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SUMMARY
Motivated by the need to meaningfully implement the Institute of Medicine’s (IOM’s) definition
of health care disparity, this paper proposes statistical frameworks that lay out explicitly the
needed causal assumptions for defining disparity measures. Our key emphasis is that a
scientifically defensible disparity measure must take into account the direction of the causal
relationship between allowable covariates that are not considered to be contributors to disparity
and non-allowable covariates that are considered to be contributors to disparity, to avoid flawed
disparity measures based on implausible populations that are not relevant for clinical or policy
decisions. However, these causal relationships are usually unknown and undetectable from
observed data. Consequently, we must make strong causal assumptions in order to proceed. Two
frameworks are proposed in this paper, one is the conditional disparity framework under the
assumption that allowable covariates impact non-allowable covariates but not vice versa. The
other is the marginal disparity framework under the assumption that non-allowable covariates
impact allowable ones but not vice versa. We establish theoretical conditions under which the two
disparity measures are the same, and present a theoretical example showing that the difference
between the two disparity measures can be arbitrarily large. Using data from the Collaborative
Psychiatric Epidemiology Survey, we also provide an example where the conditional disparity is
misled by Simpson’s paradox, while the marginal disparity approach handles it correctly.
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1. CAUSALITY AND DISPARITY MEASURES
1.1 The Causal Implication of the IOM Definition

The Institute of Medicine (IOM) [1] defines health care disparities as “racial or ethnic
differences in the quality of health care that are not due to access-related factors or clinical
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needs, preference, and appropriateness of intervention.” This definition represents an
important advance in disparity research, because it explicitly recognizes the role of causality
in the determination of disparities through its reference to the causal expression “not due to”.
However, it leaves open the interpretation of the causal model underlying this causal
statement. In this paper we identify several causal models under which the IOM definition
can be implemented meaningfully, and propose the corresponding frameworks for defining
and comparing statistically justifiable disparity measures following these models. Our work
can be viewed as a statistically oriented conceptualization of research in this area (e.g.,
[2,3,4,5,6]). Although our work was directly motivated by the IOM definition, the proposed
general frameworks are equally applicable to other areas, such as in legal settings (e.g.,
[7,8,9]).

The statistical frameworks proposed in this paper assume that the covariates of interest have
been classified into allowable and non-allowable categories. Allowable covariates are
considered to be justifiable to cause difference and hence should be adjusted before
measuring disparity. The remaining covariates are classified as non-allowable.

It is important to note that the classification of allowable versus non-allowable covariates
can, and should, vary from study to study, depending on the particular purpose for the study.
For example, IOM’s classification of access-related factors as allowable is appropriate for
studying disparity at the level of patient-clinician encounter, with the focus being the
treatment delivered during the encounter, controlled for all historical factors that occurred
prior to the encounter. However, when studying health care disparity at the level of service
systems, it would be more appropriate to classify access-related factors as non-allowable,
thus holding the service systems accountable for failure to engage disadvantaged patients
into care. The statistical frameworks we establish in this paper apply to any of such
classifications.

As a specific example for illustration, suppose that covariates that might be predictive of
health care are classified as follows:

• Clinical needs and preference are considered allowable. Differences in health care
due to these covariates are not considered to be part of health care disparity.

• All other covariates, such as knowledge about health, state of residency, insurance
coverage, and education (to name a few), are considered non-allowable.
Differences in health care due to these covariates are considered to be health-care
disparity.

Given such a classification, our goal then is to measure the disparity that is “not due to” the
allowable covariates.

