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Neural Correlates of High-Gamma Oscillations (60 -200 Hz)
in Macaque Local Field Potentials and Their Potential
Implications in Electrocorticography
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Recent studies using electrocorticographic (ECoG) recordings in humans have shown that functional activation of cortex is associated
with an increase in power in the high-gamma frequency range (~60-200 Hz). Here we investigate the neural correlates of this high-
gamma activity in local field potential (LFP). Single units and LFP were recorded with microelectrodes from the hand region of macaque
secondary somatosensory cortex while vibrotactile stimuli of varying intensities were presented to the hand. We found that high-gamma
power in the LFP was strongly correlated with the average firing rate recorded by the microelectrodes, both temporally and on a
trial-by-trial basis. In comparison, the correlation between firing rate and low-gamma power (40 - 80 Hz) was much smaller. To explore
the potential effects of neuronal firing on ECoG, we developed a model to estimate ECoG power generated by different firing patterns of
the underlying cortical population and studied how ECoG power varies with changes in firing rate versus the degree of synchronous firing
between neurons in the population. Both anincreasein firing rate and neuronal synchrony increased high-gamma power in the simulated

ECoG data. However, ECoG high-gamma activity was much more sensitive to increases in neuronal synchrony than firing rate.
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Introduction

Several EEG and local field potential (LFP) studies have indicated
that signal power in the gamma frequency range (30-80 Hz)
increases during a variety of cognitive tasks (Fries et al., 2001;
Scherberger et al., 2005; Schoffelen et al., 2005; Womelsdorfet al.,
2007). Although most studies of gamma oscillations initially em-
phasized frequencies ~40 Hz, electrocorticographic recordings
(ECoG) in patients undergoing epilepsy surgery have suggested
that functional activation of cortex is perhaps more consistently
associated with a broadband increase in signal power at higher
frequencies, typically >60 Hz and extending up to 200 Hz and
beyond (Crone et al., 2006). These “high-gamma” responses have
been observed in a variety of functional domains, including mo-
tor (Crone et al., 1998; Miller et al., 2007), auditory (Crone et al.,
2001a; Edwards et al.,, 2005; Trautner et al., 2006), visual
(Lachaux et al., 2005), language (Crone et al., 2001b; Mainy et al.,
2007b), and attention (Tallon-Baudry et al., 2005; Jung et al.,
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2008; Ray et al., 2008a). However, the relationship between these
high-frequency gamma oscillations and the firing properties of
the neural population remains unclear. Here we investigate this
relationship in the LFP that measures the activity of a small pop-
ulation of neurons near the microelectrode, and in a model of
ECoG that simulates the average activity of a much larger number
(~500,000) of neurons.

In a previous study (Ray et al., 2008b), we measured the cor-
relation between spikes and oscillations in the LFP recorded in
secondary somatosensory cortex (SII) of awake macaque mon-
keys, and we found that spikes were tightly correlated with oscil-
lations in the high-gamma range. Based on those results, we hy-
pothesize here that LFP high-gamma activity represents the
average firing of neurons near the microelectrode from which the
LFP activity is recorded, weighted according to their distance
from the electrode. We test this hypothesis by studying the co-
variations of population firing and LFP high-gamma over time,
as well as trial-by-trial covariations in these two quantities. We
show that the two quantities are tightly correlated.

If LFP high-gamma activity is a measure of neural firing of the
population near the microelectrode, ECoG high-gamma activity
should be an indicator of the firing properties of the entire neural
population under the ECoG electrode. However, for such a large
network of neurons, the temporal pattern of firing (in particular,
neural synchronization) may be important. We develop a model
to estimate ECoG high-gamma power under different firing rate
profiles of the neural population and compare the increase in
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high-gamma activity attributable to an increase in population
firing rate versus an increase in synchronization. Although both
increases in firing rate and synchrony lead to an increase in high-
gamma power in the simulated data, the effect of a 10-fold in-
crease in firing rate is matched by that of a small (~1%) increase
in synchrony. Thus, ECoG high-gamma activity is likely more
sensitive to synchronous firing in the underlying cortical neural
population than to the underlying firing rate.

Materials and Methods

The experimental design, recording setup and some of the analysis meth-
ods are described in detail in the study by Ray et al. (2008b). Here, we
describe them briefly.

Animals and animal behavior. Single-unit recordings were obtained
from secondary somatosensory cortex in two macaque monkeys (Ma-
caca mulatta, one female, 4—6 kg). The monkeys were water restricted
and received most of their daily water during the experiment. They were
trained to sit quietly in a primate chair during the experiment with their
hands supinated and restrained. Water rewards were given at pseudoran-
dom intervals during the experiment to keep the animals awake and alert.
All procedures and experimental protocols complied with the guidelines
of the Johns Hopkins University Animal Care and Use Committee and
the National Institutes of Health Guide for the Care and Use of Laboratory
Animals.

Experimental design. Tactile stimuli were delivered perpendicular to
the skin through a probe on the distal pad of the second or third digits
(D2 or D3) by a vibratory stimulator (Mini-shaker, model 4810; Briiel &
Kjeer). The Mini-shaker stimulator produced a sinusoidal vibration,
which was presented for 1 s, with an interstimulus interval of 1.2 s. Three
different stimulus frequencies (50, 100, and 200 Hz) and four different
amplitudes (in the ratio 1:2:5:10 and denoted by G1, G2, G5, and G10
throughout this study) were used, with 50 trials per frequency and am-
plitude combination. Stimuli were presented in a pseudorandom order.
Stimulus amplitude at the lowest amplitude (G1) was approximately five
times higher than the perceptual threshold (on average ~5, 3,and 0.8 wm
at 50, 100 and 200 Hz, respectively). Mini-shaker movements were mon-
itored using an accelerometer (Type 8636C5; Kistler Instrument) and the
corresponding displacement amplitudes were computed by double inte-
gration of the acceleration. In this study, only the results for stimulus
frequency of 50 Hz are shown because SA1 (slowly adapting) and RA
(rapidly adapting) receptors found in the periphery respond more
strongly to stimulus frequencies at or below ~50 Hz. Similar results were
obtained at other stimulus frequencies.

