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Paraquat (PQ) has been demonstrated that the main target organ for the toxicity is the lung. This study aimed to investigate the
potential protective effect of PDTC on the PQ-induced pulmonary damage. Fifty-four rats were divided into control, PQ-treated
and PQ+PDTC-treated groups. Rats in the PQ group were administrated 40 mg/kg PQ by gastric gavage, and PDTC group with
40 mg/kg PQ followed by injection of 120 mg/kg PDTC (IP). On the days 3, 7, 14 and 21 after treatments, the activities of GSH-Px,
SOD, MDA level and the content of HYP were measured. TGF-$1 mRNA and protein were assayed by RT-PCR and ELISA. MDA
level in plasma and BALF was increased and the activities of GSH-Px and SOD were decreased significantly in the PQ-treated
groups (P < .05) compared with control group. While the activities of GSH-Px and SOD in the PQ+PDTC-treated groups was
markedly higher than that of PQ-treated groups (P < .05), and in contrast, MDA level was lower. TGF-$1 mRNA and protein
were significantly lower in the PQ+PDTC-treated groups than that of PQ-treated groups (P < .05). The histopathological changes
in the PQ+PDTC-treated groups were milder than those of PQ groups. Our results suggested that PDTC treatment significantly
attenuated paraquat-induced pulmonary damage.

Copyright © 2009 Xiuli Chang et al. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Paraquat (PQ) is a nonselective contact herbicide, which is
used world-widely for its high efficiency and low residues
in the crops. It has been extensively demonstrated that
it is highly toxic to multiorgans when absorbed through
ingestion, skin contact, or inhalation. The primary target
organ for PQ toxicity is the lung as a consequence of its
accumulation, against a concentration gradient, through
the highly developed polyamine uptake system [1-3]. The
toxicity mechanism of PQ is mainly due to a sustained redox-
cycling effect, resulting in oxidative stress-related insults such
as lipid peroxidation. PQ-induced lung injury results in
alveolar epithelial cells (type I and II pneumocytes) and Clara
cell disruption, impairments of the surfactant system, hem-
orrhage, edema, hypoxemia, infiltration of inflammatory
cells into the interstitial and alveolar spaces, proliferation
of fibroblasts, and excessive collagen deposition [3, 4],
which ultimately leads to pulmonary fibrosis and respiratory
failure. Survivors of PQ poisoning may be left with a
restrictive type of long-term pulmonary dysfunction [5]. So

far, there are no known pharmacological antidotes for PQ
poisoning [6-8] and therapeutics have been disappointing
and the mortality has still remained high [9]. Thus agent with
both antioxidant and regulating fibrosis properties would
have favorable value in the treatment of paraquat-induced
lung injury.

Pyrrolidine dithiocarbamate (PDTC) is a low-molecular-
weight thiol compound, which has a variety of biochemical
activities, such as redox state alternation [10, 11], heavy
metal chelation [12], and enzyme inhibition [13]. PDTC
was initially regarded as a potent inhibitor of NF-«B [10,
14], and it has been used as an antioxidant compound
to counteract the toxic effects of free radicals [15] and to
interfere with the generation of proinflammatory cytokines
[16]. It has the potential to activate gene expression of
endogenous antioxidants such as superoxide dismutase
[17], independent of any effects on NF-«B. It induces
the genes encoding the two subunits of the enzyme GCS
and increased de novo synthesis of the cellular protectant
GSH [18]. PDTC reduces oxidant-mediated cellular injury,
as demonstrated by a reduction in the accumulation of
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malondialdehyde [19]. Antioxidants such as PDTC and
their modulatory effects on NF-xB activation suggest that
these agents may offer therapeutic benefits in acute lung
injury caused by PQ. Therefore, the present study was
designed to evaluate the effects of PDTC in a rodent
model of acute lung injury induced by PQ and observe
its potential therapeutic effect in order to provide scientific
basis for the treatment strategy of paraquat-induced lung
damage.

