overestimates genetic simi-

larity, since identical bands in profile pairs may correspond

to different fragments (homoplasy). Another complicating

factor is the occurrence of different fragments of equal

length within a profile, appearing as a single band, which

we call collision. The bias of D increases with larger

numbers of bands, and lower genetic similarity. We pro-

pose two homoplasy- and collision-corrected estimators of

genetic similarity. The first is a modification of D,

replacing band counts by estimated fragment counts. The

second is a maximum likelihood estimator, only applicable

if band positions are available. Properties of the estimators

are studied by simulation. Standard errors and confidence

intervals for the first are obtained by bootstrapping, and for

the second by likelihood theory. The estimators are nearly

unbiased, and have for most practical cases smaller

standard error than D. The likelihood-based estimator

generally gives the highest precision. The relationship

between fragment counts and precision is studied using

simulation. The usual range of band counts (50–100)

appears nearly optimal. The methodology is illustrated

using data from a phylogenetic study on lettuce.

Introduction

AFLP is a DNA fingerprinting technique, that has been

employed in many studies on plants (e.g. Tams et al. 2005),

but also in studies on fungi (e.g. Mebrate et al. 2006),

bacteria (e.g. Duim et al. 2001), and animals (e.g. Foulley

et al. 2006). The resulting DNA fingerprints, also called

profiles, are used in a wide spectrum of applications, like

QTL studies (e.g. Zhong et al. 2006), diversity studies (e.g.

van Berloo et al. 2008), and optimization of gene bank

management (e.g. Jansen and van Hintum 2007). The

question has been raised whether AFLP will remain useful

in the near future, given the advances in genome

sequencing, and new large-scale genotyping techniques

like DArT (Wenzl et al. 2004). Meudt and Clarke (2007)

suggest that fingerprinting techniques in general, and AFLP

in particular, will remain valuable, especially if new

analysis methods are developed, which overcome the

problems arising in the analysis of AFLP data.

In this paper, we study the estimation of pairwise

genetic similarity from dominant AFLP data. Estimation of

similarity may be hampered by errors in, or erroneous

interpretation of the binary band information from the

AFLP profiles. As Bonin et al. (2007) mention, two types

of errors prevail in AFLP genotyping: scoring errors and

homoplasy. Many papers study the problem of scoring
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errors (e.g. parts of Meudt and Clarke 2007, and papers

cited therein), but here we focus on homoplasy.

Estimation of genetic similarity is biased due to size

homoplasy, see Fig. 1 (to be discussed later in greater detail).

Size homoplasy occurs if, for two individuals, equally sized,

but different DNA fragments comigrate in two AFLP lanes,

resulting in identical bands. The two bands are usually

considered homologous. Hence, part of the observed simi-

larity can be attributed to chance. Size homoplasy is con-

sidered to be one of the major problems in the analysis of

AFLP data (Meudt and Clarke 2007; Robinson and Harris

1999). Caballero et al. (2008) study the effect of size

homoplasy on estimates of genetic diversity and detection of

selective loci. Empirical estimates of the amount of homo-

plasy can be found, e.g. in O’Hanlon and Peakall (2000), who

report that among congeneric thistles comigrating fragments

showed on average 2.5% size homoplasy, but among dif-

ferent subtribes up to 100%. Because of this problem, AFLP

is commonly advised to be used only to assess relationships

of closely related taxa (Althoff et al. 2007).

Another problem, related to the size homoplasy men-

tioned above, is the occurrence of two or more equally

sized, but different fragments within a single lane. As two

equally sized different fragments in two lanes generally

comigrate, and are wrongly interpreted as homologous,

they will also comigrate if amplified within a single lane,

colliding in a single band, and wrongly interpreted as

single fragment. We call the comigration of equally sized

fragments within a single lane collision. In an empirical

study on sugarbeet, Hansen et al. (1999) quantified the

problem. They found 13.2% of the bands to contain colli-

sions. In an in silico study of AFLP for a wide variety of

species, Althoff et al. (2007) found fractions of bands

containing collisions up to 49%, depending on the number

of bands in a lane. Vekemans et al. (2002) reported in a

Monte Carlo simulation study an average percentage of

30% of undetectable fragments. Collisions were studied

from a probabilistic point of view in Gort et al. (2006) and

Gort et al. (2008). Their theoretical results, which are at the

basis of the present paper, are in line with the empirical

results given above. Collisions also affect the estimation of

genetic similarity.

Although it is recognized that both size homoplasy and

collision may occur in AFLP, no attempts are usually made

to correct for the problems: two equally sized bands are

considered homologous, and a single band is interpreted as

a single fragment. The reasons for this negligence are at

least twofold: it is felt that the problems are minor (in the

cases where AFLPs are suggested to be used), and hardly

any methodology exists to correct for it. In Koopman and

Gort (2004) a crude approach was proposed for the cal-

culation of similarities from AFLP profiles.

In the present paper new estimators of genetic similarity

from AFLP bands, corrected for homoplasy and collision,

are proposed, one based on modification of the Dice and

Jaccard coefficients, and one based on maximum likeli-

hood. We take the following steps in the ‘‘Materials and

methods’’ part to arrive at these estimators.

Number of fragments

A
ve

ra
ge

 D
ic

e 
si

m
ila

rit
y

Average number of bands

pgs=0

pgs=0.1

pgs=0.3

pgs=0.5

pgs=0.7

pgs=0.9

pgs=0.95

a

Number of fragments

A
ve

ra
ge

 J
ac

ca
rd

 s
im

ila
rit

y

0 20 40 60 80 100 120 140 160 180 200

0
0.

1
0.

3
0.

5
0.

7
0.

9
1

0 2 0 60 4 0 80 100 120 140

0 20 40 60 80 100 120 140 160 180 200

0
0.

1
0.

3
0.

5
0.

7
0.

9
1

0 20 40 60 80 100 120 140

Average number of bands

pgs=0

pgs=0.1

pgs=0.3

pgs=0.5

pgs=0.7

pgs=0.9

pgs=0.95

b

Fig. 1 a Average Dice, and b average Jaccard similarities as a

function of number of fragments for 100,000 simulated pairs of

profiles with genetic similarities pgs = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95.

Fragments are sampled from fld FS with scoring range 51–500. The

top axes show the average number of bands on a non-linear scale
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• We first review the AFLP procedure as a sampling

method of DNA fragments.

• Next, the procedure and data are described from a

modeling point of view, introducing notation, and a

definition of pairwise genetic similarity for binary

AFLP data is given.

• We review some commonly used similarity

coefficients.

• We demonstrate, by simulation, that homoplasy and

collision may seriously bias similarity estimates,

resulting in Fig. 1.

• A first step towards a solution is to estimate the number

of fragments in a lane from the number of bands. We

describe two ways to do this, depending on the

availability of band position information.

• Using estimated fragment counts, modified Dice (and

Jaccard) coefficients in two versions are proposed,

depending on availability of band position information.

• If band position information is available, a second

estimator of genetic similarity is proposed, based on

maximum likelihood (m.l.).

• Standard errors and confidence intervals are obtained,

using the bootstrap for the modified coefficients, and

standard likelihood theory for the m.l. estimator.

• Further distributional characteristics of the estimators

are studied by simulation. We describe precisely how

we sample AFLP profiles.

Using the m.l. estimator and its precision, we next focus

on the question how many bands in a lane should be used to

estimate genetic similarity optimally. The theory is illus-

trated by a small case study on lettuce, using data from a

phylogenetic study by Koopman et al. (2001). Results of

the simulations and the case study are shown in ‘‘Results’’.

Conclusions are compiled and discussed in ‘‘Conclusions

and discussion’’. The paper ends with appendices on

bootstrapping and an overview of all symbols used.

Materials and methods

AFLP reviewed

To understand the ideas we are proposing, a short review of

the AFLP fingerprinting technique is useful. The AFLP

technique, developed by Keygene N. V. (Vos et al. 1995),

can be looked upon as a sampling technique of DNA

fragments from, hopefully, random locations within a

genome. To arrive at a sample of DNA fragments repre-

senting an individual genome four steps are taken:

1. The total genomic DNA is cut into fragments by two

restriction enzymes, often MseI (‘‘frequent cutter’’)

and EcoRI (‘‘rare cutter’’). The result is a soup of

fragments, flanked with restricted EcoRI–EcoRI,

EcoRI–MseI, or MseI–MseI sites.

2. Two adaptors, specific for the restriction enzymes, are

ligated to the fragments, allowing primers to adhere in

the third step.

3. Two primers, complementary to the two adaptors,

with one or more selective nucleotides select a number

of fragments for PCR amplification. In this way a

sample of fragments is drawn. Primers with more

selective nucleotides will select fewer fragments. If the

four nucleotides A–C–T–G occur equally often in the

genome, one extra selective nucleotide on, e.g. the

EcoRI primer will cause a fourfold reduction in sample

size of EcoRI–MseI fragments, and a 16-fold reduction

of the EcoRI–EcoRI fragments.

4. The amplified fragments are separated by length in a

lane of a gel or capillary electrophoresis system.

Shorter fragments travel further. Usually only frag-

ments with at least one EcoRI primer are labeled, and

will become visible as bands. Only fragments with

lengths within a certain scoring range (e.g. 51–500

nucleotides long) are visualized as bands.

On a single gel multiple individual genomes are fin-

gerprinted, one per lane. The lengths of the bands are

determined by comparison with the position of DNA

fragments of known lengths (sizers) in size ladders. For a

complete review of the AFLP technique, see e.g. Mueller

and LaReesa Wolfenbarger (1999).

AFLP modeled: single profile

In this section, we again step through the AFLP procedure,

but now aim to statistically model the procedure and data.

For convenience, we compile all introduced symbols in

Appendix 2 (Table 7). We describe the procedure for a

single lane of a gel.

In the first two steps of the procedure, the total genomic

DNA is cut into fragments, and adaptors are ligated. Only

part of these fragments are eligible for visualization:

fragments containing at least one labeled site (e.g. Eco-RI

site), and within the used scoring range (e.g. with 51–500

nucleotides) are candidates. We call this subset the popu-

lation of fragments P, containing, say, M fragments. Dif-

ferent restriction enzymes will result in different

populations of fragments. The size and nucleotide com-

position of the genome also affect P.

The length of a fragment is the number of nucleotides,

adaptors included. We label the possible lengths of the

fragments in P with index i, ranging from 1 (referring to

the smallest length in the scoring range) to N (referring

to the largest length; e.g. with scoring range 51–

500 N = 450). The probability distribution of the lengths
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is called the fragment length distribution (fld). With pi the

probability that a fragment, randomly drawn from P, has

length i, we can write fld = (p1, p2,…, pN); note that
PN

i¼1 pi ¼ 1: Shorter fragments are more frequent than

longer fragments, i.e. the fld is monotonically decreasing

and skewed to the right (Gort et al. 2006). The amount of

skewness is mainly determined by the GC content of the

genome, if the frequent cutter MseI is used. Lower GC

content results in shorter fragments.