Recordings. Stainless steel recording cylinders were placed surgically
on each hemisphere over SII using aseptic procedures under sodium
pentobarbital anesthesia (25 mg/kg, i.v., initial dose plus 5-15 mg/kg/hr,
i.v.). Neural recordings were started not earlier than 1 week after surgery,
to allow sufficient time for recovery. Neural activity was recorded using
seven platinum-iridium extracellular microelectrodes spaced 400 wm
apart and driven by a Reitboeck microdrive (Mountcastle et al., 1991).
The signals from the seven channels were amplified by a headstage am-
plifier (10X) and divided into two streams for the collection of LFP and
spikes, respectively. One of the streams was amplified (100X) and filtered
(0.3-300 Hz, 6 dB/octave) using Grass amplifiers (Model 15 LT with
12A54 Quad amplifiers; Grass-Telefactor/Astro-Med). The second input
stream was bandpass filtered (500—-1000 Hz), amplified (10X to 100X),
and spikes were isolated using a window amplitude discriminator. Only
neurons whose action potentials were well isolated from noise were se-
lected for analysis. As a control, to ensure that the observed activity was
not an artifact, we repeated the experiment for several neurons after
taking the stimulator off the finger. For such trials, all stimulus-related
activity disappeared.

Two hundred and three neurons were recorded from three hemi-
spheres (55 and 71 neurons from hemispheres 1 and 2, respectively, of
monkey 1; and 77 neurons from one hemisphere in monkey 2).

Time-frequency analysis. Time-frequency analysis was performed us-
ing the matching pursuit (MP) algorithm (Mallat and Zhang, 1993). MP
is an iterative procedure to decompose a signal as a linear combination of
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members of a specified family of functions g.,,, which are usually chosen
to be sine-modulated Gaussians, i.e., Gabor functions or “Gabor atoms,”
because they give the best compromise between frequency and time res-
olution. In this algorithm, a large overcomplete dictionary of Gabor
atoms is first created. In the first iteration the atom g, which best de-
scribes the signal f{(¢) (i.e., has the largest inner product with it) is chosen
from the dictionary and its projection onto the signal is subtracted from it.
The procedure is repeated iteratively with the residual replacing the signal.
Thus, during each of the subsequent iterations, the waveform g, ,, is matched
to the signal residue R"f, which is the residue left after subtracting the results
of previous iterations. Mathematical details of this method are presented in
Ray et al,, 2008b. Time-frequency plots were obtained by calculating the
Wigner distribution of individual atoms and taking the weighted sum (Mal-
lat and Zhang, 1993). We have made the software used for MP computation
online at http://erl.neuro.jhmi.edu/mpsoft.

The LFP was originally sampled at 5 kHz and then down-sampled to 1
kHz. Matching pursuit was performed on signals of 2048 bins (—0.523—
1.524 s at 1 msresolution, where zero denotes the time of stimulus onset),
yielding a 2048 X 2048 array of time-frequency values (with a time
resolution of 1 ms and frequency resolution of 500/2048 Hz). This was
further down-sampled by a factor of 8 (the mean of every 8 X 8 pixels was
taken as one time-frequency bin), yielding a time resolution of 8 ms and a
frequency resolution of ~2 Hz. For the study of temporal variations in
power, no down-sampling was performed so that time resolution was 1 ms.

Noise and stimulus artifact removal. With MP, line noise (60 Hz and
harmonics) are represented by long atoms (spread parallel to the time
axis) concentrated ~60 Hz and its harmonics. Similarly, a sinusoidal
stimulus artifact is represented by long atoms concentrated at the stim-
ulus frequency and harmonics. Such atoms were excluded from the anal-
ysis to eliminate these artifacts. This procedure is more powerful than
traditional filtering because at least some of the energy at 60 Hz that has
a physiological origin is preserved. For example, a short burst of activity,
which MP represents as an atom localized in time but spread in fre-
quency, will not be excluded from analysis.

For each neuron, noisy trials were eliminated before analysis by visual
inspection and window discrimination of the filtered LFP. For each stim-
ulus frequency and amplitude combination, between 25 and 50 trials
were analyzed (on average, ~3 trials of 50 were eliminated).

Selection and classification of neurons. We tested whether the firing
rates and signal power were stable over time to ensure that the results
were not biased by a change in the level of alertness/attention of the
monkey over the recording period. Using regression analysis, we selected
141 neurons for which firing rates and gamma power were stable for the
entire recording duration (Ray et al., 2008b). These neurons were cate-
gorized into three categories based on their firing rate profiles: Excited
(for which the firing rate increased after stimulus onset; 78 neurons),
Inhibited (firing rate decreased after stimulus onset; 21 neurons), and
Not-Driven (no change in firing rate; 42 neurons). In this report we use
the Excited population to study temporal and trial-by-trial correlations
between population firing rate and signal power in different frequency
bands.

Frequency bands. The term “gamma band” is used here to describe the
broad frequency range between 40 and 200 Hz. We analyzed the fre-
quency band between 60 and 150 Hz (called the “high-gamma” band)
because the spike-triggered average had prominent power in this range
(Ray et al., 2008b). Additionally, we also performed the analysis on the
traditional “low-gamma” frequency band between 40 and 80 Hz, and in
the beta frequency range (16-24 Hz) where we observed a consistent
decrease in power after stimulus onset. For low and high-gamma power,
several different frequency ranges were used (80—150 Hz and 60200 Hz
for high-gamma, 40—60 Hz for low-gamma) and very similar results
were obtained.

Cross-correlation analysis. We adopted the method used by Womels-
dorf et al. (2007) based on Spearman-rank correlation to compute the
cross-correlation between mean normalized firing rates and mean nor-
malized power in different frequency bands. As a measure of the cross-
correlation at time lag L, we computed the Spearman-rank correlation
between the power between 0 and 200 ms and the firing rates from L to L
+ 200 ms (both quantities were computed with a time resolution of 1 ms,
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thus we obtained 200 data pairs). This method is approximate because
the power and rate values are not independent across time. However, the
Spearman rank correlation analysis avoids assumptions about the under-
lying distributions (Womelsdorf et al., 2007). We obtained cross-
correlation functions for time lags L between —100 and 100 ms. Because
the time lag of the rate changes was defined relative to the power changes,
a peak at negative time lag indicates that firing rate changes precede
power changes.