2. Materials and Methods

2.1. Chemicals. Pyrrolidine dithiocarbamate (=99%) was
purchased from Sigma-Aldrich (St. Louis, Mo, USA). 45%
paraquat concentration was gifted by Sinon Chemical
(Shanghai) Co., Ltd. All other chemicals were of analytical
grade, and procured from local commercial sources.

2.2. Animals and Paraquat/PDTC Administration. Fifty-four
male Sprague-Dawley (SD) rats which initially weighed
between 180 and 220 g were purchased from the Laboratory
Animal Research Center of Fudan University. The animals
had free access to the pellet diet and water ad libitum always,
and were maintained on 12-hour diurnal cycles and in a
controlled environment with a temperature of 20 ~ 22°C
and humidity of 50 + 5% for a period of 1 week before usage.
Animals were randomly divided into the control group, n =
6: animals treated with the saline solution; the PQ group, n =
24: animals were orally given aqueous solution of paraquat
(40 mg/kg) by gastric gavage and sacrificed at 3rd day (n = 6,
PQ 3d group), 7th day (n = 6, PQ 7d group), 14th day
(n = 6, PQ 14d group) and 21st day (n = 6, PQ 21d group);
PQ+PDTC group, n = 24: animals intoxicated with 40 mg/kg
PQ followed by immediate injection 120 mg/kg PDTC (IP),
and sacrificed at 3rd day (n = 6, PQ+PDTC 3d group),
7th day (n = 6, PQ+PDTC 7d group), 14th day (n = 6,
PQ+PDTC 14d group), and 21st day (n = 6, PQ+PDTC 21d
group).

2.3. Tissue Preparation. On days 3, 7, 14, and 21 after treat-
ments, one group rats of each treatment were sacrificed with
an IP injection of 10% Chloralum Hydratum (3 mL/kg body
weight). A total of 6 mL of venous whole blood was collected
in heparin-containing Vacutainer, and centrifuged at 400 g
for 10 minutes collecting supernatant for measurement of the
activities of glutathione peroxidase (GSH-Px), superoxide
dismutase (SOD), the level of maleic dialdehyde (MDA), and
TGF-f1 protein.

After collected blood sample, immediately thoracotomy
was sterilely performed to obtain bronchoalveolar lavage
fluid (BALF). Once ligating the left major bronchial beneath
the tracheal crotch, Bronchoalveolar lavage (BAL) was per-
formed by flushing right lung with 5 mL of saline through the
tracheal cannula three times. About 3 mL BALF was pooled
and centrifuged at 300 g for 10 minutes. The supernatant
was harvested for the activities of SOD, GSH-Px, and MDA
analysis.
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Right lung was harvested and frozen at —80°C for RNA
extraction and the content of hydroxyproline (HYP) in
lung homogenate measurement, a small piece of left lung
was fixed in 3% glutaraldehyde and immediately sent for
ultra-morphological examination, and the remaining lungs
were fixed in 10% formaldehyde solution before histological
analysis. HE and Masson’s trichrome staining of lung section
were undertaken, the latter was used observing collagen
fibers. According to the methodology described by Szapiel,
results of microscopic observations were analyzed the semi-
quantitative [20].

2.4. Measurement of Biomarkers of Oxidative Stress. The
levels of MDA were determined as an indicator of lipid
peroxidation. The activities of GSH-Px, SOD, and the level of
MDA both in plasma and BALF of rats were measured using
qualified kits.

2.5. Hydroxyproline Assay of Lung Tissue. The hydroxypro-
line contents of lung tissues were determined and the data
were expressed as ng/g wet lung tissue. The 100 mg frozen
lung tissue from control, PQ-treated and, PQ+PDTC-treated
rats was thoroughly homogenized in distilled water and
measured using qualified kits.