A seemingly obvious, and hence very common, approach is to substitute the levels of
allowable covariates of, for example, Afro-Caribbean with those of their non-Latino white
counterparts, while leaving the levels of non-allowable covariates unchanged. This
procedure is often used in Analysis of Covariance models that adjusts for allowable
covariates across racial/ethnic groups. However, this approach is sensible in general only if
the allowable covariates are statistically independent of the non-allowable covariates, a
condition that is unlikely to hold in practice. Without this independence condition, this direct
substitution may lead to an implausible population, such as a hypothetical population with
high level of income (as a non-allowable covariate that remains unchanged) and a high level
of chronic diseases (as an allowable covariate that was substituted with the levels from the
reference population). As a result, the disparity estimates obtained from this procedure may
not be relevant for clinical, policy or other purposes, because they are based on a postulated
population that cannot be realized by policy changes or disparities interventions.
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Not accounting properly for the causal relationships between allowable and non-allowable
covariates is especially problematic when the two sets of covariates are highly correlated in
the observed data, and both sets of variables are included in our outcome model. In such
cases, the allowable covariates might appear to be very weak for predicting the outcome in
the fitted model due to the well-known “collinearity” phenomenon. Consequently, replacing
a minority group’s allowable covariates by their counterparts in the non-Latino white group
in the fitted model may only produce trivial adjustment, even if in reality a substantial part
of the observed racial/ethnic difference is indeed due to the difference in the allowable
covariates. This could be either because of their direct impact on the outcome (which would
not be detected by the fitted regression model because of the strong collinearity) or on the
non-allowable covariates, or both. The frameworks proposed in this paper can help to
substantially reduce such serious misestimation of disparity because they explicitly take into
account the causal relationship between the allowable and non-allowable covariates. For
example, our approaches permit an adjustment in allowable covariates to cause substantial
adjustment in the non-allowable ones, which in turn may lead to substantial adjustment in
the predicted outcome, even if the allowable predictor appears to be very weak in the fitted
model for predicting the outcome.

1.2 Explicating the Underlying Causal Assumptions
In order to measure disparity meaningfully, such as to implement the IOM definition for
health care disparity, one must be explicit about the underlying causal assumptions that are
imbedded in any disparity measure. The fact that the exact causal mechanisms may not be
known or may not even be knowable is not a reason to “sweep everything under the rug”. To
the contrary, this is precisely the reason for us to be explicit about our assumptions so it is
possible for policy makers and subsequent researchers to correctly interpret the disparity
measures/estimates we obtain, as well as to determine the directions for correction or
improvement when newer information becomes available for the underlying causal
relationships.

The key reason that we need to make causal assumptions is that once an action is forced
upon a particular variable (e.g., by changing a minority group’s distribution of clinical needs
to match that of the non-Latino white population), it will have a ripple effect—in real life—
on other variables (e.g., income level) that are impacted by the one adjusted. However, this
ripple effect is not estimable without carrying out the actual (social) experiment, because the
observed relationships in a natural population may or may not be preserved after an
intervention. As an illustrative example, in a natural population, a person’s left-eye visual
acuity (AV) may be highly correlated with the person’s right-eye AV. However, this
correlation will be destroyed or at least reduced if we perform a vision correction laser
surgery on the right eye only. The two AVs will become independent shortly after the
surgery, but may become correlated again over time, though the cross-sectional data from a
natural population would tell us little about how large this correlation could be or whether it
would ever reach the same level as in the natural population.

Therefore, in order to measure the disparity “not due to” the allowable covariates, we must
postulate causal directions, as well as how any relationships among relevant variables are
preserved or altered with the change from a natural population to a hypothetical one. There
are two extreme types of unidirectional causal relationships: (A) allowable covariates impact
non-allowable covariates but not vice versa; and (B) non-allowable covariates impact
allowable covariates but not vice versa. The more realistic relationships are likely to be
either (C) allowable covariates and non-allowable covariates are inter-related and
reciprocally impact each other, or (D), which is (C) plus the possibility that both allowable
and non-allowable covariates are also impacted by the outcome itself (over time).
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While (C) and (D) are most dynamic and realistic, they do not permit useful modeling
without further specifications on how the variables involved impact each other. As these
specifications are content dependent and can be extremely difficult to postulate, we will
pursue them in future work. In this paper, we lay out the statistical frameworks for the
simpler causal relationships (A) and (B). These two frameworks serve as building blocks for
more complex causal specifications, and at the same time provide plausible specifications
that might yield useful bounds on the true disparity when more complicated causal
relationships are present. In some applications, such as the one presented in Section 3.2,
such simplistic causal assumptions are actually reasonable, leading to sensible practical
solutions.

2. STATISTICAL FRAMEWORKS
2.1 Linking Natural and Hypothetical Joint Distributions

Let XN denote non-allowable covariates such as knowledge about health, and let XA denote
allowable covariates such as clinical needs. Let Y denote the outcome of interest, such as log
of the health care expenditure. To measure the disparity, we want to adjust the levels of
allowable covariates (XA) but not the levels of non-allowable covariates (XN). Note here that
all variables are measured for each individual i, but we suppress the subscript i throughout
the text to simplify the notation. To describe the distribution of these variables, we use the
common generic notation P( ), e.g., P(XN). Whenever needed, we will use subscript 1 to
denote the reference group (e.g., the non-Latino whites) and 2 the group of interest (e.g., a
minority group), for example, P1(XN) and P2(XN).