ECoG data modeling. We estimated the change in high-gamma power
in the ECoG signal that is due to changes in firing rate or synchronization
in the underlying neural population. Most of the power recorded by the
ECoG electrode is due to synaptic activity (Nunez, 1981, 1995), so the
contribution of the action potentials is small and limited to the higher
frequencies only. However, here we were specifically interested in the
contribution of action potentials and their time-locked LFP compo-
nents, and thus limited the analysis to the effect of neuronal firing on the
ECoG activity.

Suppose a microelectrode records the activity of a neuron as shown in
supplemental Figure 1, available at www.jneurosci.org as supplemental
material. This neuron is at a distance R from the dura (and hence from
the ECoG electrode). When the neuron fires an action potential, the
microelectrode records the extracellular action potential waveform s(¢)
(which is estimated by the spike-triggered average), whereas the ECoG
electrode records the potential ®(¢). The problem is to find a relationship
between ®(¢) and {s(t). Because a complete characterization of ®(¢) with
respect to i(t) is extremely difficult, we make a series of approximations
to model a relationship between the two. The overall potential due to all
the underlying neurons is then computed using linear superposition. The
approximations are explained below.

Passive recording system. The presence of the ECoG electrode influ-
ences the electric field generated by the neuronal population. Because the
conductance of the electrode is extremely high (ECoG electrodes are
typically made of platinum-iridium) compared with the brain tissue, it
constrains the entire cortical surface (on which it is placed) to have the
same potential. To compute this potential, first the induced charge on the
metal electrode must be computed (the induced charge will develop to
keep the potential the same over the entire area of the electrode). In
general, the solution depends on a number of factors, including the po-
sition of the current source (neuron) with respect to the electrode, the
dimensions of the electrode, the geometry of the neuron, as well as the
input impedance of the recording system. This problem is extremely
difficult to solve for the entire neural population. Thus, we approximate
the potential of the ECoG electrode by a point recording contact situated
directly above the current source (for example, for the neuron shown in
supplemental Fig. 1, available at www.jneurosci.org as supplemental ma-
terial, we assume that the recording contact is at a distance R from the
soma and situated vertically above the neuron).

Current source localization. To compute the potential recorded at any
distance from the neuron, first the distribution of the currents must be
computed. These current sources and sinks are generated because of the
synaptic activity (for example, opening of sodium channels will create a
local current sink). Once an action potential is generated, it propagates
along the axon as well as the dendrites, creating a distribution of local
sources and sinks. However, detailed numerical calculations have shown
that the currents at/near the soma are typically much larger than the
currents in the dendrites, whereas the contribution of the myelinated
part of the axon to the extracellular potential is negligible (Gold et al.,
2006). Furthermore, the potential decays quickly below the level of de-
tection as the microelectrode moves away from the soma (Gold et al.,
2006). Thus, the main contributions to the recorded potentials are due to
currents generated close to the soma, and we therefore assume that in all
the microelectrode recordings, the electrode is situated close to the soma.
Gold (2006) further showed that for microelectrodes close to the soma,
the temporal profile of the potential and of the current sources is very
similar. This is expected, because given a point source I in an unbounded
and isotropic volume conductor, the corresponding potential at a dis-
tance r is given by
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pl
U= 4ar

(1)

where p is the extracellular resistivity. Thus, I(¢) is proportional to ys(t)
(both have the same shape).

Current source distribution. If the potential recorded by a microelec-
trode is considered to be due to a point current source at the soma, the
potential will decrease as 1/r from the current source (Eq. 1). However,
once the action potential is initiated at the axon initial segment, the
charge imbalance depolarizes the nearby membrane (which allows the
action potential to propagate). The fall-off of the potential with distance
is critically dependent on the spatial distribution of these local current
sources and sinks. For example, the spatial distribution of currents can be
approximated by a current sink flanked on each side by a current source,
i.e., a triphasic current source distribution (Malmivuo and Plonsey,
1995). In general, the resulting potential has a multipole expansion with
aleading 1/r* term (and if the triphasic current source is perfectly sym-
metric, a leading 1/r> term). Omitting higher terms of the multipole
expansion, we approximate the effect of the spatial distribution of cur-
rents on the potential by using the following equation:

_pl(n)
T 4t

P(t) (2)

where 7 is an exponent between 1 and 3. Here, n = 1 represents a point
source (no redistribution of charge), n = 2 a dipole (two equal and
opposite current sources), and n = 3 represents the quadrupole moment,
e.g., resulting from an instantaneous symmetric distribution of charge
into a point sink of I/2 flanked by two point sources of —I/4. The simula-
tions are performed for different values of n. Equation 2 is another ap-
proximation because in general the extracellular potential ¢s(¢) and the
current source I(t) may be related in a complicated way that may depend
on a variety of factors, like redistribution of charge along the membrane
(the trans-membrane current), the contribution of the current sources in
the dendrites and so on. It must be noted that regardless of the rate of
decay of the potential with distance, the shape of the extracellular action
potential is preserved, because at lower frequencies (at least up to the
high-gamma range) the brain acts like a purely resistive medium and the
conductivity is not frequency dependent (Nunez, 1981; Logothetis et al.,
2007). Therefore, we relate the ECoG potential ®(¢) with the extracellu-
lar action potential s(¢) using the following equation:

(1)
Rﬂ

() =C (3)
where R is the distance between the ECoG electrode and the soma. The
constant C incorporates several factors like the distance between the
soma and the microelectrode, the conductivity of the medium, size of the
soma, and the orientation of the current sources, whereas the exponent n
incorporates, approximately, the spatial distribution of the charge along
the membrane near the axon initial segment. From linear superposition,
the overall ECoG potential due to a population of N neurons (with the
soma of the k'™ neuron located at a distance R, from the ECoG electrode)
is given by

Pi(t)
Ry

o(1) = DG (4)
k=1

Spatial distribution of neurons. The somatosensory cortex has an over-
all thickness of ~2 mm (Noctor et al., 2001). The contribution of cortical
neurons to the ECoG potential depends on a variety of factors such as
their type, density, orientation, size and pattern of interconnections.
Layer 1 (the molecular layer) mainly contains the apical dendritic exten-
sions of the cells in layers 2/3 or axonic connections from other columns
and only a few neuronal cell bodies. Pyramidal cells are found in Layers
2/3 as well as Layer 5, whereas Layer 4 has prominent spiny stellate
neurons that receive input from thalamic neurons. It is unclear how the
size or the type of a neuron affects the potential observed at the ECoG
electrode. Gold et al. (2006) showed that the potential depends on the
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Figure1.