2.6. TGF-B1 Gene Expressions by Reverse Transcription-
Polymerase Chain Reaction (RT-PCR). About 100 mg lung
tissue was ground into a powder in liquid nitrogen.
Total RNA was extracted using the TRIzol Reagent (Life
Technologies, Grand Island, NY, USA) according to the
manufacturer’s instructions. Yield and purity of the iso-
lated RNA solution were determined by A260 and A280
readings on a spectrophotometer. Reverse transcription
was performed on 3ug of RNA with oligo-dT primers
and avian myeloblastosis virus reverse transcriptase (MBI
Fermentas, St. Leon-Rot, Germany). The PCR carried out
with the primers. The primers for mRNA analysis were
upper 5 GCTCGCTTTGTACAACAGCA 3’ and lower 5
GAGTTCTACGTGTTGCTCCA 3’ yielding a 280-bp product
for TGF-f1. The primers for mRNA analysis were upper 5
CCTCTATGCCAACACAGTGC 3’ and lower 5 GTACTC-
CTGCTTGCTGATCC 3" yielding a 210-bp product for
housekeeping gene -actin. The PCR products were analyzed
by electrophoresis on an agarose gel, stained with ethidium
bromide, and photographed. To determine the linear range
of the PCR, the intensity of the amplified products was
plotted against the cycle number. At least three samples on
each day were analyzed in each group.

2.7. Measurements of TGF-f1 Level in Plasm. The plasm
sample was used for measurements TGF-B1 levels with
enzyme-linked immunosorbent assay Rat TGF-f1 kit (Ben-
der MedSystems, Lot: 20280013) according to the manufac-
turer’s protocol. TGF-f31 was expressed as ng/g of protein.

2.8. Protein Quantification. Protein quantification was per-
formed according to the method of Lowry et al. [21], using
bovine serum albumin as standard.
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TaBLE 1: Comparisons of GSH-Px, SOD, and MDA among groups of PQ treatment, PQ+PDTC treatment, and the control (Mean + SE).
Animal Sacrifice GSH-Px (U/mL) SOD (U/mL) MDA (nmol/mgprot)
rou i
group T(lg;e Blood plasma BALF Blood plasma BALF Blood plasma BALF
control 6 0 5147.60+94.34 60.28 +13.86 288.62+2.88 59.51+21.60 1.09+0.22 0.46+0.30
PQ 5 3 4456.57 +122.10** 18.99+5.20** 100.95+3.74** 10.12+2.72%* 3.27+1.51* 1.76 +£0.30*
treatment 6 7 4194.06+154.30**  11.28+2.43** 99.93+£0.34** 12.49+10.89** 3.21+0.12%* 0.76+0.20*
6 14 3907.14+465.88%* 24.71+10.39** 275.73+20.24 42.11+8.80 0.87+0.07 0.61+0.04
6 21 4655.24+291.08** 42.67+14.94 285.37+10.57 70.58+5.54 0.32+0.06** 0.16+0.02*
PQ + 5 3 4735.35+188.20A** 19.39+4.80** 102.13+2.63** 18.28+6.48** 2.74+0.08**  0.90+0.50AA*
fDTtC .6 4384.16+91.934%F  18.61+8.18%* 103.45£0.98AA**  1553+5.49%%  238=0.40AA**  0.71=0.44
reatmen
6 14 4307.14+21.43%*  4395+8.61AA* 322.49+22.85AA* 61.08+10.34AA 0.30+0.0lAA** 0.62+0.01
6 21 5001.90+508.37 62.48+8.66A 365.09+16.17AA** 108.43+21.17AA** 0.32+0.03** 0.08+0.03**

*Compared with the control, P < .05, **P < .01, A compared with the PQ treatment, P < .05, AA P <.01.
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FIGURE 1: The content of HYP in lung tissue from groups of the
control, PQ treatment, and PQ+PDTC treatment. *compared with
the control, P < .01

2.9. Statistical Analysis. Results are presented as the mean +
SE. We used ANOVA to determine the differences among
groups. Comparisons between control, PQ-treated, and
PQ+PDTC-treated groups at each time point were made
using unpaired Student’s t-test. Differences were considered
significant at P < .05.