We assume the fld is known, or, at least, there is a

reliable estimate of it. For all simulations we use fld FS,

estimated from the Arabidopsis thaliana genome based on

in silico AFLP, as in Gort et al. (2006). This fld is rea-

sonable for genomes with GC content close to 36%. For the

estimation of the fld for other genomes we refer to the same

publication.

In step 3 the primers select a sample of fragments from

P, selecting only those fragments, which have specific

nucleotides next to the restriction sites. This resembles

systematic sampling, but with unknown sample size. We

treat the lengths of the sampled fragments as a random

sample from fld. Assuming a constant but unknown sam-

pling probability p for the fragments of P, the number of

fragments in the sample, called k, has approximately a

Poisson distribution with expected count m = pM.

In step 4 the k fragments are separated by length, and

visualized as bands. We assume that the position of a band

within a lane is determined principally by the fragment

length. Hence, a band will occur approximately at one of N

discrete positions within a lane, which we call band

lengths. A consequence is that two different fragments of

the same length will occur as a single band.

The end product is a profile, containing bands at discrete

positions, which can be represented by a binary vector

y = (y1, y2,…, yN). The binary variable yi (i = 1,…, N)

indicates whether a band with length i is present. The

number of bands in a lane is n ¼
PN

i¼1 yi: Notice that the

number of bands cannot be larger than the number of

fragments (n B k).

AFLP modeled: pairs of profiles and their similarity

Two related individuals share parts of their DNA. As a

consequence, they share part of their two populations of

fragments P1 and P2, containing M1 and M2 fragments,

formed at step 2. This common part is called Pa, and con-

tains Ma fragments. The complement of Pa within P1 is

called Pb, consisting of Mb fragments present in individual

1, but absent in 2. The complement of Pa within P2 is called

Pc, and consists of Mc fragments, present in 2, but absent in

1. Pb and Pc are called the populations of unique fragments.

Notice that M1 = Ma ? Mb, and M2 = Ma ? Mc. All

population sizes Ma, Mb, and Mc are unknown. The fractions

of common fragments are F1 = Ma/M1 and F2 = Ma/M2,

which need not be the same, e.g. if the genomes have dif-

ferent sizes.

We define the pairwise genetic similarity pgs of a pair of

genotypes as the weighted average of fractions F1 and F2,

with weights proportional to the population sizes:

pgs ¼
M1

M1 þM2

F1 þ
M2

M1 þM2

F2 ¼ w1F1 þ w2F2 ð1Þ

Notice that pgs can be written as 2 Ma/(2 Ma ? Mb ? Mc).

We assume that Pa, Pb, and Pc have the same fragment

length distribution fld.

In step 3 samples from fld are taken, resulting in sample

sizes of fragments ka, kb, and kc, approximately Poisson

distributed with expected fragment counts ma, mb, and mc,

proportional to Ma, Mb, and Mc. The expected numbers of

fragments of the two profiles are m1 = ma ? mb and

m2 = ma ? mc.

The end product after step 4 is a pair of profiles,

represented by two binary band vectors y1 = (y11,…, yN1),

and y2 = (y12,…, yN2), with band counts nj ¼
PN

i¼1 yij

(j = 1, 2). We use the following notation for band counts:

a = number of shared bands in the two

profiles =
PN

i¼1 yi1yi2;

b = number of bands in the first profile, but absent in the

second =
PN

i¼1 yi1 1� yi2ð Þ;
c = number of bands in the second profile, but absent in

the first =
PN

i¼1 1� yi1ð Þyi2;

d = number of empty positions in both

profiles =
PN

i¼1 1� yi1ð Þ 1� yi2ð Þ.

Hence, a, b, c and d are the number of 1–1, 1–0, 0–1,

and 0–0 matches, respectively. If more than two profiles

are compared, d is often defined as the number of 0–0

matches in two lanes, limited to those band lengths with at

least one band in one of the other lanes.

Commonly used similarity coefficients

We now review some commonly used similarity coef-

ficients for binary AFLP data. From the similarity

coefficients, reviewed by Reif et al. (2005), only the

Dice, Jaccard’s, and simple matching coefficient are

relevant, because we treat AFLP as a dominant marker

system.

The Dice coefficient (Dice 1945) D is an estimator of

pgs: D ¼ 2a
2aþbþc ¼ ŵ1F̂1 þ ŵ2F̂2 with weights ŵ1 ¼ n1

n1þn2
,

ŵ2 ¼ n2

n1þn2
, and F̂1 ¼ a

n1
, F̂2 ¼ a

n2
. In genetic contexts the Dice

similarity is often referred to as the Nei–Li similarity (Nei

and Li 1979).

The Jaccard coefficient (Jaccard 1908) J ¼ a
aþbþc is the

fraction of common bands compared to the total number of

different bands for the two profiles. It is an estimator of
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Ma/(Ma ? Mb ? Mc), and not of the genetic similarity, as

we define it. A non-linear relationship exists between J and

D: J ¼ D
2�D. For example, taking equal band counts in the

two profiles: if half of the bands in each profile is shared,

then D = 1/2, and J = 1/3. Examples of applications of

Dice and Jaccard’s coefficients as measures of genetic

similarity are Drossou et al. (2004), and Tams et al. (2005).

The simple matching coefficient (Sneath and Sokal

1973) S ¼ aþd
aþbþcþd measures similarity including the 0–0

matches in the profiles as well, counting the 1–1 and 0–0

matches alike.

To illustrate the differences between the coefficients,

take two genotypes with profiles containing 100 bands

each, with N = 450, a = 50, b = 50, c = 50, hence

d = 300. Since half of the bands of each profile is shared,

D = 0.5, and J = 0.33, whereas S = 0.78. Suppose that

for the same genotypes a second set of profiles is made,

using primers with more selective nucleotides, and hence

smaller samples of amplified fragments. Assuming a pro-

portional decrease of band counts of 50% (so a = 25,

b = 25, c = 25, and d = 375), we still have D = 0.5, and

J = 0.33, but S = 0.89. Hence, S changes if the band

counts decrease proportionally, whereas D and J remain

constant.

Usually more than two genotypes are compared in a

study. Often, for S only the 0–0 matches are counted for the

occupied band positions in the whole set of genotypes.

With a proportional decrease of the band counts a, b and c,

the null count d will also decrease, but likely at a different

rate. Hence, S will likely change, whereas D and J remain

constant. S can also change if the set of other genotypes

under study is changed. Wong et al. (2001) supply reasons

in the realm of codominance of AFLP to avoid similarity

measures exploiting 0–0 matches. Therefore, S has a

number of undesirable properties. Only D is an estimator of

pairwise genetic similarity, as we have defined it.

The problem: homoplasy and collision

To appreciate the possible consequences of homoplasy and

collisions in relationship studies based on AFLP data, we

performed a simulation study. We sampled 100,000 pairs

of profiles for a range of genetic similarities pgs (=0, 0.1,

0.3, 0.5, 0.7, 0.9, 0.95) and fragment counts m1 = m2

(=1,…, 200). The maximum fragment count m = 200

corresponds to &140 bands, which is about the maximum

number of bands per lane to be found in practice. Each pair

was sampled in three steps. First, a random draw ka from

the binomial (m1, pgs) distribution determined the sample

size of fragments from the common part Pa, the remaining

kb = m1 - ka and kc = m2 - ka fragments to be sampled

from the unique parts Pb and Pc. Next, ka, kb, and kc

lengths were sampled from the fld, and results were

combined into two vectors of length N = 450, containing

the counts of lengths 1,…, 450 for the two profiles. In the

last step, a pair of binary vectors was created, containing

absence/presence information of at least one fragment of

length 1,…, 450, and representing a pair of AFLP profiles.

Dice and Jaccard coefficients D and J were calculated for

each pair, and averaged over all pairs to produce Fig. 1.

The graph shows the average D and J as a function of the

fragment count. The average band count is shown at the top

axis on a non-linear scale. As an example, profiles with 100

fragments tend to produce approximately 83 bands, hence

17 collisions.

D overestimates the true genetic similarity seriously,

increasingly so for larger fragment or band counts, and for

smaller genetic similarities. For example, at band count 60

the average D has approximate biases 0.015, 0.085, and

0.23 for pgs = 0.9, 0.5, and 0.0, respectively. At band count

100 the biases are 0.025, 0.14 and 0.34, respectively.

J is for band counts in the range 60,…, 100 sometimes

lower than the true pgs (if pgs [ 0.3), sometimes close to

pgs (if pgs & 0.3) and sometimes higher (if pgs \ 0.3).

Estimation of number of fragments

The basic idea in this paper is that, in order to estimate

genetic similarity, we need to know how many fragments

from the two profiles are identical, whereas the profiles

indicate how many bands are identical. The first step to

solve this problem is to estimate the expected number of

fragments m that gave rise to the n observed bands in a

single profile. The difference between number of fragments

and number of bands is called the collision count.

To estimate m, we discriminate between situations

without and with band length information. Notice that band

lengths are not always available, although in principle the

information can be read from an AFLP gel, if size ladders

are used. The lack of band length information is often

based on limitations in the realm of intellectual property, as

commercial players like Keygene N.V. propagate.

In the case of unknown band lengths, the collision count

for a given fld is estimated from the band count, using

Bayes’ rule and generalized occupancy distributions, see

Gort et al. (2006). The resulting estimator of the expected

number of fragments m is called m̂�L.

With known band lengths, the number of collisions can

be estimated using Bayes’ rule and approximated multi-

nomial tail probabilities, or applying the EM-algorithm, as

in Gort et al. (2008). In the present paper, we report a

simpler approach to arrive at an estimator of m. We pro-

pose a generalized linear model (g.l.m.) (McCullagh and

Nelder 1991) for the binary band scores yi. The scores yi

are assumed to be independent, and Bernoulli (Pi) distrib-

uted, with expected score E(yi) = Pi the probability that a

Theor Appl Genet (2009) 119:397–416 401

123



band occurs with length i, if a sample of m fragments has

been drawn from fld= p1; . . .; pNð Þ. The band probability Pi

and fragment probability pi are related as: 1� Pið Þ ¼
1� pið Þm, because the event ‘‘no band of length i’’ is

equivalent with ‘‘none of the m fragments has length i’’.

This equation can be transformed into

log �log 1� Pið Þð Þ ¼ log mð Þ þ log �log 1� pið Þð Þ;

revealing the systematic part of the g.l.m. Hence, we fit a

regression model for the band scores yi, using log(m) as

intercept, offset log �log 1� pið Þð Þ, and complementary

log–log link. The estimator m̂L of m is obtained by expo-

nentiation of the estimator of the intercept log(m).