(blue, bottom) frequency ranges.

size, but not on the type of neuron or the extent of dendritic arborization.
However, an important criterion seems to be the conductance of ion
channels. As an approximation, we ignore the laminar differences and
assume that the neurons beneath the ECoG electrodes form a homoge-
neous population. Most commonly used ECoG electrodes have a diam-
eter of 4 mm with an exposed surface of diameter 2.3 mm. The density of
neurons in human cortex is ~10°/mm?; the ECoG electrode with an
exposed area of 2.3 mm diameter will thus have ~500,000 neurons under
it. We assume that these neurons are situated at depths between 0.2 and
2 mm (i.e., they are uniformly distributed between Layers 2 through 6).
The diversity in cell size/type/conductivity/orientation is incorporated
by varying the coefficient C in equation 4 randomly between 0 and 1
(uniformly distributed).

In summary, we make the following assumptions to estimate the
ECoG potential (®(#)) from the microelectrode action potentials (¢s(t),
obtained by taking the mean spike-triggered average of the excited pop-
ulation in the early stimulus period):

The ECoG electrode does not influence the electric field generated by
the neurons.

The microelectrode is close enough to the soma such that only the
currents in the soma influence the potential ys(¢). This makes the current
source proportional to the potential (Eq. 1).

The effect of current distribution in the dendrites and axon is modeled
by assuming that the potential drops off as 1/1”, where n is between 1 and
3. The value of 7 is critically dependent on the spatial distribution of
charge, n = 1 corresponds to no distribution of charge (just a point
current source at the soma), whereas n = 3 corresponds to a perfect
instantaneous redistribution into a sink of size I/2 flanked by two sym-
metric sources of size I/4. Higher terms in the multipole expansion are
ignored.

The laminar differences are ignored, and the differences in cell size,
type, orientation, conductivity and density are incorporated using a sin-
gle variable (C; Eq. 4) that is uniformly distributed between 0 and 1.

In supplemental Discussion 2, available at www.jneurosci.org as sup-
plemental material, we address some of these assumptions in detail and
discuss experimental and computation strategies to improve the model.

Results

Temporal dynamics of firing rate and LFP power

To test the hypothesis that LFP high-gamma power is tightly
coupled with the average firing rate of the neural population near
the microelectrode, we compared the temporal dynamics of the

Temporal dynamics of firing rates and LFP oscillations. 4, Time-frequency plot of the change of the LFP power relative
to baseline (in dB), plotted along with the firing rate of the Excited population at the highest stimulus intensity (overlaid black
curve). Time t = 0 indicates stimulus onset. The blue, magenta, and red vertical bars on the right edge of the plot indicate the
frequency ranges for beta, low-gamma, and high-gamma power, respectively. B, Change in normalized firing rates (black traces)
plotted along with the change in normalized power in the high-gamma (red, top), low-gamma (magenta, middle), and beta

averaged across the Excited population to
obtain the mean normalized firing rates.
Similarly, we computed the mean normal-
ized power in the following three different
frequency bands: beta (16-24), low-
gamma (40-80 Hz), and high-gamma
(60-150 Hz). Figure 1B shows the per-
centage of change in normalized firing
rates from baseline firing rates as well as
the percentage of change in normalized LFP power from baseline
power, for the high-gamma (top), low-gamma (middle), and
beta (bottom) frequency bands. We observed a strong correlation
between the high-gamma power and firing rates curves, suggest-
ing a close and possibly causal relationship. Low-gamma power
also increased after stimulus onset, but the increase was smaller
(scale in Fig. 1B is different for different frequency bands) and
stayed constant for a longer duration. The decrease in beta power
started at the same time as, or slightly after, the firing rate started
to increase. The results were similar when the analysis was re-
peated without normalization of firing rates or power.

To test whether the changes in firing rate preceded the changes
in power in Figure 1B, we computed the cross-correlation be-
tween mean normalized firing rates and mean normalized LFP
power (see Materials and Methods). Figure 2 shows the cross-
correlations between the normalized firing rates and normalized
high-gamma (left), low-gamma (middle) and beta (right) power,
for the four stimulus amplitudes. The time periods at which the
cross-correlation was significant (Spearman rank test, p < 0.05,
Bonferroni corrected for multiple comparisons) are denoted by
horizontal lines at the bottom of each plot. We observed a strong
correlation of firing rates with high-gamma power, with a corre-
lation coefficient of 0.92 at the highest stimulus amplitude (G10).
Except for the smallest stimulus amplitude (for which the cross-
correlation was much smaller), the peak of the cross-correlation
between firing rates and high-gamma power occurred at negative
latencies (—6, —3, and —4 ms for G2, G5, and G10, respectively).
This indicated that changes in firing rates preceded changes in
power, and the time lags were consistent with the lags reported
previously [Ray et al. (2008b), their Fig. 6C]. The cross-
correlation values between firing rates and low-gamma power
were much smaller (Fig. 2, middle). The peak occurred at a pos-
itive time lag (~18 ms for G10), showing that low-gamma power
increases before the increase in firing rate.

We also observed a strong correlation between firing rates and
beta power. As shown in Figure 1 B, bottom, beta power begins to
decrease ~40 ms before the firing rate reaches its maximum
value, and correspondingly the cross-correlation shows a peak at
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~40 ms at G10 (black trace). The lowest
level of beta power, however, is reached
after the firing rate peaks.