3. Results

3.1. Survival Rate and Macroscopic Examination. Polypnea,
Blausucht, crouch, diarrhea, anorexia were present especially
in animals exposed to PQ during the first 24 hours. One
animal died on the third day after treatment in the PQ group
and PQ+PDTC group, respectively. There was no animal
death in other goups during the observed time.

3.2. PDTC Alleviated the PQ-Induced Oxidative Damages.
The results of our experiment using PQ-treated rats
(40 mg/kg PQ) indicated that lipid peroxidation marker
MDA levels in plasma and BALF were significantly increased
and the activities of GSH-Px and SOD were significantly
decreased (P < .01) compared with that in the control group.
When the rats were cotreated with PQ and PDTC, we found
the activities of GSH-Px and SOD in the PDTC treatment
group (120 mg/kg) was markedly higher than that of PQ-
treated group (P < .05 or P < .01), and the MDA levels
was lower correspondingly (Table 1). The content of HYP in
lung tissue was increased significantly (P < .05) compared
with the control group at 7th day after the treatment of PQ
40 mg/kg, while the content of HYP in lung tissue was slightly
decreased in cotreated with PQ and PDTC group (Figure 1).

3.3. PDTC Alleviated the Pathological Changes Caused by PQ
as Determined by Histochemistry and Electronic Microscopy.
PQ-induced lung structural, ultrastructural alterations, and
alleviative effects of PDTC on PQ-damages are depicted in
Figures 2 and 3. Histologic changes were assessed with H&E
and correlated with lung fibrosis, which was identified by
using Masson’s Trichrome stain for collagen. According to
the methodology described by Szapiel, the semiquantita-
tive results of microscopic observations were summarized
in Table 2. Animals from control group (saline solution)
presented a normal pulmonary structure at light microscopy
(LM) and electron microscopy (EM), without evidences
of alveolar collapse, cellular infiltrations, or collagen accu-
mulation. PQ administration induced marked alterations
compared to the control pattern, mainly characterized by
a diffuse alveoli collapse with an increased thickness of its
walls. It was noticed that an intense vascular congestion with
numerous activated platelets and polymorphonuclear cells
inside the capillaries. The majority of pneumocytes showed,
at least, one ultrastructural abnormality, mitochondrial
swelling being the most frequent alteration, abundant rough
endoplasmic reticulum (RER), and rich ribosome in the
fibroblast. In comparison with the PQ group, the occurrence
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FiGUre 2: The left lung histological slices of SD rats from groups of the control, PQ treatment, and PQ+PDTC treatment. In Al (light
micrographs of lung sections stained with hematoxylin and eosin (HE) from control), evidencing a normal pulmonary structure without
evidence of alveolar collapse, vascular congestion, or cellular infiltrations. In B1(PQ group on the 3rd day HE), the capillary vessel of alveolar
wall dilation, congestion in lungs, hemorrhagic lung, and alveolar epithelium detached, edema, and infiltration of inflammatory cell around
bronchia can be visible. In B2 (PQ+PDTC group on the 3rd day HE), a slight decrease in the alveolar space can be observed as well as
the existence of several infiltrative vacuolated cells in the interstitial and in the alveolar space. In C1 (PQ group on the 7th day HE), the
lungs showed an accumulation of mixed inflammatory cells in the alveolar region and confluent areas of marked interstitial thickening.
In C2 (PQ+PDTC group on the 7th day HE), there was a slight change. In A2 (MASSON from control group), relatively little collagen
accumulation can be observed in control group. In D1 (PQ group on the 14th day MASSON) and E1 (PQ group on the 21st day MASSON),
Masson’s Trichrome staining showed collagen accumulation, broadened alveolar wall and patchy collagen deposition within the expanded
interstitium in some areas. In D2 (PQ+PDTC group on the 14th day MASSON) and E2 (PQ+PDTC group on the 21st day MASSON), a
slight collagen accumulation can be visible.
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F1GURE 3: The lung ultrastructure of SD rats from groups of the control, PQ treatment, and PQ+PDTC treatment. Electron micrographs from
control group (A3) showed a normal ultrastructure with the presence of pneumocytes type I and II. B3 (PQ group on the 3rd day) and C3
(PQ group on the 7th day) can be observed a type II pneumocyte with mitochondrial swelling (b), dilation of lamellar body (a), pneumocyte
necrosis and alveolar collapse (1). B4 (PQ+PDTC group on the 3rd day) and C4 (PQ+PDTC group on the 7th day) can be observed normal
mitochondria and no alveolar collapse. D3 (PQ group on the 14th day) can be noticed the more numerous rough endroplasmic reticulum
(RER) and ribosome (Ri) in fibroblast compared with D4 (PQ+PDTC group on the 14th day). showed E3 (PQ group on the 21st day) can be
observed patchy collagen deposition within the expanded interstitium in some areas. E4 (PQ+PDTC group on the 21st day) can be observed
a small quantity of collagen deposition.
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TABLE 2: Semiquantitative analysis of the morphological injury of lung after PQ or/and PDTC treatment.