Modified Dice and Jaccard coefficients using binary

AFLP data

Suppose we have two profiles with observed band counts

n1 = a ? b, and n2 = a ? c. The expected numbers of

fragments m1 and m2 are estimated by m̂1 and m̂2 by

either of the two estimators from the previous section.

The pairwise genetic similarity to be estimated is

pgs ¼ M1

M1þM2

Ma

M1
þ M2

M1þM2

Ma

M2
¼ w1F1 þ w2F2, as in (1).

For weights w1 and w2, we have straightforward esti-

mators ŵ1 ¼ m̂1

m̂1þm̂2
, and ŵ2 ¼ m̂2

m̂1þm̂2
, since expected frag-

ments counts are assumed to be proportional to population

sizes. However, for the fractions common fragments F1 ¼
Ma

M1
and F2 ¼ Ma

M2
, an estimator m̂a of the number of common

fragments ma is needed. We estimate ma as m̂a ¼
m̂1 þ m̂2 � m̂1þ2, by analogy with the number of shared

bands a, which can be calculated as a = n1 ? n2 - n1?2.

In this formula n1?2 = a ? b ? c is the total number of

different bands, as if combining the two profiles into a

single profile, and counting the bands. In the formula for

m̂a, m̂1þ2 is the estimated fragment count for the combi-

nation of the two profiles. The rationale of estimator m̂a is

the following: m̂1 estimates the number of fragments from

the n1 bands of profile 1, and m̂2 from the n2 bands of

profile 2. The sum m̂1 þ m̂2 estimates the total number of

fragments in the two lanes. Some of the fragments are

counted twice, as they occur in both profiles. If we overlay

profiles 1 and 2, we see what would have happened if we

mixed the populations of fragments for the two genomes,

and made a profile for the mixture. Identical fragments in

the two populations, selected for amplification, will appear

as a single band now, and m̂1þ2 estimates the total number

of fragments in the profile for the mixture, that is the

number of different fragments in the mixture. Then the

difference (m̂1 þ m̂2) – m̂1þ2 estimates m̂a, i.e. the number

of fragments the two profiles have in common.

This results in F̂1 ¼ m̂a

m̂1
and F̂2 ¼ m̂a

m̂2
. Estimators of unique

fragment counts are m̂b ¼ m̂1 � m̂a, and m̂c ¼ m̂2 � m̂a.

As estimator of genetic similarity pgs we now propose

the modified Dice coefficient

Dmod ¼ m̂1

m̂1 þ m̂2

m̂a

m̂1

þ m̂2

m̂1 þ m̂2

m̂a

m̂2

¼ 2m̂a

2m̂a þ m̂b þ m̂c
;

replacing the band counts in the original Dice coefficient

by estimated fragment counts. The Jaccard coefficient may

be modified in the same way:

Jmod ¼ m̂a= m̂a þ m̂b þ m̂cð Þ

The maximum of both Dmod and Jmod is 1, occurring if

the two profiles are identical. At the other end of the scale,

there is no intrinsic limitation both for Dmod and Jmod to

take on negative values, whereas pgs C 0. A solution to the

problem is truncation of the estimator at 0.

The modified coefficients come in two versions, for

situations without and with band length information. If

band lengths are unknown, estimator m̂�L is used, resulting

in modified Dice and Jaccard coefficients

Dmod
�L ¼ 2m̂�La= 2m̂ �La þ m̂�Lb þ m̂�Lcð Þ; and

Jmod
�L ¼ m̂�La= m̂�La þ m̂ �Lb þ m̂�Lcð Þ

If band lengths are known, we use estimator m̂L, and the

modified coefficients become

Dmod
L ¼ 2m̂La= 2m̂La þ m̂Lb þ m̂Lcð Þ ; and

Jmod
L ¼ m̂La= m̂La þ m̂Lb þ m̂Lcð Þ

Maximum likelihood estimator of genetic similarity

from binary AFLP data

In the case of known band lengths, a second estimator Dmle of

the genetic similarity pgs is proposed, based on maximum

likelihood (m.l.) (Silvey 1975). For this estimator we need a

statistical model for the data, consisting of the N pairs of binary

scores y11; y12ð Þ, y21; y22ð Þ; . . .; yN1; yN2ð Þ: We treat these

pairs as independent. The two profiles have expected fragment

counts m1 ¼ ma þ mb and m2 ¼ ma þ mc; as before.

The four possible outcomes of a pair yi1; yi2ð Þ are:

1. (0,0): no fragment of length i at all;

2. (0,1): no fragment from the unique part Pb of genotype

1 and the common part Pa, and at least one fragment

from the unique part Pc of genotype 2;

3. (1,0): at least one fragment from Pb, and no fragment

from Pc and Pa;

4. (1,1): either at least one fragment from Pa, or at least

one fragment from both Pb and Pc, but not from Pa.

The likelihood of these four outcomes for the ith pair is:

1. (0,0): ‘i ¼ 1� pið Þmbþmaþmc

2. (0,1): ‘i ¼ 1� pið Þmbþma 1� 1� pið Þmcð Þ
3. (1,0): ‘i ¼ 1� 1� pið Þmbð Þ 1� pið Þmaþmc
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4. (1,1): ‘i ¼ 1� 1� pið Þmað Þ þ
1� 1� pið Þmbð Þ 1� pið Þma 1� 1� pið Þmcð Þ

Next, the log-likelihood of the data LL ¼
PN

i¼1 log ‘ið Þ
is maximized with respect to the parameters ma, mb, and

mc, resulting in m.l. estimators m̂a, m̂b, and m̂c. As in the

previous section, we can define a modified Dice coefficient,

now based on m.l. estimators, as

Dmle
1 ¼ 2m̂a

2m̂a þ m̂b þ m̂c
¼ ŵ1p̂1 þ ŵ2p̂2

with weights ŵ1 ¼ m̂aþm̂b

m̂aþm̂bþm̂aþm̂c
, ŵ2 ¼ m̂aþm̂c

m̂aþm̂bþm̂aþm̂c
, and

p̂1 ¼ m̂a

m̂aþm̂b
, p̂2 ¼ m̂a

m̂aþm̂c
.

The m.l. procedure returns approximate standard errors

of m̂a, m̂b, and m̂c, but not of Dmle
1 as an estimator of pgs.

To get the precision of an estimator of pgs, we reparame-

terize the likelihood. From pgs ¼ 2Ma

2MaþMbþMc
, it follows

pgs

1�pgs
¼ Ma

MbþMcð Þ=2
¼ ma

mbþmcð Þ=2
, since we assume expected frag-

ment counts proportional to population counts. Now, we

replace ma in the likelihood above by pgs

1�pgs
mb þ mcð Þ=2.

Now the log-likelihood is maximized with respect to pgs,

mb, and mc, resulting in a direct m.l. estimator of pgs, which

we call Dmle
2 .

A third parameterization replaces ma by
1
2

mb þ mcð Þexp lgs

� �
, with lgs = logit(pgs), yielding an esti-

mator on the logit-scale, to be back-transformed to

Dmle
3 logit�1 l̂gs

� �
¼ exp l̂gs

� �
= 1þ exp l̂gs

� �� �
. This estimator

may have better distributional properties for pgs close to 0

or 1.

Precision of the estimators

The precisions of estimators Dmod
�L

and Dmod
L are determined

by bootstrapping (Efron and Tibshirani 1993), whereas for

Dmle the precision follows from standard likelihood theory.

For estimator Dmod
�L

the following bootstrap method is

used. The data for a pair of profiles consists of a pairs 1–1,

b pairs 1–0, c pairs 0–1, and d pairs 0–0, collected in the

vector (a, b, c, d), without knowledge of band lengths. For

one bootstrap resample we take a sample of size N from the

pairs 1–1, 1–0, 0–1, and 0–0, with probabilities given by

a/N, b/N, c/N, and d/N, respectively. For this bootstrap

sample the modified Dice coefficient is calculated as

described, and stored.

For estimator Dmod
L a different bootstrap method is used.

Now the band lengths are known. A bootstrap resample

consists of a sample with replacement of N pairs yi1; yi2ð Þ
and connected fld probabilities pi from the N pairs

y11; y12ð Þ, y21; y22ð Þ; . . .; yN1; yN2ð Þ; and a rescaling of the

set of pi’s to have sum 1. Notice that the same pair

yi1; yi2ð Þ, i.e. with the same band length, may occur more

than once in the bootstrap resample. Therefore, a single

bootstrap resample does not necessarily correspond to a

pair of profiles, which could occur in practice. The method

nevertheless works well, as shown later.

For Dmod
�L

and Dmod
L we took 1,000 bootstrap samples,

resulting in estimates of bias (defined as bootstrap mean -

estimate), standard error, and bootstrap confidence intervals.

We used accelerated bias-corrected percentile bootstrap

confidence intervals, also known as BCa confidence intervals

(DiCiccio and Efron 1996). For a description of the calcula-

tion of these confidence intervals, as well as a comparison

between different types of bootstrap confidence intervals, we

refer to the appendix.

For estimator Dmle
2 approximate standard errors follow

from standard likelihood theory, leading to Wald confi-

dence intervals for pgs as Dmle
2 � SE Dmle

2

� �
z1�a=2, with z1-a/2

the 1 - a/2 quantile from the standard normal distribution.

For Dmle
3 we back-transform the Wald-confidence interval

l̂gs � SE l̂gs

� �
�z1�a=2 using logit�1. Besides Wald-type con-

fidence intervals we calculated profile likelihood confi-

dence intervals for pgs (see e.g. Venzon and Moolgavkar

1988). For profile likelihood confidence intervals the

parameters mb and mc are treated as nuisance parameters,

resulting in a profile likelihood for pgs by maximizing over

mb and mc.

Sampling of AFLPs and simulation

To study the behavior of the proposed estimators, we

performed a simulation study. For a wide range of

parameter settings (pgs, m1, and m2) pairs of profiles were

simulated by

1. calculating the expected counts of common frag-

ments ma = �(m1 ? m2)pgs, and unique fragments

mb = m1 - ma, and mc = m2 - ma;

2. drawing random counts from Poisson distributions

with means ma, mb, and mc to arrive at fragment counts

ka, kb, and kc for the pair of profiles to be generated;

3. sampling separately ka, kb, and kc fragment lengths

from the fld;

4. combining the ka ? kb sampled fragments into the first

profile, and ka ? kc fragments into the second,

condensing the information into binary vectors y1

and y2 of length N.

For all combinations of pgs = (0, 0.1, 0.3, 0.5, 0.7, 0.9,

0.95) and m1 = m2 = (40, 70, 120), we sampled 10,000

pairs of profiles. We also included a selection of unequal

m’s for some values of pgs, to show that the methodology

works in that case as well. For each pair of profiles the

estimates Dmod
�L

, Dmod
L (with 1,000 bootstrap samples), and

the three versions of Dmle were calculated.
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Application of methodology: effect of number

of fragments on precision

In AFLP profiling the number of fragments in a lane, and

hence the number of bands, can be steered by the

researcher by changing the number and/or type of selective

nucleotides of the primers. Typical band counts per lane

are between 50 and 100, corresponding to fragment counts

from 60 to 125. The question arises whether these typical

counts are optimal, i.e. whether the estimators of genetic

similarity have highest possible precision.