Trial-by-trial analysis

If the firing rates and LFP power in a fre-
quency band are related to each other, they
should covary on a trial-by-trial basis. To
test this hypothesis, we computed the
Spearman rank coefficient between the fir-
ing rates and LFP power recorded from
individual sites. However, although the
LFP represents the contribution of several
neurons near the microelectrode, the fir-

Spearman rank correlation

High-gamma

b ——
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Beta

Low-gamma
Q1 1 1

0.5

——

ing rate is recorded for an individual neu- -100
ron (often the one closest to the microelec-
trode so that the action potential can be
easily isolated). As a result, these correla-
tions are expected to be smaller than the
temporal correlations that were computed
between the average firing rates and LFP
power of the Excited population.

The analysis was performed on 72 Ex-
cited neurons from which we had recorded at least 40 trials for
each stimulus amplitude condition. The mean firing rates and
power in the “early stimulus period,” defined in the interval 50—
200 ms post stimulus, were used because the firing rates were
much higher in this period and there was more variability across
trials. Figure 3 shows the histogram of the Spearman rank corre-
lation between the firing rates and high-gamma (left), low-
gamma (middle), and beta (right) power, computed for each
neuron (i.e., the correlation was computed for 40 data points for
each stimulus amplitude). We found a positive correlation be-
tween high-gamma power and firing rates, so that the histograms
shown in the left panel of Figure 3 were shifted toward the right
side of the origin. The neurons for which the correlation coeffi-
cient was significant ( p < 0.05) are shown in black (31, 28, 26,
and 26 neurons of the 72 studied were significant for stimulus
intensity of G1, G2, G5, and G10 when no Bonferroni correction
was applied. Because the variability across trials was high at indi-
vidual sites, only 4, 6, 3, and 5 neurons were significant after
Bonferroni correction for G1, G2, G5, and G10, respectively). For
low-gamma or beta, the correlation coefficients were much
smaller. Only 12, 12, 8, and 9 (0, 3, 0, 1 after Bonferroni correc-
tion) neurons had significant correlations for the low-gamma
(middle), and only 8, 7, 6, 5 (none after Bonferroni correction)
neurons were significant for beta power (right). Because the beta
suppression began only after ~200 ms, we recomputed the cor-
relation after taking the average power between 250 and 500 ms.
Similar results were found (9, 5, 2, and 2 neurons were significant
for G1, G2, G5 and G10, respectively; only 1 neuron at G2 was
significant after Bonferroni correction).

Although these correlations were small when computed for
individual neurons (40 data points per stimulus amplitude), the
results were highly statistically significant when the correlations
were computed for the entire dataset of all neurons and all trials
(i.e., when computed over 40 X 72 = 2880 data points). To
account for the variability between neurons recorded from dif-
ferent sessions, the firing rates and power for each neuron were
normalized by dividing by the maximum firing rate/power for
the entire set of trials for any of the four stimulus amplitudes.
After normalization, for each neuron we obtained 160 data points
(40 data points for each stimulus amplitude), with a maximum

Figure 2.
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(ross-correlation analysis between the normalized firing rates and normalized high-gamma (left), low-gamma
(middle), and beta (right) power, for the four stimulus amplitudes (indicated by different colors). The time periods at which the
cross-correlation is significant (Spearman rank test, p < 0.05, Bonferroni-corrected for multiple comparisons) are denoted by
horizontal lines at the bottom of each plot. Negative latencies indicate that changes in firing rates preceded changes in power.
Triangles indicate the time when the cross-correlation is highest.

value of unity. These data points were then analyzed separately
for each of the four stimulus amplitudes (72 X 40 = 2880 data
points for each amplitude) (supplemental Fig. 2, available at
www.jneurosci.org as supplemental material). We then per-
formed a regression analysis to test for a possible relationship
between normalized firing rates and normalized power. The p
values of the slope between rate versus high-gamma were highly
significant (slopes: 0.23, 0.22, 0.14, and 0.17; p values <10 %!,
10 %, 10 2, and 10 28 for G1, G2, G5 and G10, respectively).
Even for low-gamma, the p values were highly significant (slopes:
0.16, 0.12, 0.10, and 0.10; p values: 1077, 4.2 X 10", 2.1 X
10 "' and 8.5 X 10~ *?). For rate versus beta power, the slopes
were 0.02, 0.02, 0.06 and 0.05, and p values were 0.34, 0.25, 9.6 X
10 ®and 3.4 X 10 ~* when the power was computed between 50
and 200 ms post stimulus. We were concerned that the significant
correlations at G5 and G10 were artifacts of the phase-locked
activity (Fig. 1A, the red-orange spot at low frequency), and we
computed the power also between 250 and 500 ms, when beta
power suppression was more evident. In this case, the slopes were
0.006, 0.003, 0.002, and 0.023, and p values were 0.77, 0.86, 0.85,
and 0.03.

The results obtained from trial-by-trial variability analysis,
although computed under some approximations, are consistent
with the results obtained from the temporal correlation analysis
that showed that high-gamma power is much more tightly cor-
related with the firing properties of the neural population than
low-gamma or beta power. These results are consistent with our
previous finding that each action potential is tightly coupled to
LFP activity in the high-gamma range (Ray et al., 2008b), because
in that case an increase in firing rate would lead to a correspond-
ing increase in high-gamma power generated by the neural pop-
ulation near the microelectrode.

Next, we studied the neural correlates of high-gamma activity
when recorded at a higher level of integration, as in ECoG record-
ings in humans, which typically record from ~500,000 neurons.
For such recordings, the temporal structure of firing in the pop-
ulation may be important. As mentioned earlier, both an increase
in the firing rate and an increase in synchrony in a population of
neurons could theoretically lead to an increase in high-gamma
activity. To compare the effects of these two aspects of neural
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Figure 3.