Animal group  Sacrifice time (d) edema Hyperemia  hemorrhage inflammation wa?llsvf}(l)iljlzen cl?)ilce:g?r?;itslngzfr
Control - - - - - -
PQ treatment S " " A A A B

7 + + +++ + ++ -

14 - - ++ - ++ ++

21 - - + - ++ +++
PQ+ PDTC 3 - + + - - -
treatment 7 + - + - + -

14 - - + - + +

21 - - + - + ++

Ratio

0 1 1 1 1
0 5 10 15 20 25

Sacrifice time (d)

—— PQ
—a— PQ + PDTC

FIGURE 4: Expression TGF-$1 mRNA in lung tissue from groups
of the control, PQ treatment, and PQ + PDTC treatment. Relative
TGF-1 mRNA abundance was normalized with the f-actin, and
expressed as relative units. Values are given as mean + SE (n = 3).
# Compared with the control, P < .05; *compared with the PQ
treatment, P < .05.

of the above, referred alterations were drastically attenuated
in the PQ+PDTC groups, particularly inflammation, hem-
orrhage, and the amount of accumulation of collagenous
fiber. Despite the existence of several pneumocytes with
mitochondrial swelling and evidences of interstitial edema,
the exuberance of those signals and the ratio of affected
cells were drastically attenuated in PQ+PDTC animals.
Furthermore, comparing to the PQ group, the vascular
congestion and the alveolar collapse were not as noticeable
in PQ+PDTC animals.

3.4. Antagonistic Effects of PDTC on the PQ-Induced Expres-
sion of TGF-B1 Gene Expression. In order to analyze the
effects of PQ on the TGF-f1, we tested the mRNA and
protein levels of TGF-B1 in lung tissues from rats treated
with PQ. As expected, the levels of both mRNA and protein
of TGF-f1 were significantly drastically increased by the PQ
(P < .05 or P < .01). Cotreatment of PDTC with PQ

TGF-f1 (ng/g protein)

0 . . . .
0 5 10 15 20 25

Sacrifice time (d)

—— PQ
—a— PQ+PDTC

FiGURE 5: TGF-f1 level in plasm at sacrifice time from groups of
the control, PQ treatment, and PQ+PDTC treatment. TGF-f1 was
expressed as ng/g of protein. Values are given as mean = SE (n = 3).
# Compared with the control, P < .05; *compared with the PQ
treatment, P < .05.

significantly decreased the levels of both mRNA and protein
in comparison with PQ treatment alone (P < .05 or P < .01)
(Figures 4 and 5).