In a simulation study we investigated for a number of

examples (as before, pgs = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, and

0.95 using N = 450 and fld FS), how the standard error and

width of the 95% profile likelihood confidence interval of

pgs based on Dmle
2 depends on the fragment count. Expected

fragment counts were varied from 15 to 500 (in steps of 5,

equal expected counts for pairs of profiles), using 10,000

replicates at each step. We pushed the number of fragments

to unrealistically high values now, to show the properties

of Dmle
2 in that case, at the same time realizing that in

practice it is impossible to score profiles with very large

numbers of bands per lane. In the simulations numbers of

fragments up to 500 were allowed, resulting in profiles

with more than 225 bands on average. In that case more

than half of the band positions are occupied, since

N = 450.

Case study: phylogenetic relations between Lactuca

genera

The lettuce study by Koopman et al. (2001) aims at

inferring species relationships in Lactuca and related gen-

era from AFLP fingerprints. We selected one of the two

primer combinations (E35/M49), and only 5 of the 20

species: L. tenerrima, M. muralis, L. serriola, L. sativa, and

L. tatarica. We took 6–9 accessions for each of the five

selected species. We selected the five species to have a

wide range of band counts: mean counts (±SD) are 29.6

(±1.9), 32.4 (±2.5), 49.6 (±3.0), 52.6 (±2.8), and 84.1

(±5.1) for L. tenerrima, M. muralis, L. serriola, L. sativa,

and L. tatarica, respectively.

For all pairs of accessions we calculated D, J, and Dmle.

We used FS from A. thaliana as fld. This seems reasonable,

since the GC content of lettuce is close to that of A. tha-

liana: 36.6, 37, 38.2, 38.3, and 36.4% for the five species

(Koopman et al. 2002) versus 36% for A. thaliana. The

relationships between the species are visualized with

UPGMA dendrograms, using dissimilarities 1 - D, 1 - J,

and 1 - Dmle.

Results

General results from the simulation study

Table 1 shows some general results from the simulation

study. For all simulation settings of pgs, m1, and m2, the

average band counts n1, n2, and average Dice similarity D

are given. From the comparison of expected fragment

counts with average band counts, we note that profiles with

m = 40 have on average three collisions, with m = 70 on

average 8.7 collisions, and with m = 120 on average 23.6

collisions. The ordinary Dice coefficient seriously overes-

timates the true similarity, with largest biases for small

similarities and large fragment counts. The maximum

observed bias is 0.334 for pgs = 0 and m = 120. The

smallest bias is 0.0034 for pgs = 0.95 and m = 40.

Table 1 Average band counts n1 and n2, and Dice similarities D for

10,000 simulated pairs of AFLP profiles for a range of values of

genetic similarity pgs and expected numbers of fragments m1 and m2

Parameter settings Results

pgs m1 m2 n1 n2 D

0.0 40 40 37.0 37.0 0.1388

70 70 61.3 61.2 0.2232

120 120 96.4 96.3 0.3343

0.1 40 40 36.9 36.9 0.2192

70 70 61.3 61.4 0.2936

120 120 96.3 96.4 0.3902

0.3 40 40 36.9 37.0 0.3828

70 70 61.3 61.3 0.4369

120 120 96.4 96.4 0.5088

0.5 40 40 37.0 37.0 0.5522

70 70 61.3 61.3 0.5870

120 120 96.2 96.3 0.6355

0.7 40 40 36.9 36.9 0.7261

70 70 61.2 61.1 0.7462

120 120 96.4 96.3 0.7728

0.9 40 40 37.0 37.0 0.9061

70 70 61.1 61.2 0.9131

120 120 96.4 96.3 0.9213

0.95 40 40 37.0 37.0 0.9534

70 70 61.3 61.3 0.9563

120 120 96.4 96.4 0.9603

0.5 100 50 83.0 45.3 0.5736

100 80 83.0 68.7 0.6057

0.7 70 40 61.3 37.0 0.7277

80 70 68.7 61.3 0.7482

Fld FS from A. thaliana is used, with N = 450 band positions
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Table 2 Results from a simulation study on Dmod
�L

for a range of values of genetic similarity pgs and expected numbers of fragments m1 and m2,

10,000 replicated pairs of AFLP profiles, 1,000 bootstrap resamples, fld FS from A. thaliana with N = 450

Parameter settings Part I Results for Dmod
�L

pgs m1 m2 Mean and SE 95% BCa bootstrap ci

Mean Mean after

bias correction

Bootstrap SE Non-coverage %

(too low, too high)

Length

0.0 40 40 -0.0016 -0.0014 0.0643 5.34 (3.04, 2.30) 0.2584

70 70 -0.0028 -0.0022 0.0685 5.45 (2.88, 2.57) 0.2680

120 120 -0.0030 -0.0024 0.0733 5.38 (3.11, 2.27) 0.2862

0.1 40 40 0.0986 0.0998 0.0743 4.53 (2.28, 2.25) 0.2942

70 70 0.0987 0.0995 0.0712 4.93 (2.53, 2.40) 0.2781

120 120 0.0970 0.0978 0.0717 4.92 (2.80, 2.12) 0.2797

0.3 40 40 0.2976 0.3002 0.0821 4.73 (2.16, 2.57) 0.3205

70 70 0.2981 0.2997 0.0713 5.29 (2.55, 2.74) 0.2780

120 120 0.2978 0.2989 0.0661 5.08 (2.58, 2.50) 0.2582

0.5 40 40 0.4976 0.5007 0.0788 4.30 (2.17, 2.13) 0.3070

70 70 0.4974 0.4993 0.0653 4.72 (2.30, 2.42) 0.2548

120 120 0.4977 0.4989 0.0576 4.99 (2.68, 2.31) 0.2250

0.7 40 40 0.6973 0.7000 0.0658 4.76 (2.47, 2.29) 0.2586

70 70 0.6987 0.7003 0.0529 4.76 (2.41, 2.35) 0.2078

120 120 0.6984 0.6993 0.0451 5.38 (2.73, 2.65) 0.1770

0.9 40 40 0.8978 0.8990 0.0391 3.83 (2.18, 1.65) 0.1613

70 70 0.8994 0.9001 0.0309 4.29 (2.36, 1.93) 0.1250

120 120 0.8996 0.9000 0.0258 4.65 (2.36, 2.29) 0.1032

0.95 40 40 0.9495 0.9501 0.0267 5.16 (1.59, 3.57) 0.1173

70 70 0.9497 0.9500 0.0215 4.63 (2.22, 2.41) 0.0907

120 120 0.9498 0.9500 0.0180 4.37 (2.30, 2.07) 0.0742

0.5 100 50 0.4975 0.4991 0.0599 5.03 (2.56, 2.47) 0.2336

0.5 100 80 0.4979 0.4993 0.0606 5.03 (2.65, 2.38) 0.2367

0.7 70 40 0.6979 0.6998 0.0551 4.81 (2.17, 2.64) 0.2157

0.7 80 70 0.6983 0.6998 0.0515 5.21 (2.83, 2.38) 0.2021

Part II Results for truncated Dmod
�L

Median and SE 95% BCa bootstrap ci

Median Median after

bias correction

Bootstrap SE Non-coverage %

(too low, too high)

Length

0.0 40 40 0 0 0.0386 2.30 (2.30) 0.1522

70 70 0 0 0.0374 2.57 (2.57) 0.1396

120 120 0 0 0.0403 2.27 (2.27) 0.1387

0.1 40 40 0.0980 0.0992 0.0649 4.53 (2.28, 2.25) 0.2511

70 70 0.0987 0.0998 0.0616 4.93 (2.53, 2.40) 0.2297

120 120 0.0985 0.0997 0.0609 4.92 (2.80, 2.12) 0.2223

0.3 40 40 0.2985 0.3012 0.0818 4.73 (2.16, 2.57) 0.3197

70 70 0.2990 0.3006 0.0712 5.29 (2.55, 2.74) 0.2776

120 120 0.2974 0.2989 0.0660 5.08 (2.58, 2.50) 0.2579

Part I shows mean, mean after bias correction, mean of the bootstrap standard error, non-coverage percentage of 95% BCa bootstrap confidence

intervals (with left and right non-coverage percentages), and mean length of the interval. Part II shows, for pgs B 0.3, the same type of results as

part I, but for Dmod
�L

truncated at zero. Instead of means, medians are given. At pgs = 0.0, only non-coverage at the right of pgs = 0.0 is considered
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Table 3 Results from a simulation study on Dmod
L for a range of values of genetic similarity pgs and expected numbers of fragments m1 and m2,

10,000 replicated pairs of AFLP profiles, 1,000 bootstrap resamples, fld FS from A. thaliana with N = 450

Parameter settings Part I Results for Dmod
L

Mean and SE 95% BCa bootstrap ci

pgs m1 m2 Mean Mean after

bias correction

Bootstrap SE Non-coverage %

(too low, too high)

Length

0.0 40 40 -0.0009 -0.0008 0.0651 5.55 (3.15, 2.40) 0.2605

70 70 -0.0017 -0.0014 0.0698 5.17 (2.68, 2.49) 0.2725

120 120 -0.0021 -0.0015 0.0754 5.55 (2.99, 2.56) 0.2944

0.1 40 40 0.0989 0.1000 0.0749 4.52 (2.28, 2.24) 0.2957

70 70 0.0996 0.1005 0.0721 5.05 (2.50, 2.55) 0.2815

120 120 0.0978 0.0986 0.0733 5.17 (2.93, 2..24) 0.2861

0.3 40 40 0.2978 0.3004 0.0824 4.78 (2.34, 2.44) 0.3213

70 70 0.2987 0.3003 0.0718 5.11 (2.43, 2.68) 0.2798

120 120 0.2984 0.2995 0.0672 5.14 (2.56, 2.58) 0.2622

0.5 40 40 0.4977 0.5008 0.0789 4.38 (2.17, 2.21) 0.3075

70 70 0.4978 0.4996 0.0655 4.80 (2.36, 2.44) 0.2558

120 120 0.4982 0.4994 0.0582 5.26 (2.83, 2.43) 0.2275

0.7 40 40 0.6974 0.7001 0.0658 4.67 (2.43, 2.24) 0.2587

70 70 0.6988 0.7003 0.0531 4.69 (2.41, 2.28) 0.2085

120 120 0.6987 0.6997 0.0455 5.29 (2.51, 2.78) 0.1786

0.9 40 40 0.8979 0.8991 0.0391 3.78 (2.32, 1.46) 0.1618

70 70 0.8994 0.9001 0.0309 4.28 (2.43, 1.85) 0.1253

120 120 0.8997 0.9001 0.0259 4.62 (2.44, 2.18) 0.1040

0.95 40 40 0.9495 0.9501 0.0267 5.26 (1.74, 3.52) 0.1188

70 70 0.9497 0.9500 0.0215 4.02 (2.21, 1.81) 0.0914

120 120 0.9498 0.9500 0.0181 4.43 (2.34, 2.09) 0.0749

0.5 100 50 0.4978 0.4994 0.0600 5.19 (2.60, 2.59) 0.2342

0.5 100 80 0.4982 0.4997 0.0610 5.09 (2.69, 2.40) 0.2381

0.7 70 40 0.6981 0.6999 0.0551 4.97 (2.37, 2.60) 0.2160

0.7 80 70 0.6985 0.6999 0.0517 4.94 (2.71, 2.23) 0.2030

Part II Results for truncated Dmod
L

Median and SE 95% BCa bootstrap ci

Median Median after

bias correction

Bootstrap SE Non-coverage %

(too low, too high)