The goal of our modeling is to estimate the potential outcome if the group of interest has the
same levels of allowable covariates as the reference group. The first step in setting up our
proposed frameworks is to explicitly consider the joint distribution of (Y, XA, XN), and
recognize that there are two joint distributions of interest: one for the natural population, and
one for the adjusted hypothetical population. We use the superscript (H) to denote different

populations, e.g.  ( ), where (H) can refer to either an adjustment rule for a hypothetical

population (e.g.  ( ), for adjustment rule (A)) or a natural (or non-adjusted) population

(e.g.  ( )). But for any (H), we always have the following decomposition:

(1)

The importance of recognizing the dependence on H here is that only the natural population,
P(N) (Y, XN, XA), can be estimated from the data. Therefore, in order to calculate disparities
under a hypothetical population, we need to make strong assumptions to link the

hypothetical population, such as , to the natural population .
Our first assumption, which appears to be taken for granted in much of the existing
literature, is that the “forced action” of the adjustment has no impact on the conditional
distribution of Y given (XN, XA). That is, for any adjustment rule (A), we assume

(2)

We will refer to (2) as the “predictively nature preserving” (PNP) assumption, meaning that
the predictive nature of {XN, XA} on Y is preserved despite of the “forced action” on XA.
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One can easily consider a scenario under which the PNP assumption is false, but without
such an assumption, the estimation of the disparity is essentially impossible. For example, in
our hypothetical eye vision example, two people may have identical AVs for both eyes (e.g.,
both are 20/20 in the right eye but 20/40 for in left eye), but they can have quite different
probabilities of having automobile accidents if one of them was born with such vision, but
the other achieved it via laser surgery to his right eye. Clearly, if this occurs, then it is
impossible to estimate—using only the data collected from the natural population—the
accident rate for the group of people with vision corrections done to their right eyes only.

To carry the decomposition (1) further, we can decompose the component  in
(1) into one conditional and one marginal distribution. This time, there are two possibilities:

(3)

and

(4)

The first decomposition is the basis for our conditional framework, which assumes that non-
allowable covariates XN are causally dependent on allowable covariates XA but not vice
versa. The second decomposition is suitable for the marginal causal framework, which
assumes that the allowable covariates XA are causally dependent on the non-allowable
covariates XN but not vice versa. Below we show how we can create different counterfactual
populations, a standard practice in causal inferences (e.g., see [10]), using these
decompositions.

2.2 Conditional Disparity
Under the conditional framework, we adjust the marginal distribution of the allowable
covariates XA from the natural population (such as Latinos) to the corresponding marginal
distribution of the reference group (such as non-Latino whites), while preserving the
conditional distribution for non-allowable covariates XN given allowable covariates XA as in
the natural population. Specifically, the hypothetical joint distribution is obtained by
replacing the marginal distribution of XA in the natural population

(5)

by that of the reference population (e.g., non-Latino whites), and thereby creating the
following hypothetical population distribution:

(6)

Although  is taken from the natural population of the reference group, its insertion
into (5) leads to a hypothetical population that retains the natural conditional distributions

 and , with the component  “mutated” into . We
denote this adjustment rule under the conditional disparity framework as adjustment (C).
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In order for (6) to be a meaningful hypothetical population, our assumptions are (i) the PNP
assumption holds, and (ii) the adjustment action has no impact on the conditional
distribution of XN given XA either, that is,

(7)

which is plausible when the causal direction is from XA to XN but not vice versa. We will
refer to (7) as the “conditionally nature preserving” (CNP) assumption, meaning that the
natural conditional distribution P2(XN|XA) is preserved after the adjustment on XA.

The ratio between the adjusted joint density (6) and the natural joint density (5) is simply the
ratio of the marginal densities

(8)

Following the principle of importance weighting, the expected outcome under the
hypothetical population (6) can be expressed as the following weighted expectation of Y
under the natural population (5), with the importance weight RC(XA):

(9)

where  denotes the expectation with respect to the hypothetical population in (6), and

 denotes the expectation with respect to the natural population in (5).

Expression (9) gives us a practical way to estimate  [Y] because its right hand side only
involves expectations with respect to the natural population (5), from which we can estimate
from the sample data. Since the current paper focuses on setting up conceptual frameworks,
the detailed estimation procedures, particularly for estimating RC(XA), will be presented in a
subsequent paper.