Histograms of Spearman rank correlation values between firing rates and LFP power for individual neurons in the Excited population. Power was computed for three frequency bands

(as in Fig. 1) and four stimulus intensities (as in Fig. 2). Neurons for which the correlation was significant ( p << 0.05, Spearman rank test) are shown in black. Gray triangle indicates the mean

correlation for the entire Excited population.

activity on ECoG high-gamma power, we developed a model to
estimate ECoG potential under different assumptions about the
firing patterns of the underlying neural population (see Materials
and Methods). The results are described in the next section.

Modeling of ECoG data

Figure 4 A shows the results for a population of N = 10° model
neurons that fired randomly with a constant firing rate (following
a Poisson distribution), which was varied between 10 and 100
spikes/s (top row). The model exponent (7 in Eq. 2) was set to 2.
The corresponding simulated ECoG signals are shown in the
middle row, and the time-frequency spectra of the ECoG (aver-
age of 50 simulated trials) are shown in the bottom row. Figure
4B shows the same results for a population of 10° neurons in
which a subpopulation of neurons fired synchronously while the
firing rate remained constant at 10 spikes/s. The percentage of
neurons that fired synchronously was increased from 0 to 5%
(from left to right). A comparison of the high-gamma power
under these two conditions (Fig. 4C) showed that the increase in
ECoG high-gamma power that was obtained from a large in-
crease in firing rate could be obtained by a small increase in
synchronization. For example, an increase in high-gamma power
due to a 10-fold increase in firing rate is the same as that caused by
a 2% increase in synchronization. Figure 4 D shows the percent-
age of synchronously firing neurons that was required to explain
a 10-fold increase in firing rate in the asynchronous population,
as a function of the neural population and the model exponent
(Eq. 2). For a population of 5 X 10> neurons, <1% synchroni-
zation was required to achieve the same increase in high-gamma
as generated by a 10-fold increase in firing rate, for all tested
values of the model exponent. These results are in agreement with
theoretical arguments suggesting that the ratio of activity of a
coherent subpopulation of size M and an incoherent subpopula-
tion of size L is M/V'L (Nunez, 1981, 1995) (the ratio of power,

approximated by the square of the amplitude, is thus M*/L). In
Appendix 1, we use a simple argument based on the variance in
firing rate to show that for a neural population of size N, the
ECoG power for the asynchronous condition is proportional to N,
whereas for the synchronous condition it is proportional to N,

Figure 4 B shows the effect of a particular type of synchroni-
zation, where a fraction of neurons fired with perfect synchrony
although the remaining population was asynchronous. Next, we
considered a population of neurons in which any two spike trains
have a correlation coefficient of y (such spike trains can be gen-
erated using a technique described by Mikula and Niebur, 2003).
Figure 5A shows the increase in high-gamma power as the corre-
lation coefficient is increased from 0 to 0.00045, whereas Figure
5B shows the correlation coefficient required to achieve the same
increase in high-gamma as generated by a 10-fold increase in
firing rate under different model parameters. Figure 5, A and B,
are thus analogous to Figure 4, C and D, with the percentage
synchronization replaced by the correlation coefficient. Thus, an
increase in high-gamma due to a 10-fold increase in firing rate in
a population of independently firing neurons is equivalent to an
increase in the pairwise correlation coefficient from zero (inde-
pendent firing) to <0.0004. Experimental measurement of this
level of synchrony in a population would be difficult using single-
unit pairwise cross-correlation measures because the correlation
values would be very small. High-gamma activity could be a bet-
ter and more robust marker of synchronization in large networks
of neurons. This is further elaborated in Discussion.

To directly compare the effects of rate and synchrony on
ECoG high-gamma power, an experimental paradigm would
have to be designed in which firing rate and synchrony/correla-
tion could be varied independently of each other. However, these
quantities are usually correlated with each other (de la Rocha et
al., 2007). Studies of selective attention provide a partial solution,
because in such studies a substantial increase in pairwise syn-
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ECoG modeling results. For plots A-C, the total number of neurons s 10° and the model exponent (nin Eq. 2) is 2. A, Top row shows example raster plots of simulated spike trains with

random firing (a representative set of 50 spike trains is shown). The 10 panels correspond to 10 different simulations for which the firing rate was fixed between 10 and 100 spikes/s. The numbers
ontop of the panel indicate the theoretical firing rate in spikes/s. The instantaneous firing rate (computed from the rasters) is shown in red. The middle row shows the simulated ECoG signal for each
simulation. The bottom row shows the time-frequency power spectrum (in dB) of the ECoG (50 simulations like the one shown in the top were averaged, consistent with the number of trials averaged
in LFP data and a previous ECoG study). B, Same panel configuration as in 4; the simulated spike trains all have a mean fixed firing rate of 10 spikes/s, but a subpopulation of the neurons fire in
synchrony. The percentage of synchronously firing neurons increase from 0 to 5% from left to right (indicated by the numbers on top of the panel). ¢, High-gamma power (60150 Hz) for the
simulations with increasing firing rate (red) and increasing synchronization (black). D, The synchronization strength required to match the high-gamma power of a randomly firing population with

a firing rate of 100 spikes/s, for different values of N (size of the neural population; colored lines as labeled in legend) as a function of the model exponent.
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Figure 5.

exponent.

Discussion

We studied the relationship between high-gamma activity and
neuronal firing at the level of local field potentials which reflect
the activity of a small population of neurons near a microelec-
trode, and developed a simple model to explore the relative con-
tributions of an increase in firing rate versus synchrony on ECoG

Comparison of power for random firing versus correlated firing. A, High-gamma power of a randomly firing popu-
lation of 10° neurons with model exponent (n in Eq. 2) set to 2 (red trace) as the firing rate increases from 10 to 100 spikes/s,
superimposed with the high-gamma power of the same population of neurons firing with a correlation coefficient that increases
from 0 to 0.00045 (with firing rate fixed at 10 spikes/s). B, Correlation coefficient required to match the high-gamma power of a
randomly firing population with a firing rate of 100 spikes/s, for different values of N (size of the neural population) and model

data, which records the activity of a large population (>10°) of
neurons. There are two main findings. First, we show that LFP
high-gamma power is tightly correlated with the instantaneous
firing rate of the neural population near the recording electrode.
Second, using a model to estimate the ECoG signals arising from
different population firing parameters, we show that both an
increase in firing rate and synchrony lead to an increase in ECoG
high-gamma power. However, increases in ECoG high-gamma
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activity because of a large increase (10-fold) in population firing
rate can be matched by a small increase (~1%) in neuronal firing
synchrony. Thus, while at the level of LFP, high-gamma activity
may only reflect the firing rate of the neural population near the
microelectrode, at a larger level of integration such as ECoG, it is
possibly an index of neural synchrony in the underlying cortical
population.