Length

0.0 40 40 0 0 0.0390 2.40 (2.40) 0.1524

70 70 0 0 0.0395 2.49 (2.49) 0.1409

120 120 0 0 0.0414 2.56 (2.56) 0.1419

0.1 40 40 0.0982 0.0992 0.0652 4.52 (2.28,2.24) 0.2510

70 70 0.0997 0.1007 0.0621 5.05 (2.50,2.55) 0.2311

120 120 0.1002 0.1011 0.0618 5.17 (2.93,2.24) 0.2249

0.3 40 40 0.2985 0.3013 0.0821 4.78 (2.34,2.44) 0.3204

70 70 0.2999 0.3017 0.0716 5.11 (2.43,2.68) 0.2798

120 120 0.2986 0.2997 0.0670 5.14 (2.56,2.58) 0.2618

Part I shows mean, mean after bias correction, mean of the bootstrap standard error, non-coverage percentage of 95% BCa bootstrap confidence

intervals (with left and right non-coverage percentages), and mean length of the interval. Part II shows, for pgs B 0.3, the same type of results as

part I, but for Dmod
L truncated at zero. Instead of means, medians are given. At pgs = 0.0, only non-coverage at the right of pgs = 0.0 is considered
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Results from the simulation study for modified Dice

coefficients

Table 2 shows the results from the simulation study for the

modified Dice coefficient Dmod
�L

, using profiles without band

length information. In Table 3 results for Dmod
L are given.

We notice the following.

1. Almost all of the bias of the original Dice coefficient is

removed. Dmod
�L

and Dmod
L slightly underestimate pgs

now (mean observed biases -0.0018 and -0.0015,

averaged over all settings of pgs and m, for Dmod
�L

and

Dmod
L , respectively), with largest observed bias equal to

-0.0030 occurring for Dmod
�L

in case pgs = 0 and

m = 120. The remaining small negative bias can be

removed even further by using a bootstrap bias

correction. Mean observed biases are then -0.00058

and -0.00025.

2. The 95% (BCa bootstrap) confidence intervals for the

genetic similarity pgs show reasonably good coverage

properties. In 21 and 18 out of the 25 experimental

settings the observed non-coverage is between 4.5 and

5.5%, hence deviations less than 0.5% from the

nominal value of 5%. For both estimators the largest

deviation from 5% is found for pgs = 0.90 and

m = 40, with observed non-coverages of 3.8 and

3.8%, respectively. In these cases the confidence

intervals are slightly too wide. For pgs = 0.95 and

m = 40 the overall non-coverage behaves better (5.2

and 5.3%), but we find that in 1.6 and 1.7% of the

cases the confidence intervals are too low, and in 3.6

and 3.5% too high, compared to the nominal 2.5 and

2.5%. In this case the intervals are too wide if the

estimate is smaller than pgs = 0.95, and too narrow for

estimates larger than 0.95.

3. The bootstrap standard errors of Dmod
�L

and Dmod
L are

smaller for larger number of expected fragments, with

the exception of pgs = 0 and pgs = 0.1. Hence, in the

examples for pgs [ 0.1 larger fragment counts result in

more precise estimates. The same can be said for the

lengths of the 95% confidence intervals. If pgs = 0.1

the smallest standard error is observed for m = 70

4. The estimates Dmod
�L

and Dmod
L may become negative for

small values of pgs. In the table this can be seen for

pgs = 0, resulting in a negative average of Dmod, but it

also occurs for pgs = 0.1. For pgs = 0.3 the lower

bound of the 95% confidence interval may become

negative. In practice a negative value of Dmod would

be truncated at 0. Therefore, we added the bottom parts

II of Tables 2 and 3, showing results for the truncated

versions of Dmod
�L

and Dmod
L for pgs = 0.0, 0.1, and 0.3.

Since the truncation causes more distributional asym-

metry we give medians instead of averages of Dmod
�L

and Dmod
L . For Dmod

�L
the bias-correction decreases the

bias, but this is not always the case for Dmod
L . For

pgs = 0 we give the non-coverage of the (97.5%)

confidence interval only at the right of pg = 0. For

pgs = 0 we observe the largest standard errors for the

cases with largest m, suggesting that the optimal

number of fragments is smaller than m = 120.

5. In all cases Dmod
�L

has narrower 95% confidence

intervals than Dmod
L , although differences are small

(average difference in length is only 0.0019). In all

cases the bootstrap SE(Dmod
�L

) B SE(Dmod
L ), but again

differences are small. The coverage of the 95%

confidence interval of Dmod
�L

is slightly better than that

of Dmod
L : average absolute deviation from the nominal

5% is 0.33% for Dmod
�L

compared to 0.36% for Dmod
L .

Intuitively better behavior of Dmod
L was expected, since

Dmod
L exploits band length information, but we con-

clude, surprisingly, that Dmod
�L

has slightly better

characteristics than Dmod
L

Results from the simulation study for maximum

likelihood estimators Dmle

Table 4 shows the results from the simulation study for

Dmle. We notice the following.

1. Estimators Dmle
1 , Dmle

2 , and Dmle
3 almost always return

the same estimate. Only for pgs C 0.9 we see minor

differences, resulting in means differing in the fourth

decimal. Hence, only results for Dmle
2 are shown.

2. The large positive bias of the original Dice coefficient

is removed. For pgs [ 0.1, a negligible negative bias of

Dmle
2 remains: the mean bias is -0.0015. For pgs B 0.1

a small positive bias is observed, because of the

necessarily non-negative value of the estimators. For

pgs = 0 the medians (not shown) are 0, and for

pgs = 0.1 they are 0.0965 (m = 40), 0.0982 (m = 70),

and 0.0995 (m = 120).

3. The 95% Wald confidence intervals for pgs are

conservative for small values of pgs (non-coverage

rates smaller than nominal value), but are becoming

more and more liberal for larger values. Obviously, the

approximate standard error of Dmle
2 is too large for

small values of Dmle
2 , and too small for large values.

The deviations from 5% seem acceptable for

0.3 B pgs B 0.7 and m [ 40. The number of intervals

with a lower bound larger than the true pgs outnumber

those with an upper bound smaller than pgs. This is

also an indication of standard errors which are too high

for low values of the estimate, and too small for large

values.

4. The 95% profile likelihood confidence intervals for pgs

have for a large number of settings non-coverage rates
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close to 5%. In 16 out of the 25 settings the deviation

of the non-coverage rate from the nominal value is less

than 0.5%. Larger deviations are found for larger

values of pgs and smaller fragment counts. The largest

deviation is observed for pgs = 0.95 and m = 40, with

a non-coverage rate equal to 19%, making the profile

likelihood interval useless in this situation. The

number of intervals with an upper bound smaller than

pgs becomes exceedingly large in these cases. The

profile likelihood intervals work well for pgs \ 0.7,

irrespective of the studied fragment counts, and for

larger values of pgs, but only if the fragment count is

large enough.

5. The 95% back-transformed (from logit-scale) Wald

confidence intervals generally have a non-coverage

rate close to the nominal 5%. However, for small

values of pgs they are highly asymmetrically distrib-

uted (with respect to pgs). Intervals with lower bounds

exceeding pgs dominate in these cases. If pgs = 0,

estimates of pgs on the logit scale tend to -?, and the

approximate standard errors are badly determined,

resulting in useless confidence intervals. For high

values of pgs, intervals with upper bounds lower than

pgs get the upper hand. The back-transformed Wald

confidence intervals are usable for pgs C 0.5, and tend

to be conservative then.

Table 4 Results from a simulation study on Dmle for a range of values of genetic similarity pgs and expected numbers of fragments m1 and m2,

10,000 replicated pairs of AFLP profiles, 1,000 bootstrap resamples, fld FS from A. thaliana with N = 450

Parameter settings Results for Dmle

Dmle
2 Wald ci Profile likelihood ci Back transformed Wald ci

pgs m1 m2 Mean SE Non-coverage%

(too low, too high)

Length Non-coverage%

(too low, too high)

Length Non-coverage %

(too low, too high)

Length

0.0 40 40 0.0202 0.0759 0.59 (0.59) 0.1689 1.98 (1.98) 0.1401 – –

70 70 0.0203 0.0651 1.18 (1.18) 0.1477 2.35 (2.35) 0.1275 – –

120 120 0.0216 0.0611 1.48 (1.48) 0.1409 2.26 (2.26) 0.1236 – –

0.1 40 40 0.1004 0.0721 2.41 (0.97, 1.44) 0.2320 4.49 (2.40, 2.09) 0.2364 5.28 (0, 5.28) 0.4532

70 70 0.1006 0.0645 3.13 (1.25, 1.88) 0.2144 4.64 (2.29, 2.35) 0.2164 5.51 (0, 5.51) 0.3974

120 120 0.1001 0.0611 3.06 (0.94, 2.12) 0.2056 4.94 (2.59, 2.35) 0.2059 5.80 (0, 5.80) 0.3742

0.3 40 40 0.2979 0.0807 6.27 (3.56, 2.71) 0.3151 5.23 (2.70, 2.53) 0.3074 3.56 (0.02, 3.54) 0.3123

70 70 0.2987 0.0690 5.77 (2.81, 2.96) 0.2702 5.24 (2.52, 2.72) 0.2660 3.81 (0.15, 3.66) 0.2670

120 120 0.2985 0.0622 5.43 (2.69, 2.74) 0.2436 5.08 (2.63, 2.45) 0.2411 3.90 (0.24, 3.66) 0.2410

0.5 40 40 0.4978 0.0777 5.54 (2.09, 3.45) 0.3045 4.73 (2.42, 2.31) 0.2948 4.09 (1.40, 2.69) 0.2955

70 70 0.4978 0.0643 5.29 (2.06, 3.23) 0.2519 4.90 (2.36, 2.54) 0.2495 4.38 (1.51, 2.87) 0.2467