Intuitively, the adjustment under our conditional framework amounts to weighting the level
of health care (Y) among minorities by the density ratio RC(XA). Minorities with higher
density ratio RC get weighted up because a value of RC(XA) > 1 tells us that there are more
non-Latino whites with the levels of XA than minorities with the same levels of XA. The
corresponding disparity is then measured as the difference between the expected value of Y
for the adjusted (hypothetical) population (6) and that of the reference population:

(10)

We term DC of (10) as conditional disparity because the main source of disparity is in the

difference in the conditional distributions  and . The difference in

 and  may also be of interest in its own right,anissue we shall
not pursue here due to page limitation, but will briefly touch upon in Section 3.3.
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Applying expression (9) to the definition (10), we have the following expression for
conditional disparity that can be estimated using sample data:

(11)

Notice that this expression for conditional disparity does not involve the non-allowable
covariates, XN. This is possible because of the assumption that XN is caused by XA. Under
such an assumption, we can greatly simplify the estimation task since (11) bypasses the need
to model XN. The theoretical implication of this simplification will be discussed in Section 4.

2.3 Marginal Disparity
In contrast to conditional disparity, which equates the two marginal distributions of XA, the
marginal disparity framework replaces the conditional distribution of XA, conditioning on
XN, of the population of interest (e.g., Latinos) by that of the reference population (e.g., non-

Latino whites). Specifically, we replace the conditional distribution  in the
natural population

(12)

by that of the reference population to create the following hypothetical population

(13)

We denote this adjustment rule under the marginal disparity framework as adjustment (M).

Similar to the conditional disparity framework, in order for (13) to be a meaningful
hypothetical population, we have assumed that (i) the PNP assumption holds, and (ii) the
adjustment action has no impact on the marginal distribution of XN either; that is,

(14)

which is plausible when the causal direction is from XN to XA but not vice versa. We will
refer to (14) as the “marginally nature preserving” (MNP) assumption, meaning that the
marginal distribution P2(XN) is preserved after the adjustment on XA.

Similar to (8), the ratio between the joint densities (13) and (12) is given by the ratio
between the two conditional densities

(15)

Again, the ratio (15) can be used as the importance weight to express:

(16)
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where  denotes expectation under the hypothetical population (13), and  denotes
expectation under the natural population (12). Note that the right hand side of (16) can be
estimated from sample data obtained in the natural population (12).

It is useful to visualize the adjustment under our marginal framework as first stratifying the
minority population by the level of the non-allowable covariates (e.g., knowledge of health).
We then apply the same weighting scheme as with the conditional disparity approach but
now within each stratum, therefore the weights there, namely, the ratio of marginal densities
RC(XA) is now replaced by the ratio of the corresponding conditional densities RM(XA; XN).
Minorities within a particular stratum, as defined by their values of XN, with higher
conditional density ratio RM get weighted up when there are more non-Latino whites with
the levels of XA than minorities in the same stratum as defined by the value of XN.

The marginal disparity measure then is defined as the difference between the expected value
of Y for the adjusted (hypothetical) population (13) and that of the reference population (12):

(17)

We term DM as marginal disparity because the main source of the disparity is in the

difference in the marginal distributions  and , in addition to any difference

in  and . Again, applying expression (16) to the definition (17),
we have the following expression for marginal disparity that can be estimated using sample
data:

(18)

The estimation of RM(XA; XN) is more complicated than estimating RC(XA) due to the
higher dimensionality. Again, these technical details will be addressed in a subsequent
paper.

3. COMPARING CONDITIONAL AND MARGINAL DISPARITIES
With the two frameworks given above, a natural question is when do they give the same
disparity estimates, or more profoundly, do they give different values that would matter in
practice? The answer to the first part is a clean-cut theoretical result we present below. The
answer to the second part is obviously “it depends” because it depends critically on the
nature of the dependence structure between XA and XN, as well as the dependence of Y on
(XA, XN), in particular applications. We will illustrate this with two examples, one of which
shows the difference between getting it right or wrong, and the other gives a class of cases
where the difference can be made arbitrarily large. For the rest of this paper, we suppress the
superscript (N) as a notation for the natural population, whenever the context is clear.

