Skip to main content
. 2009 May 13;119(3):397–416. doi: 10.1007/s00122-009-1047-9

Table 4.

Results from a simulation study on Inline graphic for a range of values of genetic similarity pgs and expected numbers of fragments m1 and m2, 10,000 replicated pairs of AFLP profiles, 1,000 bootstrap resamples, fldFS from A. thaliana with N = 450

Parameter settings Results for Inline graphic
Inline graphic Wald ci Profile likelihood ci Back transformed Wald ci
pgs m1 m2 Mean SE Non-coverage%
(too low, too high)
Length Non-coverage% (too low, too high) Length Non-coverage % (too low, too high) Length
0.0 40 40 0.0202 0.0759 0.59 (0.59) 0.1689 1.98 (1.98) 0.1401
70 70 0.0203 0.0651 1.18 (1.18) 0.1477 2.35 (2.35) 0.1275
120 120 0.0216 0.0611 1.48 (1.48) 0.1409 2.26 (2.26) 0.1236
0.1 40 40 0.1004 0.0721 2.41 (0.97, 1.44) 0.2320 4.49 (2.40, 2.09) 0.2364 5.28 (0, 5.28) 0.4532
70 70 0.1006 0.0645 3.13 (1.25, 1.88) 0.2144 4.64 (2.29, 2.35) 0.2164 5.51 (0, 5.51) 0.3974
120 120 0.1001 0.0611 3.06 (0.94, 2.12) 0.2056 4.94 (2.59, 2.35) 0.2059 5.80 (0, 5.80) 0.3742
0.3 40 40 0.2979 0.0807 6.27 (3.56, 2.71) 0.3151 5.23 (2.70, 2.53) 0.3074 3.56 (0.02, 3.54) 0.3123
70 70 0.2987 0.0690 5.77 (2.81, 2.96) 0.2702 5.24 (2.52, 2.72) 0.2660 3.81 (0.15, 3.66) 0.2670
120 120 0.2985 0.0622 5.43 (2.69, 2.74) 0.2436 5.08 (2.63, 2.45) 0.2411 3.90 (0.24, 3.66) 0.2410
0.5 40 40 0.4978 0.0777 5.54 (2.09, 3.45) 0.3045 4.73 (2.42, 2.31) 0.2948 4.09 (1.40, 2.69) 0.2955
70 70 0.4978 0.0643 5.29 (2.06, 3.23) 0.2519 4.90 (2.36, 2.54) 0.2495 4.38 (1.51, 2.87) 0.2467
120 120 0.4981 0.0560 5.08 (2.21, 2.87) 0.2195 4.99 (2.74, 2.25) 0.2183 4.36 (1.76, 2.60) 0.2161
0.7 40 40 0.6974 0.0646 6.24 (1.66, 4.58) 0.2532 6.39 (3.56, 2.83) 0.2363 4.72 (2.35, 2.37) 0.2492
70 70 0.6989 0.0523 5.53 (1.75, 3.78) 0.2049 5.01 (2.55, 2.46) 0.2030 4.56 (2.35, 2.21) 0.2028
120 120 0.6987 0.0445 5.67 (1.65, 4.02) 0.1744 5.20 (2.43, 2.77) 0.1741 4.88 (2.20, 2.68) 0.1731
0.9* 40 40 0.8976 0.0382 7.74 (0.70, 7.04) 0.1496 12.60 (9.95, 2.65) 0.1301 3.77 (3.04,0.73) 0.1582
70 70 0.8995 0.0304 6.96 (0.87, 6.09) 0.1192 7.76 (5.14, 2.62) 0.1092 4.24 (2.88, 1.36) 0.1238
120 120 0.8997 0.0255 6.83 (1.05, 5.78) 0.0999 5.30 (2.50, 2.80) 0.0990 4.54 (2.87, 1.67) 0.1026
0.95* 40 40 0.9491 0.0266 13.42 (0.22, 13.20) 0.1007 19.34 (15.61, 3.73) 0.0899 6.43 (2.95, 3.48) 0.1199
* 70 70 0.9496 0.0208 9.96 (0.46, 9.50) 0.0817 12.87 (9.48, 3.39) 0.0736 3.73 (3.20, 0.53) 0.0923
* 120 120 0.9500 0.0175 9.06 (0.75, 8.31) 0.0684 6.47 (3.42, 3.05) 0.0659 4.10 (3.08, 1.02) 0.0750
0.5 100 50 0.4977 0.0592 5.56 (2.35, 3.21) 0.2320 5.23 (2.66, 2.57) 0.2301 4.71 (1.86, 2.85) 0.2280
0.5 100 80 0.4982 0.0595 5.36 (2.30, 3.06) 0.2330 4.88 (2.57, 2.31) 0.2314 4.54 (1.84, 2.70) 0.2289
0.7 70 40 0.6980 0.0544 5.96 (1.67, 4.29) 0.2132 5.65 (2.77, 2.88) 0.2054 4.97 (2.34, 2.62) 0.2109
0.7 80 70 0.6985 0.0509 5.75 (2.62, 2.21) 0.1995 5.20 (2.84, 2.36) 0.1983 4.83 (2.62, 2.21) 0.1976

Shown are the mean, mean standard error, and properties of three types of confidence intervals: non-coverage percentage (with left and right non-coverage percentages), and mean length of (1) 95% Wald c.i., (2) 95% profile likelihood c.i., and (3) 95% logit-back transformed Wald c.i. At pgs = 0.0, only non-coverage at the right of pgs = 0.0 is considered

* In case pgs = 0.9 (m = 40), or pgs = 0.959 (m = 40, 70, 120) identical pairs of profiles were sampled (10, 348, 53, and 10 times, respectively); in these cases Inline graphic = 1, with standard error 0, and we took logit(pc) = 16 with standard error 0