120 120 0.4981 0.0560 5.08 (2.21, 2.87) 0.2195 4.99 (2.74, 2.25) 0.2183 4.36 (1.76, 2.60) 0.2161

0.7 40 40 0.6974 0.0646 6.24 (1.66, 4.58) 0.2532 6.39 (3.56, 2.83) 0.2363 4.72 (2.35, 2.37) 0.2492

70 70 0.6989 0.0523 5.53 (1.75, 3.78) 0.2049 5.01 (2.55, 2.46) 0.2030 4.56 (2.35, 2.21) 0.2028

120 120 0.6987 0.0445 5.67 (1.65, 4.02) 0.1744 5.20 (2.43, 2.77) 0.1741 4.88 (2.20, 2.68) 0.1731

0.9* 40 40 0.8976 0.0382 7.74 (0.70, 7.04) 0.1496 12.60 (9.95, 2.65) 0.1301 3.77 (3.04,0.73) 0.1582

70 70 0.8995 0.0304 6.96 (0.87, 6.09) 0.1192 7.76 (5.14, 2.62) 0.1092 4.24 (2.88, 1.36) 0.1238

120 120 0.8997 0.0255 6.83 (1.05, 5.78) 0.0999 5.30 (2.50, 2.80) 0.0990 4.54 (2.87, 1.67) 0.1026

0.95* 40 40 0.9491 0.0266 13.42 (0.22, 13.20) 0.1007 19.34 (15.61, 3.73) 0.0899 6.43 (2.95, 3.48) 0.1199

* 70 70 0.9496 0.0208 9.96 (0.46, 9.50) 0.0817 12.87 (9.48, 3.39) 0.0736 3.73 (3.20, 0.53) 0.0923

* 120 120 0.9500 0.0175 9.06 (0.75, 8.31) 0.0684 6.47 (3.42, 3.05) 0.0659 4.10 (3.08, 1.02) 0.0750

0.5 100 50 0.4977 0.0592 5.56 (2.35, 3.21) 0.2320 5.23 (2.66, 2.57) 0.2301 4.71 (1.86, 2.85) 0.2280

0.5 100 80 0.4982 0.0595 5.36 (2.30, 3.06) 0.2330 4.88 (2.57, 2.31) 0.2314 4.54 (1.84, 2.70) 0.2289

0.7 70 40 0.6980 0.0544 5.96 (1.67, 4.29) 0.2132 5.65 (2.77, 2.88) 0.2054 4.97 (2.34, 2.62) 0.2109

0.7 80 70 0.6985 0.0509 5.75 (2.62, 2.21) 0.1995 5.20 (2.84, 2.36) 0.1983 4.83 (2.62, 2.21) 0.1976

Shown are the mean, mean standard error, and properties of three types of confidence intervals: non-coverage percentage (with left and right non-

coverage percentages), and mean length of (1) 95% Wald c.i., (2) 95% profile likelihood c.i., and (3) 95% logit-back transformed Wald c.i. At

pgs = 0.0, only non-coverage at the right of pgs = 0.0 is considered

* In case pgs = 0.9 (m = 40), or pgs = 0.959 (m = 40, 70, 120) identical pairs of profiles were sampled (10, 348, 53, and 10 times, respectively);

in these cases Dmle
2 = 1, with standard error 0, and we took logit(pc) = 16 with standard error 0
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6. The standard error of Dmle
2 decreases with larger

expected fragment counts, as expected. For all three

types of confidence intervals larger numbers of frag-

ments result in narrower confidence intervals.

7. None of the three types of confidence intervals are

usable for all values of pgs. The profile likelihood

intervals have the broadest range of application of

pgs:pgs \ 0.7 irrespective of m, and pgs C 0.7 for larger

values of m. The back-transformed Wald intervals

perform best for large values of pgs. The Wald

confidence intervals are widest (at pgs = 0.5 and

0.7), making them the least attractive in this range.

8. For all cases with pgs C 0.3, Dmle
2 has smaller standard

errors than Dmod
�L

and Dmod
L . Furthermore, in all cases

the profile likelihood confidence intervals based on

Dmle
2 are narrower than the bootstrap confidence

intervals based on Dmod
�L

and Dmod
L . These results

suggest that Dmle
2 is to be preferred over the modified

coefficients Dmod
�L

and Dmod
L .

Comparing standard errors

The simulation study has shown that the proposed esti-

mators are approximately unbiased. Although attractive in

itself, unbiasedness does not guarantee a higher precision

since SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ var

p
. Using the data from the

simulation study, we estimated bias Dð Þ, and var Dð Þ by

bootstrapping, and compared SE Dð Þ with SE Dmod
L

� �
.

For most cases we find SE Dð Þ[ SE Dmod
L

� �
, with the

most extreme outcome for pgs = 0.0 and m = 120, where

SE Dð Þ is 4:5� SE Dmod
L

� �
. For large values of pgs

(pgs = 0.95, all m; pgs = 0.9, m = 40,70; pgs = 0.7,

m = 40), we find that SE Dð Þ\ SE Dmod
L

� �
, but SE Dð Þ is

never smaller than 0:95� SE Dmod
L

� �
. Hence, depending on

the combination of pgs and m, very large gains in standard

error can be obtained, or, for large pgs (in combination with

small fragment counts) minor losses. In the last cases, the

gain in bias is outweighed by the loss in variance, and

the new estimator Dmod
L is marginally less precise compared

to D.

Results for the effect of expected number of fragments

on precision

Figure 2 shows the results of the simulation study on the

relationship between the expected number of fragments m

and precision of Dmle
2 . In the left-hand side figure the

expected number of fragments is plotted against the aver-

age standard error of Dmle
2 . At the top axis the average band

count is shown. We observe the following:

1. Starting at small numbers of fragments, the standard

error of Dmle
2 decreases as the number of fragments

increases. The rate of change of the standard error is
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Fig. 2 a Average SE of Dmle
2 , and b average Dmle

2 and D, as functions

of numbers of fragments for different values of pgs. In plot a
interpolated lines are drawn for fragment counts ranging from 15 to

500 in steps of 5 for pgs = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, and in plot b
for pgs = 0.1, 0.5, and 0.9. The shaded areas in b indicate average

95% profile likelihood confidence intervals of pgs. For each value of m
and pgs, 10,000 pairs of profiles were sampled from fld FS with

scoring range 51–500. The top axes show the average number of

bands on a non-linear scale
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high at low fragment counts, but decreases. As the

number of fragments increases, the standard error

reaches a minimum, and afterwards increases again.

2. The optimal number of fragments depends on pgs.

Smaller values of pgs allow smaller numbers of

fragments. For pgs = 0 or 0.1 the optimal number of

fragments is close to m = 140 (or n = 110 bands). For

pgs = 0.3 this count is approximately m = 250

(n = 165), for pgs = 0.5 m = 350 (n = 205), and for

pgs = 0.7 m = 500 (n = 245). For pgs = 0.9 or 0.95

the optimal fragment count is larger than 500

fragments.

3. In general a large range of near-optimal fragment

counts exists.

4. The usual range of band counts (between 50 and 100)

is not optimal, especially if the focus is on highly

related species with high pgs. However, the gain in

accuracy will generally be small if larger band counts

are used. The small gain in accuracy must be balanced

against the possible scoring problems that may occur

with large band counts.

In the right-hand side figure the expected number of frag-

ments is plotted against the average Dmle
2 , and average Dice

similarity. Furthermore, the average lower and upper

bounds of the 95% profile likelihood confidence intervals

are shown. For clarity, only results for pgs = 0.1, 0.5, and

0.9 are given. We observe the following:

5. Dmle
2 is an (almost) unbiased estimator of pgs, even for

extremely large fragment counts. For very small

fragment counts (m B 25) there appears to be small

negative bias.

6. Starting at small m, the width of the confidence

interval quickly decreases. For large enough m

(depending on pgs) the width remains approximately

constant.

7. The usual range of band counts, although not optimal,

seems reasonable. Only little gain in the width of the

confidence intervals can be expected from higher

fragment counts, as in 4).

8. The confidence intervals are rather wide. The only way

to reach narrower intervals is to use multiple gels with

different primer combinations, and combine the infor-

mation from the different profiles.

Results for case study on lettuce and related genera

Figure 3 shows the UPGMA dendrograms for the five

species, split out for the three dissimilarity measures. The

dendrograms for 1 - D and 1 - J are largely the same.

With all three dissimilarities the species are separated well.

Notice that the 1 - Dmle dissimilarities are closer to 0, as

expected. Notice further that the 1 - Dmle dissimilarities

are not a simple shift towards 1. In the hierarchical clus-

tering scheme for D and J, L. tenerrima joins after clus-

tering of L. serriola, L. sativa, and L. tatarica, but for Dmle

L. tenerrima joins after clustering of L. serriola and

L. sativa only. Apparently, L. tenerrima and L. tatarica

have switched places. This behavior can be understood from

the band count. The AFLP profiles for L. tenerrima contain

a small number of bands, whereas L. tatarica profiles have

large counts. Hence, bias corrections for comparisons with

L. tenerrima are smaller than those with L. tatarica.

Conclusions and discussion

In this study, we propose new estimators of pairwise

genetic similarity pgs from binary AFLP data, correcting

for homoplasy. We define pairwise genetic similarity for
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Fig. 3 UPGMA dendrograms for three dissimilarities: a 1-Dice D,

b 1-Jaccard J, and c 1-Dmle for five species of Lactuca and related

genera, with 6–9 accessions per species. Labels are: ten =

L. tenerrima, mur = M. muralis, ser = L. serriola, sat = L. sativa,

and tat = L. serriola. For Dmle we used fld FS with scoring range

110–501
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AFLP data as the weighted average of fractions of common

fragments. Using this definition, the Dice coefficient is a

natural candidate for replacement, but a homoplasy cor-

rected version of the Jaccard coefficient is suggested as

well. For most practical cases the new estimators are better

than the ordinary Dice coefficient, because the bias is

removed, at the cost of a small increase in variance. Only

for large genetic similarities in combination with low band

counts (roughly: pgs = 0.95 and n \ 100, pgs = 0.90 and

n \ 65, pgs = 0.70 and n \ 38), Dice performs better.

For profiles without band length information, we pro-

pose the modified Dice coefficient Dmod
�L

. Using the boot-

strap, standard errors and confidence intervals are obtained.

The bootstrap allows a further reduction of the already

small negative bias of Dmod
�L

.

For AFLP profiles with band length information, we

have three candidate estimators: Dmle, Dmod
L , and Dmod

�L
.

Best results are obtained using the maximum likelihood

estimator Dmle, although differences are small. Second best

is, surprisingly, Dmod
�L

, ignoring the band length informa-

tion. The standard error of Dmle follows from likelihood

theory, hence no bootstrapping is needed. Profile likelihood

confidence intervals for pgs are narrowest. However, care

has to be taken in the choice of type of confidence interval.