Significance of high-gamma oscillations

Our results are consistent with a growing number of LFP studies
suggesting a link between high-gamma oscillations and spiking
activity (Liu and Newsome, 2006; Belitski et al., 2008). The ob-
served correlation between high-gamma power and population
spiking activity in our study is much stronger than in earlier
work. One reason could be due to the use of matching pursuit for
generating the time-frequency spectrum, because the Gabor
function dictionaries used in MP provide the best time-frequency
resolution possible in agreement with the uncertainty principle,
and consequently provide an excellent description of the time-
frequency properties of nonstationary signals. In supplemental
Discussion 3, available at www.jneurosci.org as supplemental
material, we compare the performance of MP versus traditional
methods such as Fourier Transform for the representation of
highly nonstationary LFP signals. The multiscale decomposition
of MP allows sharp transients in the LFP signal (likely because of
spiking activity) to be represented by functions that have a nar-
row temporal support, rather than oscillatory functions with a
temporal support of hundreds of milliseconds (typical in meth-
ods such as Short Time Fourier Transform/Multi-tapering). Fur-
ther details can be found in Ray et al., 2008b.

Other than these LFP studies, high-gamma power augmenta-
tion has been observed consistently in a large number of ECoG
studies in a variety of functional domains, including motor
(Crone et al., 1998; Ohara et al., 2000; Pfurtscheller et al., 2003;
Brovelli et al., 2005; Miller et al., 2007), visual (Lachaux et al.,
2005; Tallon-Baudry et al., 2005), auditory (Crone et al., 2001a;
Edwards et al., 2005; Trautner et al., 2006), somatosensory (Ray
etal.,2008a), and language cortices (Crone et al., 2001b; Mainy et
al., 2007b; Jung et al., 2008). In addition, high-gamma activity is
modulated during selective attention (Tallon-Baudry et al., 2005;
Jung et al., 2008; Ray et al., 2008a), working memory (Canolty et
al., 2006; Mainy et al., 2007a), and recognition memory (Seder-
berg et al., 2007). Furthermore, a number of noninvasive studies
using either scalp EEG (Ball et al., 2008) or magnetoencephalog-
raphy (Kaiser and Lutzenberger, 2005; Gross et al., 2007; Hauck
et al., 2007; Dalal et al., 2008) have reported gamma responses
that include, or are restricted to, high-gamma frequencies. The
seeming ubiquity of high-gamma responses during cortical acti-
vation, as well as their high degree of specificity for the expected
location, timing, and stimulus-selectivity of cortical activation,
suggests that high-gamma activity constitutes a universal index of
cortical processing. This is not surprising given its close relation-
ship to neuronal spiking.

Our results suggest a crucial role for high-gamma activity in
linking the signals observed in microelectrode studies with sig-
nals obtained from macroelectrode studies, such as intracranial
EEG studies in humans. LFPs are thought to represent the synap-
tic activity of a few thousand neurons, depending on the tip di-
ameter used for the recording (Nunez, 1981, 1995). Whereas
lower frequency activity in the LFP may be due to the activity of a
larger population, higher frequencies typically reflect a smaller
population (Nunez, 1981). Indeed, frequencies greater than
~300 Hz are probably dominated by the currents associated with
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action potentials (Logothetis, 2002). In this respect, it is not sur-
prising that high-frequency activity is tightly coupled to the firing
of a few neurons. More surprising is the range of frequencies that
are correlated with spiking activity; we show that power in a
frequency range as low as 60—200 Hz is tightly coupled to the
firing rates of a small population of neurons. The higher fre-
quency components of LFPs have a greater relative contribution
from action potentials, whereas the size of the neural population
(that generates the activity at that frequency) decreases with in-
creasing frequency (Nunez, 1981). The high-gamma frequency
range (60—200 Hz) appears to be well suited for studying the
spiking activity of a relatively small population of neurons in LFP
recordings.

Furthermore, our modeling analysis shows that an increase in
cross-correlation of as low as 10 ~* over a large population of
neurons may lead to a large increase in high-gamma power. An
increase of this magnitude would be very difficult to detect using
single unit measures with analysis methods such as pairwise
cross-correlation. This may explain why, although there are sev-
eral studies showing an increase in synchronization at the level of
multi units or LFP with selective attention (Fries et al., 2001;
Bichot et al., 2005; Womelsdorf et al., 2006), fewer studies have
reported an increase in synchrony at the level of single units
(Steinmetz et al., 2000). The cross-correlation values reported by
Steinmetz et al. (2000) were very small but were shown to be
significant. High-gamma activity may be a more reliable and ro-
bust reflection of synchronization than pairwise cross-
correlation, especially when recorded at a high level of neural
integration like subdural ECoG. However, whereas our modeling
study shows the relative effects of increases in firing rate and spike
synchrony in large populations of neurons, these are ‘idealized’
results aimed to reinforce the theoretical results developed in the
appendix. These modeling results are obtained under a series of
assumptions and must be complemented by neurophysiological
studies before the relative roles of rates and synchrony can be
unequivocally determined. In supplemental Discussion 2, avail-
able at www.jneurosci.org as supplemental material, we address
some of the limitations of the model in further detail, and discuss
possible experiments that can address some of the concerns.