4. Discussion

Paraquat is a highly toxic compound for humans and
animals. Over the past few decades, many cases of acute
poisoning and death have been reported [22, 23]. The
major cause of death in paraquat poisoning is respiratory
failure due to an oxidative insult to the alveolar epithelium
with subsequent obliterating fibrosis. The cellular damage
mediated by PQ is essentially due to its redox-cycle leading to
continuous superoxide radicals (O;) production [24]. This
then sets off the well-known cascade leading to generation of
the hydroxyl radical (HOe), which has been implicated in the
initiation of membrane injury by lipid peroxidation during
the exposure to PQ [24-26]. In addition, researchers have
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proposed the hypothesis of cytotoxicity via mitochondrial
dysfunction caused by PQ [24, 25]. The data presented in
Table 2 showed significant changes in endogenous antioxi-
dant system and lipid peroxidation during the treatment of
rats with PQ, where the SOD and GSH-Px activities were
decreased in blood plasma and BALF, and the level of MDA
increased which is indicative for excessive lipid peroxidation.
The aforementioned observation confirms the consequence
of the intracellular accumulation of reactive oxygen species
(ROS) with subsequent development of lungs injury [24, 26].

In the present study, we performed qualitative and
semiquantitative analysis of the morphological injury of lung
by PQ (Table 2 and Figures 2 and 3). We have observed the
characteristic PQ-induced pathological alterations including
alveolar edema, hemorrhage, inflammatory cell infiltration,
the swollen-type II alveolar epithelial cells, and deformed
mitochondria by electro-microscopy in less than 7 days
after PQ exposure. The abundant rough endoplasmic retic-
ulum (RER) and rich ribosome in the fibroblast and the
development of an extensive fibrosis in lung during 14—
21 days after PQ exposure, are probably a compensatory
repair mechanism to damaged alveolar epithelial [27]. The
alveolar walls were thickened, predominantly with collagen;
mild mononuclear cell infiltration in the alveolar walls and
alveolar collapse were observed in necropsy specimens of two
patients 8 and 10 days after paraquat poisoning [28].

In this study, cotreatment with PDTC was very effective
in the preventing oxidative damage induced by PQ, which are
characterized by the reversal of PQ-induced tissue damages.
In addition, the PQ-induced biochemical changes as indi-
cated by significant decrease of SOD and GSH-Px activities,
along with an increase MDA level in blood plasm and BALF,
were also alleviated by PDTC (Table 1). The mechanism of
PDTC’s antioxidant effect could be explained in part by acti-
vating gene expression of endogenous antioxidants such as
superoxide dismutase [17] and a reduction in the accumula-
tion of malondialdehyde [19]. In addition, inflammation was
alleviated from pathological morphological analysis. These
results showed that the PDTC as an antioxidant compound
to counteract the toxic effects of free radicals [15] and to
interfere with the generation of proinflammatory cytokines
[16] efficiently protect lung from PQ-induced oxidative
damage. Moreover, these morphological evidences of cellular
aggression were attenuated by PDTC treatment (Table 2
and Figure 2), and the reduced accumulation of collagenous
fiber observed in PQ+PDTC-treated animals during 14—
21 days may be interpreted as a consequence of regulated
collagen gene expression, which PQ+PDTC-treated groups
could attenuate paraquat-induced upregulation of TGF-f1
mRNA expression levels.

TGF-f31 is a key growth factor that initiates tissue repair
and its sustained production underlies the development of
tissue fibrosis [29]. In experimental models of lung fibrosis,
TGEF-f1 has been shown to be an important upstream effec-
tor of collagen gene expression [30, 31]. The attenuation of
PQ-induced damages by PDTC suggests that the alleviation
of PQ-induced fibrosis may be due to the inhibitory effects of
PDTC on NF-«B activation which then led to reduced TGEF-
B1 gene expression [32].

In conclusion, our results in the present study clearly
demonstrated that PDTC significantly increased SOD, GSH-
Px activities, decreased MDA, HYP levels, and reduced accu-
mulation of collagenous fiber in paraquat-treated rat. These
findings suggested that PDTC may exert its protective effects
on paraquat-induced pulmonary damage by alleviating the
earlier inflammation damage via paraquat-induced oxidative
stress and the later fibrosis in rat lung and by regulating the
mRNA expression of TGF-f1. Future studies are warranted
to further investigate the underlying mechanisms involved in
this complicated process.
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