3.1 A Theoretical Result Related to Local Dependence Function
The difference between DC and DM can be expressed as

(19)
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The two disparity measures will be identical, ΔD = 0, if

(20)

This condition is equivalent to the condition that

(21)

Here the G function can be viewed as a measure of the dependence structure between XN
and XA, and therefore condition (21) says that as long as the dependence structure is the
same for the two groups (e.g., it remains the same across the two racial/ethnic groups), the
two disparity measures would be identical. As a special case, if XN and XA are independent
under both populations, then the two measures are the same because both G1 and G2 are
then identical to 1.

For continuous variables, the notion that G is a measure of dependence structure can also
been examined through the local dependence function (LDF), as defined in [11] and studied
in [12] and [13],

(22)

Because

(23)

it is obvious that condition (21) implies that the LDF is independent of the group index, i.e.,
the LDF does not change with the racial/ethnic group. Note however that the reverse is not
necessarily true; that is, we can have LDF invariant to group index, but the condition (21)
does not hold. In this sense, the measure of dependence by the G function is more stringent
than that by the LDF.

Finally we note that condition (21) is sufficient but not necessary for ΔD = 0. A simple
example is that ΔD = 0 when the regression of Y on XA and XN, that is, E2[Y|XN, XA] are
free of both XN and XA (note that this is weaker requirement than the independence between
Y and (XN, XA) since only the conditional mean of Y is involved). This, of course, does not
happen when XN and/or XA are useful predictors of Y. But it reminds us that the difference
between DC and DM also depends on the relationship between Y and (XN, XA), and the
difference will be small when both XN and XA are weak predictors.

We emphasize here that the statement we just made is true only when both XN and XA are
weak predictors. If one is weak but the other is not, the difference between the two measures
can still be very large if there is high correlation between XN and XA. Indeed, the appearance
of “one-weak and one-strong” scenario is quite common in practice when the two predictors
are highly correlated because of the well-known “collinearity” problem among the
predictors. And it is precisely in such cases that the recognition of the impact of the
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allowable covariates on the non-allowable ones, or vice versa, is of critical importance. As
mentioned in Section 1, the common approach of adjusting only the allowable covariates
without conisdering its impact on the non-allowable covariates can lead to serious mis-
estimation of the disparity when the allowable covariates appears to be a weak predictor in
the regression of Y on XN and XA.

3.2 A Discrete-Distribution Example
We start with a simple 2 × 2 × 2 contingency table example to both illustrate the basic
calculations for DC and DM, as well as their differences. We use data from the combined
data set of three large epidemiological studies, namely, the NIMH Collaborative Psychiatric
Epidemiology Survey (CPES): the National Latinos and Asian American Study (NLAAS)
[14], the National Comorbidity Study Replication (NCS-R) [15], and the National Study of
American Life (NSAL) [16]. These studies focus on collecting epidemiological information
on mental health and substance disorders and services utilization among the general
population with special emphasis on ethnic minority groups in the NLAAS (Latinos and
Asians) and NSAL (African Americans and Afro-Caribbean) with non-Latino white
comparisons from the NCS-R. The studies were designed to allow integration as though they
were a single, nationally-representative study [17]. The combined data set is the largest
epidemiological data set available for examining the patterns and correlates of mental health
services use in minority populations in the United States. The sampling frames and sample
selection procedures are described in detail elsewhere [18]. For illustration purposes, here
we treat this combined data set as a population by itself, and therefore all the numbers below
are regarded as population quantities (e.g., probabilities), instead of sample estimates (e.g.,
sample proportions).

For simplicity, we focus on a dichotomous outcome, namely, Y = 1 means the respondent
had at least one visit to any mental health service provider (either specialist or generalist) in
the past year, and Y = 0 otherwise. The allowable covariate is also a binary variable
indicating clinical need: XA = 1 if there was a need, and XA = 0 if there was not. The non-
allowable covariate is a binary variable indicating nativity: XN = 1 if the respondent is an
immigrant, and XN = 0 if the respondent was born in United States.

Table I provides the data for the non-Latino white population, from which we can easily
calculate the service use rate for this population. In Table I, there are two numbers in each of
the cells in the 2 × 2 layout. The top number is the percentage of individuals who fall into
the (i, j)-cell defined by the values of (XN = i, XA = j), and the bottom bracketed number μij
is the percentage of people in that cell who have used services, that is, μij = P(Y = 1|XN = i,
XA = j). Consequently, the overall service rate for the non-Latino white population, namely
E1[Y] is obtained by multiplying the two numbers in each cell, and adding them up across all
cells. This leads to E1[Y] = 14.39%. Similarly, for the Afro-Caribbean population (Table II),
E2[Y] = 6.75%, so the observed racial/ethnic difference is

(24)

This, however, is not necessarily the disparity in the sense of the IOM definition because it
has not adjusted for the difference in clinical needs.