Profile likelihood intervals are only acceptable, if pgs \ 0.7

irrespective of the number of fragments, and for pgs C 0.7

if the fragment counts are large enough. For small fragment

counts and large pgs, more acceptable results are obtained

for the back transformed Wald intervals, using an estimator

on the logit-scale.

The modified Dice coefficients Dmod
�L

or Dmod
L are good

alternatives as well. Over the whole range of pgs the con-

fidence intervals based on Dmod
L and Dmod

�L
showed more

stable coverage properties than those for Dmle.

The homoplasy corrected estimate of genetic similarity

is always smaller than the ordinary Dice coefficient,

because part of the observed band similarity is attributed to

chance. The magnitude of this correction depends on the

true genetic similarity, but also on the fragment counts.

Both smaller similarities and larger numbers of fragments

lead to larger corrections.

The standard error of the similarity estimator Dmle and

the width of the confidence interval cannot be made arbi-

trarily small by increasing the number of fragments in the

profiles. The optimal number of fragments exists, but its

value depends on the true genetic similarity, and there is a

large range of near-optimal fragment counts. The usual

range of band counts (between 50 and 100) is suboptimal,

but in general the gain in precision is small if higher

numbers of fragments are used, and should be balanced

against increasing scoring problems.

To get more precise estimates of genetic similarity,

multiple gels with different primer combinations or

restriction enzymes should be used, and the information

from the different profiles should be combined. Dmle can

easily be modified to estimate a single genetic similarity

from multiple pairs of profiles, even allowing for possibly

different fld’s for the different profiles. Modifications of

this type (beyond ordinary averaging) are less straight

forward for the modified coefficients Dmod
L and Dmod

�L
. This

flexibility is a further argument in favor of Dmle.

To account for homoplasy and collisions properly,

all bands in the profiles must be scored, not just the

non-monomorphic bands. The effect of scoring non-

monomorphic bands only is that Dice and Jaccard coef-

ficients are lowered in a way that depends on the set of

individuals under study. Inclusion or exclusion of a less

related individual in the study, could result in exclusion

or inclusion of bands, which are polymorphic with the

individual, but monomorphic without. Hence, the simi-

larity coefficient would be different with or without this

individual.

Conclusions drawn here are mainly based on a single

simulation study. Furthermore, we have to rely on a

number of assumptions. For instance, we assume to know

the fld, which in reality hardly ever is the case. Only if full

DNA sequence information is available and by using in-

silico AFLP procedures, do we have an estimate of the fld

very close to the true fld. In other cases, a less reliable

estimate of the fld may come from the GC content or

directly from the binary AFLP data, as described in Gort

et al. (2006).

Another topic related to the fld, is the fact that two

distantly related individuals, e.g. with highly different GC

contents, may have different flds. In this paper we have

assumed that there is a common fld. Further study on the

effect of misspecification of the flds on the statistical

properties of the proposed estimators is needed.

In the present paper, we studied the effect of homoplasy

and collision on the estimation of genetic similarity from

binary AFLP data. Examples of studies that may directly

benefit from the proposed homoplasy corrected estimates

of genetic similarity are studies on genetic diversity,

e.g. in plant genetic resources or breeding programs, but

also phylogenetic and taxonomic studies, and studies of

essential derivation, in which plant breeders try to estab-

lish thresholds for genetic similarity between initial and

new, allegedly derived varieties (Van Eeuwijk and Law

2004).

In other studies where AFLP profiles are analyzed, the

problem of homoplasy may have an impact as well. For

example, in linkage studies for tracing quantitative trait

loci (QTLs) or for mapping purposes, a band is interpreted

as a single DNA fragment, residing at one unique locus of

the genome. Here the best strategy may be to avoid

homoplasy as much as possible, by limiting the number of
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fragments per lane, or avoiding bands corresponding to

short fragments.

In population genetic applications of AFLP, homo-

plasy and collision may also affect estimation of param-

eters. For example, if the allele frequency of the DNA

fragment corresponding to a band is the parameter of

interest, like in Krauss (2000), who tested three proce-

dures for estimation of null allele frequencies, homoplasy

may cause some bands to be non-homologous, thereby

changing the relative frequency of absent bands. Derived

quantities like heterozygosity, coefficient of co-ancestry,

or genetic distances, may need corrections for homoplasy

and/or collision as well. These corrections require careful

consideration, and are beyond the scope of the present

paper. An example of a recent study of homoplasy in

population genetics is Caballero et al. (2008), who focus

on population genetic diversity and detection of selective

loci.

In a study by Holland et al. (2008) about automated

scoring of AFLPs, the suggestion is made to decrease the

bin width for scoring fragments on a capillary system. This

is another route towards a solution of the homoplasy

problem, because the resulting profiles will likely have less

homoplasy, albeit at the cost of an increased error rate for

homologous fragments. In future work this approach may

be joined with ours to arrive at improved evaluation of

homoplasy.

The problem of homoplasy described here is not limited

to the AFLP marker system. In a study on homology

among RAPD fragments for three very closely related

Table 5 Comparison of bootstrap confidence intervals for pgs from a simulation study on Dmod
�L

for a range of values of genetic similarity pgs and

expected numbers of fragments m1 and m2, 10,000 replicated pairs of AFLP profiles, 1,000 bootstrap resamples, fld FS from A. thaliana with

N = 450

Parameter settings Results for Dmod
�L

: 95% bootstrap confidence intervals for pgs

Percentile bootstrap c.i. Bias corrected bootstrap c.i. BCa c.i.

pgs m1, m2 Non-coverage%

(too low, too high)

Length (trunc) Non-coverage%

(too low, too high)

Length (trunc) Non-coverage%

(too low, too high)

Length (trunc)

0.0 40 40 6.98 (5.57, 1.41) 0.2495 (0.1324) 6.50 (4.73, 1.77) 0.2517 (0.1386) 5.34 (3.04, 2.30) 0.2584 (0.1522)

70 70 5.68 (3.63, 2.05) 0.2670 (0.1332) 5.60 (3.40, 2.20) 0.2672 (0.1354) 5.45 (2.88, 2.57) 0.2680 (0.1396)

120 120 5.40 (3.08, 2.32) 0.2862 (0.1382) 5.48 (3.23, 2.25) 0.2862 (0.1381) 5.38 (3.11, 2.27) 0.2862 (0.1387)

0.1 40 40 5.70 (4.16, 1.54) 0.2893 (0.2369) 5.21 (3.47, 1.74) 0.2904 (0.2416) 4.53 (2.28, 2.25) 0.2942 (0.2511)

70 70 5.25 (3.18, 2.07) 0.2777 (0.2255) 5.28 (3.01, 2.27) 0.2778 (0.2778) 4.93 (2.53, 2.40) 0.2781 (0.2297)

120 120 5.05 (2.95, 2.10) 0.2796 (0.2220) 4.98 (2.86, 2.12) 0.2797 (0.2220) 4.92 (2.80, 2.12) 0.2797 (0.2223)

0.3 40 40 5.49 (3.30, 2.19) 0.3201 (0.3187) 5.34 (2.90, 2.44) 0.3200 (0.3189) 4.73 (2.16, 2.57) 0.3205 (0.3197)

70 70 5.54 (2.89, 2.65) 0.2781 (0.2776) 5.51 (2.80, 2.71) 0.2780 (0.2776) 5.29 (2.55, 2.74) 0.2780 (0.2776)

120 120 5.19 (2.57, 2.62) 0.2580 (0.2578) 5.25 (2.60, 2.65) 0.2581 (0.2579) 5.08 (2.58, 2.50) 0.2582 (0.2579)

0.5 40 40 4.97 (2.66, 2.31) 0.3074 4.75 (2.44, 2.31) 0.3072 4.30 (2.17, 2.13) 0.3070

70 70 5.09 (2.42, 2.67) 0.2548 5.04 (2.41, 2.63) 0.2547 4.72 (2.30, 2.42) 0.2548

120 120 5.23 (2.66, 2.57) 0.2246 5.24 (2.62, 2.62) 0.2246 4.99 (2.68, 2.31) 0.2250

0.7 40 40 5.73 (2.41, 3.32) 0.2568 5.48 (2.49, 2.99) 0.2573 4.76 (2.47, 2.29) 0.2586

70 70 5.22 (2.28, 2.94) 0.2065 5.14 (2.32, 2.82) 0.2068 4.76 (2.41, 2.35) 0.2078

120 120 5.63 (2.32, 3.31) 0.1760 5.53 (2.41, 3.12) 0.1762 5.38 (2.73, 2.65) 0.1770

0.9 40 40 6.30 (1.62, 4.68) 0.1517 5.53 (1.76, 3.77) 0.1542 3.83 (2.18, 1.65) 0.1613

70 70 5.89 (1.58, 4.31) 0.1202 5.33 (1.83, 3.50) 0.1213 4.29 (2.36, 1.93) 0.1250

120 120 5.64 (1.63, 4.01) 0.1004 5.49 (1.91, 3.58) 0.1011 4.65 (2.36, 2.29) 0.1032

0.95 40 40 9.15 (0.85, 8.30) 0.1020 7.07 (1.04, 6.03) 0.1060 5.16 (1.59, 3.57) 0.1173

70 70 7.63 (1.18, 6.45) 0.0829 6.48 (1.49, 4.99) 0.0850 4.63 (2.22, 2.41) 0.0907

120 120 6.82 (1.31, 5.51) 0.0682 5.99 (1.48, 4.51) 0.0708 4.37 (2.30, 2.07) 0.0742

0.5 100 50 5.30 (2.79, 2.51) 0.2337 5.37 (2.72, 2.65) 0.2336 5.03 (2.56, 2.47) 0.2336

0.5 100 80 5.23 (2.68, 2.55) 0.2364 5.17 (2.65, 2.52) 0.2365 5.03 (2.65, 2.38) 0.2367

0.7 70 40 5.62 (2.33, 3.29) 0.2150 5.35 (2.20, 3.15) 0.2149 4.81 (2.17, 2.64) 0.2157

0.7 80 70 5.48 (2.54, 2.94) 0.2009 5.51 (2.63, 2.88) 0.2012 5.21 (2.83, 2.38) 0.2021

Shown are non-coverage percentages (with left and right non-coverage percentages) and mean length of (1) 95% percentile bootstrap c.i., (2)

95% bias-corrected bootstrap c.i., and (3) 95% accelerated bias-corrected (BCa) bootstrap c.i
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species of sunflowers, Rieseberg (1996) reports that of 220

pairwise comparisons of comigrating fragments only 79%

identified loci useful for comparative genetic studies. For

RAPD comparable corrections for homoplasy can be

envisioned, as we propose here for AFLP.

Software in R (R Development Core Team 2005) for

calculation of the proposed estimators is available from the

authors.
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Appendix 1: Comparison of bootstrap confidence

intervals

We compare three types of bootstrap confidence intervals

(c.i.):

• simple percentile c.i.

• bias-corrected percentile c.i.