Comparing Table I and Table II, we observe an interesting phenomenon. The percentages of
people in need are greater in the Afro-Caribbean population than in the non-Latino white
population when conditional on the nativity—55.75% versus 41.62% for the US Born
population and 33.90% versus 30.91% for the immigrant population. The pattern, however,
is reversed for the marginal rates, that is, when we combine the US born and the immigrants
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together: 41.18% for Afro-Caribbean versus 41.28% for non-Latino whites. Although the
difference between these two marginal rates is minimal (but there is no estimation error here
since we are using the data as if they were the entire population), it is nevertheless an
example of the well-known Simpson’s paradox[19]. The reason is the extreme imbalance of
the nativity groups in the two populations: more than 95% of the non-Latino whites were US
born, but only 1/3 of the Afro-Caribbean were US born.

The implication of this phenomenon for our disparity measure is clear. First, given that the
difference in the marginal rates is so small, 41.18% verse 41.28%, one would expect that the
conditional disparity which results from adjusting the Afro-Caribbean’s marginal rate from
41.18% to the non-Latino whites marginal rate of 41.28% will have a minimal impact on the
value of RD of (24). Indeed, as shown below, the conditional disparity in this case is DC =
−7.62%, nearly identical to RD = −7.64%.

Second, this adjustment in fact is in the wrong direction, because in this case the casual
assumption underlying the conditional disparity, that is, the allowable covariate (clinical
need) causes the non-allowable (nativity) is clearly a very implausible one. The marginal
disparity approach is a much more sensible one, because it makes adjustment of clinical
needs within each nativity category. Given the fact that the two nativity groups have very
different levels of clinical needs, with the US Born having more needs, it is intuitive that we
should make the adjustment after stratifying by nativity groups. Because the Afro-Caribbean
population has more needs in each of the nativity groups, it is also intuitive that had their
needs been the same as the non-Latino whites, the observed racial/ethnic difference would
be even larger. Indeed, as shown below, the marginal disparity in this case is DM = −8.84%.
In contrast to DC, which points to the wrong direction, DM shows that the disparity is
actually more pronounced than the unadjusted racial/ethnic difference by about (8.84 −
7.64)/7.64 ≈ 16%.

3.3. Disparity Calculations
The calculations of DC and DM can be best illustrated by creating two adjusted versions of
Table II, corresponding respectively to the two hypothetical populations as defined in (6)
and (13). They are given in Table III and Table IV respectively. To construct Table III,
which is for the conditional disparity, we need to compute the density ratio RC of (8). From
the last row of Table I and Table II respectively, we can obtain this easily as

We can then multiply each of the three un-bracketed proportions in the “No (0)” column of
Table II by RC(0), and multiply each of the three un-bracketed proportions in the “Yes (1)”
column of Table II by RC(1). This will yield the adjusted population corresponding to the
conditional disparity approach, as given in Table III, where the last column P(XA = 1|XN) has
also been changed using the adjusted cell probabilities. We see that Table III and Table I
have the same marginal distribution for XA (rounding errors notwithstanding), as intended.
The expected value of Y under this adjusted population can be easily obtained by
multiplying each cell probability in Table III with the corresponding μij from Table II and

then sum them up. This leads to , and hence
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To calculate the marginal disparity, we need first to compute the RM function of (15), which
is determined by the right most columns labeled “P(XA = 1|XN)” in Table I and Table II.
Specifically, we have

Table IV then is obtained by multiplying the (i, j)-cell proportion (the top un-bracketed
percentage) in Table II with RM(i; j) just obtained for i,j = 0,1, and then compute the

corresponding P(XA = 1|XN) and  (XA) accordingly. We note that the resulting

conditional distribution  (XA|XN) is the same as that from Table I (rounding errors

notwithstanding), as it should be, but the marginal distribution  (XA) is now markedly
different from the one from the non-Latino whites P1(XA). This difference reflects the
difference between the two approaches, because with the conditional disparity approach we

have . As we discussed previously, the seemingly natural “equating-the-
need-level” approach actually is misleading in this application because of the Simpson
paradox. Equating the need level after stratifying on nativity is a much more sensible
approach.

To find the expectation of Y under this adjusted Afro-Caribbean population, we multiply the
four cell percentages in Table IV respectively by the four μij values in Table II and then sum

them up. This yields . Consequently, the marginal disparity, which in this
example can be regarded as a sensible measure of disparity, is given by

3.4 A Continuous-Distribution Example
This theoretical example establishes the mathematical fact that the difference in the
conditional disparity and marginal disparity can be arbitrarily large. It also illustrates another
form of the Simpson’s paradox, that is, even when there is no disparity in any strata defined
by the non-allowable variables XN, in the aggregated population one can still observe a
disparity due to the correlation between XN and race/ethnicity in the aggregated population
and the fact that XN is classified as non-allowable.

To see this, let us consider a simple linear regression case

(25)

where k = 1 indexes the non-Latino white population and k = 2 the minority population. To
simplify algebra, suppose in the natural populations (XN, XA) is bivariate normal, with mean

, unit variances and correlation ρ(k). That is

(26)
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Under this setting, for the conditional disparity, the hypothetical joint distribution

 is a bivariate normal with the following distribution:

(27)

In contrast, under the marginal disparity approach, the hypothetical joint distribution for
(XN, XA) is given by P1(XA|XN)P2(XN), which is also bivariate normal but with the following
means and covariance matrix:

(28)

Simple algebra then yields that the difference between the two measures is

(29)

From (29), we have the following observations, two of which are special cases of what we
have discussed in general in Section 3.1. Specifically, we see that ΔD = 0 whenever one of
the following three condition holds:

a. ρ(1) = ρ(2) = 0; that is, when XN and XA are independent in both populations;

b. ; that is, when the regression (25) does not depend on either XN or XA in
the population of interest (not necessarily in the reference population);

c.  and , that is, when the two populations have the same marginal
distributions for both XN and XA.

Of course ΔD can be zero by many other (incidental) combinations of the parameter values,
but the above three are most useful for theoretical insights. Note in particularly that
conditions (a) and (b) are applicable in general, but condition (c) only works when the
regression of Y is linear in both XN and XA. We emphasize that since the parameters in (29)
have no restrictions other than |ρ(k)| ≤ 1, ΔD can be arbitrarily large, including approaching
infinity.

We also remark a special case of interest, that is, when Ek[Y|XN, XA] of (25) is free of both k

(e.g., race/ethnicity index) and XN (i.e., ). In such cases, there is no racial/ethnic
disparity under the conditional disparity model, since XA is being adjusted to have the same
distribution for both racial/ethnic groups and (11) does not involve XN. Under the marginal
disparity model, however, the matter is more complicated. Although XN does not impact Y
directly, it impacts XA when it is correlated with XA. Consequently, the difference in the
marginal distributions of XN in the two racial/ethnic groups will result in differences in the
marginal distribution of XA even when, or rather especially when, the conditional

distribution  is adjusted to be invariant to the race/ethnicity index k. It follows
then that there will be racial/ethnic disparity due to the indirect impact of XN on Y via XA.
Indeed, it is easy to verify for the current example that the marginal disparity is given by
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(30)

This is zero only when (i) ρ(1) = 0 and hence XA and XN are independent in the reference

population so XN cannot impact XA in the hypothetical population, or (ii)  and hence
the impact of XN on XA does not translate into any impact on Y in the hypothetical

population, or (iii)  and hence the distribution of XN is actually invariant to race/
ethnicity.

Perhaps most important here is to notice the Simpson’s paradox again. Although in the
aggregated population there is a marginal disparity for the case above, clearly there is no
disparity in any subpopulation defined by a particular value of XN, that is, when we
condition on XN, because the conditional distribution P2(XA|XN) has been adjusted for to be
the same as P1(XA|XN). This of course is not paradoxical, just as Simpson’s paradox is not a
real paradox in the mathematical sense. Once we classify XN as a non-allowable variable,
then logically we have to accept any difference caused by it as a part of the overall disparity,
regardless of whether the difference comes from its direct impact or indirect impact on the
outcome Y. Of course, one may argue whether the indirect part really should be viewed as
disparity, which is not an easy issue to address as then one is implying that XN is both a non-
allowable available (for the direct impact) and allowable variable (for the indirect impact via
XN). We shall pursue this complex issue in subsequent work.