• accelerated bias-corrected percentile (BCa) c.i.

These c.i.’s are calculated as described in (Manly 1997),

pp. 39–56. For the accelerated bias-corrected percentile

c.i.’s calculation of the constant aacc is required. Manly

(1997) suggests to approximate aacc by
PN

j¼1 ðĤ: � Ĥ�jÞ3=
½6f
PN

j¼1 ðĤ: � Ĥ�jÞ2g1:5� with Ĥ�j the partial estimate of

the parameter H based on all but the jth observation, and

Table 6 Comparison of bootstrap confidence intervals for pgs from a simulation study on Dmod
L for a range of values of genetic similarity pgs and

expected numbers of fragments m1 and m2, 10,000 replicated pairs of AFLP profiles, 1,000 bootstrap resamples, fld FS from A. thaliana with

N = 450

Parameter settings Results for Dmod
L : 95% bootstrap confidence intervals for pgs

Percentile bootstrap c.i. Bias corrected bootstrap c.i. BCa c.i.

pgs m1, m2 Non-coverage

(too low, too high)

Length (trunc) Non-coverage

(too low, too high)

Length (trunc) Non-coverage

(too low, too high)

Length (trunc)

40 40 6.76 (5.22, 1.54) 0.2527 (0.1339) 6.35 (4.58, 1.77) 0.2544 (0.1394) 5.55 (3.15, 2.40) 0.2605 (0.1524)

70 70 5.36 (3.30, 2.06) 0.2718 (0.1354) 5.33 (3.12, 2.21) 0.2720 (0.1369) 5.17 (2.68, 2.49) 0.2725 (0.1409)

120 120 5.39 (2.88, 2.51) 0.2943 (0.1419) 5.60 (3.06, 2.54) 0.2944 (0.1413) 5.55 (2.99, 2.56) 0.2944 (0.1419)

0.1 40 40 5.80 (4.18, 1.62) 0.2913 (0.2378) 5.44 (3.59, 1.85) 0.2922 (0.2419) 4.52 (2.28, 2.24) 0.2957 (0.2510)

70 70 5.35 (3.12, 2.23) 0.2812 (0.2273) 5.21 (2.88, 2.33) 0.2812 (0.2285) 5.05 (2.50, 2.55) 0.2815 (0.2311)

120 120 5.21 (2.87, 2.34) 0.2860 (0.2252) 5.22 (2.97, 2.25) 0.2861 (0.2247) 5.10 (2.84, 2.26) 0.2861 (0.2249)

0.3 40 40 5.64 (3.44, 2.20) 0.3212 (0.3197) 5.30 (3.03, 2.27) 0.3210 (0.3197) 4.78 (2.34, 2.44) 0.3213 (0.3204)

70 70 5.44 (2.87, 2.57) 0.2800 (0.2794) 5.37 (2.69, 2.68) 0.2799 (0.2793) 5.11 (2.43, 2.68) 0.2798 (0.2793)

120 120 5.36 (2.54, 2.82) 0.2619 (0.2616) 5.26 (2.56, 2.70) 0.2620 (0.2616) 5.14 (2.56, 2.58) 0.2622 (0.2618)

0.5 40 40 5.14 (2.77, 2.37) 0.3078 4.99 (2.58, 2.41) 0.3077 4.38 (2.17, 2.21) 0.3075

70 70 5.17 (2.50, 2.67) 0.2556 5.04 (2.44, 2.60) 0.2556 4.80 (2.36, 2.44) 0.2558

120 120 5.44 (2.79, 2.65) 0.2269 5.44 (2.77, 2.67) 0.2271 5.26 (2.83, 2.43) 0.2275

0.7 40 40 5.73 (2.45, 3.28) 0.2567 5.36 (2.45, 2.91) 0.2573 4.67 (2.43, 2.24) 0.2587

70 70 5.26 (2.26, 3.00) 0.2070 5.05 (2.30, 2.75) 0.2074 4.69 (2.41, 2.28) 0.2085

120 120 5.67 (2.26, 3.41) 0.1774 5.58 (2.36, 3.22) 0.1777 5.29 (2.51, 2.78) 0.1786

0.9 40 40 6.34 (1.60, 4.74) 0.1518 5.32 (1.77, 3.55) 0.1545 3.78 (2.32, 1.46) 0.1618

70 70 5.93 (1.63, 4.30) 0.1203 5.39 (1.90, 3.49) 0.1215 4.28 (2.43, 1.85) 0.1253

120 120 5.78 (1.62, 4.16) 0.1010 5.37 (1.86, 3.51) 0.1017 4.62 (2.44, 2.18) 0.1040

0.95 40 40 8.78 (0.78, 8.00) 0.1020 6.50 (1.03, 5.47) 0.1066 5.26 (1.74, 3.52) 0.1188

70 70 7.49 (1.12, 6.37) 0.0831 6.33 (1.49, 4.84) 0.0853 4.02 (2.21, 1.81) 0.0914

120 120 6.96 (1.26, 5.70) 0.0701 5.99 (1.58, 4.41) 0.0713 4.43 (2.34, 2.09) 0.0749

0.5 100 50 5.61 (2.77, 2.84) 0.2342 5.49 (2.70, 2.79) 0.2342 5.19 (2.60, 2.59) 0.2342

0.5 100 80 5.25 (2.66, 2.59) 0.2378 5.19 (2.68, 2.51) 0.2379 5.09 (2.69, 2.40) 0.2381

0.7 70 40 5.75 (2.41, 3.34) 0.2150 5.53 (2.39, 3.14) 0.2151 4.97 (2.37, 2.60) 0.2160

0.7 80 70 5.28 (2.49, 2.79) 0.2017 5.23 (2.56, 2.67) 0.2020 4.94 (2.71, 2.23) 0.2030

Shown are non-coverage percentages (with left and right non-coverage percentages) and mean length of (1) 95% percentile bootstrap c.i., (2)

95% bias-corrected bootstrap c.i., and (3) 95% accelerated bias-corrected (BCa) bootstrap c.i
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Ĥ: the average of Ĥ�j (j = 1,…, N). In our case the

parameter H is the fraction of common fragments pgs,

estimated by either Dmod
�L

or Dmod
L .

For Dmod
L we take a pair of binary scores (y1j, y2j) (j = 1,…,

N) to be an observation. The constant aacc is calculated by

removing observation j from the pair of profiles, rescaling the

fragment length distribution, calculating Dmod
L from the

reduced dataset, and repeating over all band positions

(j = 1,…, N), resulting in partial estimates Ĥ�j.

For Dmod
�L

the information on band lengths is missing, and a

pair of profiles can be summarized as a vector of counts (a, b,

c, d). The observations are the pairs of binary scores 1–1

(occurring a times), 1–0 (b times), 0–1 (c times), and 0–0 (d

times). The partial estimates Ĥ�j consist of weighted averages

[with weights (a, b, c, d)] of Dmod
�L

values. We label the

weighted averages Ĥa
�j (occurring a times), Ĥb

�j (b times),

Ĥc
�j (c times), and Ĥd

�j (d times). Ĥa
�j is the weighted average

of the 4 Dmod
�L

values calculated for the profile pairs (a, b, c, d),

(a - 1, b ? 1, c, d), (a - 1, b, c ? 1, d), (a - 1, b, c, d ? 1),

Ĥb
�j is calculated from profile pairs (a ? 1, b - 1, c, d), (a, b,

c, d), (a, b - 1, c ? 1, d), (a, b - 1, c, d ? 1), Ĥc
�j from

profile pairs (a ? 1, b, c - 1, d), (a, b ? 1, c - 1, d), (a, b, c,

d), (a, b, c - 1, d ? 1), and Ĥd
�j from profile pairs (a ? 1, b,

c, d - 1), (a, b ? 1, c, d - 1), (a, b, c ? 1, d - 1), (a, b, c, d).

For the simulation dataset with 10,000 replicates, we

calculated 95% bootstrap c.i.’s for Dmod
�L

, based on a

bootstrap resample size of 1000. The results are shown in

Table 5. The non-coverage rates for the 95% simple

percentile c.i. range from 0.0497 to 0.0915 (average

0.0581), a bit larger than the nominal 0.05. The larger

error rates occur for the profiles with smallest expected

fragment counts (m = 40), and extreme values of pgs

(pgs = 0.0, 0.9, 0.95). In general the c.i.’s are slightly too

narrow. The 95% bias-corrected percentile c.i.’s have

better non-coverage rates, ranging from 0.0475 to 0.0707

(average 0.0550). The non-coverage rates of the 95%

BCa c.i.’s range from 0.0383 to 0.0545 (average 0.0486).

This last method seems to be a bit too conservative,

delivering intervals which are slightly too wide. Over the

whole range of pgs values this last method performed

best.

For the same simulation data we calculated 95% boot-

strap c.i.’s for Dmod
L (see Table 6). The non-coverage rates

for the simple percentile method range from 0.0514 to

0.0878 (average 0.0584), for the bias-corrected method

from 0.0499 to 0.065 (average 0.0548), and for the accel-

erated bias-corrected method from 0.0378 to 00555

(average 0.0487). Again, the accelerated bias-corrected

method performs best with slightly conservative c.i.’s.

Appendix 2

See Table 7 for a list of used symbols.

Table 7 Overview on symbols

Symbol Description Type

N Number of observable band lengths, derived from scoring range; e.g. 450 if scoring range is 51–500 Constant

i Index of band length (i = 1,…, N) Index

j Index of lane number or genotype number (j = 1, 2) Index

Pj Population of fragments after restriction, eligible for visualization, for genotype j Population

Mj Number of fragments of Pj Parameter

pi Probability that a fragment randomly drawn from P has length i Constant

fld Fragment length distribution = (p1,…, pN) Constant

FS Fld from in silico AFLP for A. thaliana, see Gort et al. (2006) Constant

p Probability of a fragment in P to be sampled Parameter

mj Expected number of fragments in jth lane = p Mj, proportional to Mj Parameter

kj Number of fragments in lane j; distributed as Poisson (mj) Stochastic

yij Binary score for absence/presence of a band of length i in lane j Stochastic

nj Number of bands in jth lane =
PN

i¼1 yij Stochastic

Pa Population of common fragments; P1 \ P2 Population

Pb Population of fragments unique to genotype 1; P1 \ �P2 Population

Pc Population of fragments unique to genotype 2; �P1 \P2 Population

Fj Fraction of common fragments in jth population = Ma/Mj Parameter

pgs Pairwise genetic similarity for AFLP = M1

M1þM2
F1 þ M2

M1þM2
F2 Parameter

a Number of shared bands in the two profiles =
PN

i¼1 yi1yi2 Stochastic

b Number of bands in the first profile, which are absent in the second =
PN

i¼1 yi1 1� yi2ð Þ Stochastic

c Number of bands in the second profile, which are absent in the first =
PN

i¼1 1� yi1ð Þyi2 Stochastic
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