4. FUTURE WORK
The IOM definition of disparities takes an indirect approach of elimination, and defines
health care disparity as the difference in health care that is not due to allowable covariates.
While this approach is appropriate for capturing disparity in its entirety irrespective of
source attribution, it leaves open the question of plausible causes for the disparity, and what
can be done to eliminate or reduce the disparity.

An alternative direct, constructive approach, is to define health care disparity attributable to
specific non-allowable covariates as the difference in health care that is due to these
covariates. This alternative approach can be implemented using the similar statistical
frameworks proposed above, but with the role of allowable and non-allowable covariates
switched. This approach does not capture disparity in its entirety, because it only captures
disparity attributable to the specific non-allowable covariates, and may miss the disparity
attributable to other non-allowable covariates, including those that may not have been
observed. However, this approach may have more direct policy implications, providing
guidance on the potential to reduce or even eliminate health care disparities through specific
policy implementations regarding the specific non-allowable covariates.

In practice, we believe both versions of the disparity are important. The elimination
approach is useful for estimating the magnitude of the overall disparity, whereas the
constructive approach is a tool for estimating how much disparity can be eliminated through
specific policy interventions. A comparison between the two is also important in revealing
how much of the overall disparity the policy intervention can eliminate. If a large portion
remains, a new policy intervention needs to be identified. We plan to explore these issues in
subsequent work, especially in the context of longitudinal data.

Another issue that we plan to investigate is the issue of variables that are not included in the
model for predicting the outcome Y but may actually be important. Traditionally there is not
much one can do about those variables other than trying one’s best to include as many
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variables as one can find and afford to measure. For the conditional disparity framework as
we outlined, one may have noticed that the conditional disparity as defined by (11) does not
involve the non-allowable variables. This provides an opportunity to realize the implicit
assumption carried in the IOM definition, that is, the non-allowable category is the “catch
all” category that includes all covariates that have not been named explicitly in the allowable
category. Of course, without strong assumptions, nothing can be done for variables that are
not even identified. Recall the fundamental assumption underlying our conditional disparity
model is that the allowable variables, which clearly need to be identified and measured, are
causes for non-allowable variables. Therefore, if in specific applications where such an
assumption can be viewed as reasonable, even when the non-allowable variables form the
“catch all” category, then the conditional disparity measure enjoys the property of being
more general than we discussed in the current paper.

However, the “catch-all” formulation of the non-allowable variables would not produce
anything meaningful under the marginal disparity model, because we simply cannot stratify
on variables that are not measured, nor should it be as logically there is nothing can be done
when the causes are not even identified. All these issues remind us again of the fundamental
importance of explicitly formulating, identifying, and stating causal assumptions underlying
any disparity measure.
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Table I

Non-Latino White Population, where μij = P1(Y = 1|XN = i, XA = j).

XA=Clincial Need

P1(XA = 1|XN)No (0) Yes (1)

XN = Nativity

US Born (0) 56.45% 40.25% 41.62%

[μ00 = 6.25%] [μ01 = 26.04%]

Immigrant (1) 2.28% 1.02% 30.91%

[μ10 = 6.31%] [μ11 = 23.36%]

P1(XA) 58.72% 41.28%
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Table II

Afro-Caribbean Population: where μij = P2(Y = 1|XN = i, XA = j)

XA=Clinical Need

P2(XA = 1|XN)No (0) Yes (1)

XN=Nativity

US Born (0) 14.75% 18.58% 55.75%

[μ00 = 1.19%] [μ01 = 25.61%]

Immigrant (1) 44.07% 22.60% 33.90%

[μ10 = 1.88%] [μ11 = 4.39%]

P2(XA) 58.82% 41.18%
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Table III

Adjusted Afro-Caribbean Population for Computing DC

XA=Clinical Need
P2
(C)(XA = 1 | XN )No (0) Yes (1)

XN=
Nativity

US Born (0) 14.72% 18.62% 55.85%

Immigrant (1) 44.00% 22.65% 33.98%

P2
(C)(XA)

58.72% 41.27%

Stat Med. Author manuscript; available in PMC 2009 September 10.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Duan et al. Page 20

Table IV

Adjusted Afro-Caribbean Population for Computing DM

XA=Clinical Need
P2
(M )(XA = 1 | XN )No (0) Yes (1)

XN=
Nativity

US Born (0) 19.46% 13.87% 41.61%

Immigrant (1) 46.06% 20.61% 30.91%

P2
(M )(XA)

65.52% 34.48%
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