Low-gamma versus high-gamma activity

Several functional mechanisms have been suggested for low-
gamma oscillations, such as an increase in single unit synchroni-
zation (Singer and Gray, 1995; Engel et al., 2001; Salinas and
Sejnowski, 2001; Buzsaki and Draguhn, 2004; Womelsdorf et al.,
2007), controlling the communication channels between input
and output neural assemblies (Fries, 2005; Womelsdorf and
Fries, 2006), and setting a temporal reference frame so that la-
tency or rank-ordering of spike times with respect to the gamma
cycle can carry information (Buzséki and Chrobak, 1995; Buzséki
and Draguhn, 2004; Fries et al., 2007). Furthermore, these
gamma oscillations have been observed during several higher
cortical processes such as selective attention (Tiitinen et al., 1993;
Fries et al., 2001; Womelsdorf et al., 2006), sensorimotor integra-
tion (Murthy and Fetz, 1992; Roelfsema et al., 1997), binding of
distributed representations (Gray et al., 1989; Singer and Gray,
1995), working memory (Pesaran et al., 2002), associative learn-
ing (Miltner et al., 1999), and conscious perception (Singer and
Gray, 1995; Rodriguez et al., 1999; Meador et al., 2002).

The results presented in this study are not inconsistent with
any of these suggested roles of gamma oscillations. However, our
results point to an alternative hypothesis regarding the physio-
logical origin of low-gamma oscillations. Just as an increase in
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high-gamma could be attributable to an increase in spike syn-
chronization within the neural population, an increase in low-
gamma power could be attributable to an increase in synchroni-
zation in synaptic inputs, because synaptic activity is correlated
with the low-gamma frequency range (Niessing et al., 2005;
Viswanathan and Freeman, 2007). This is consistent with our
finding that low-gamma power increases before the increase in
firing rate (Fig. 1B, middle panel). Thus, while high-gamma
power could be a neural correlate of synchronized output of the
cortex, low-gamma power could be a correlate of synchronized
input to the cortex. Although these hypotheses suggest no “func-
tional” role of low- and high-gamma oscillations, these oscilla-
tions could nevertheless reflect ongoing neural processes related
to dynamic cortical functions.

Regardless of whether high-gamma oscillations play any role
in cortical processing, our results suggest that high-gamma activ-
ity in electrophysiological recordings of a large population (like
ECoG) could be a useful indicator of the firing dynamics of the
neural population whose activity is being recorded. This key find-
ing could potentially be used to characterize the nature of neural
processing used in different cognitive tasks, in particular,
whether the information is carried entirely by the mean rate of
action potentials (a rate code) or whether the precise occurrence
times of action potentials also carries information (a temporal
code). For example, in supplemental Discussion 1, available at
www.jneurosci.org as supplemental material, we argue that an
increase in ECoG high-gamma power attributable to attention is
better explained by increases in neural synchrony than by firing
rate. Similar studies using ECoG and other invasive techniques,
e.g., microelectrode recordings, are expected to enhance our un-
derstanding of the role of gamma oscillations during different
cognitive tasks and the nature of cortical processing associated
with these oscillations.

Appendix 1

In this appendix, we try to estimate the high-gamma power in
ECoG using simple mathematical arguments. Although both an
increase in firing rate and an increase in synchrony in the neural
population may lead to an increase in high-gamma activity in
ECoG, previous theoretical studies have suggested that for a large
population of neurons (like the one recorded by the ECoG elec-
trode), the ratio of activity recorded from a coherent subpopula-
tion of size M versus that from an incoherent subpopulation of
size N, is M/\/N (Nunez, 1981, 1995). For instance, for a popu-
lation of 10° neurons (the typical size of a macrocolumn; the
ECoG data generally represent a much larger population), even if
only 1% of the population is synchronized, the activity of this
synchronized subpopulation will be 10°/\/10° (approximately
three times more) than that of the incoherent subpopulation.

A crude measure of the ECoG high-gamma activity is the local
fluctuation (SD) in population firing rate, which prevents high-
gamma oscillations from canceling each other out. ECoG high-
gamma power (proportional to the square of the activity) will
thus be proportional to the variance in the firing rate. We com-
pute the variance in firing rate under the following three condi-
tions described in the study: (1) The entire population fires asyn-
chronously; (2) A fraction (6) of the population fires in perfect
synchrony, whereas the remaining population fires asynchro-
nously; (3) the firing rates in the population are correlated such
that any two spike trains have a correlation coefficient of x.

Let the size of the population be N, with a firing probability of
p in abin of size At. Let X be the number of spikes in this bin. We
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estimate the variance Var(X) under the three conditions men-
tioned above. Let g = 1—p.

Case 1: Asynchronous firing. X ~ Binomial(N,p); Var(X) =
Npq.

Thus, the power increases linearly with N.

Case 2: A fraction 6 of neurons fire synchronously.

Let X, be the total number of spikes from the synchronous pop-
ulation (of size N6). X; ~ (N6)Binomial(1,p) (i.e., either N6 or 0
with probability p and g, respectively).

Let X, be the total number of spikes from the asynchronous
population (of size N(1—6)). X, ~ Binomial(N(1—0),p); X = X,
+ X,; Var(X) = Var(X1) + Var(X2) (the two random variables
are independent); = (N?0?)pq + N(1—0)pq. For large values of
N, the second term is negligible. The power increases as N, con-
sistent with the earlier theoretical arguments.

Case 3: Any two spike trains have a correlation coefficient of y.
Such a population of neurons can be constructed by first ran-
domly generating N + 1 spike trains, setting the N + 1™ as a
reference spike train, and then switching, with probability \/;(,
the state of a time bin in each of these spike trains to the reference
spike train (Mikula and Niebur, 2003; Niebur, 2007).

Let c = Vy and g = 1—p. Suppose N, states get switched.
Then N; ~ Binomial(N,¢). Suppose the state of this bin in the
reference spike train is Z. Then Z ~ Binomial(1,p). Let Y be the
number of spikes obtained from the remaining N-N, spike trains
(whose state has not been switched). Then Y ~ Binomial(N—
Ny,p). X = N,.Z + Y; Var(X) = E(var(X/N;)) + var(E(X/N,))
(law of total variance).

First term:

E(var(X/N,)) = >P(N, = k)var(X/N, = k).
k=0

But var(X/N, = k) = var(kZ) +var(Y),
where Y ~ B(N-k,p); = k’pq + (N—k)pq.

Hence,
N

E(var(X/N,)) = pg 2.P(N = k)(k* + N — k)

k=0
= pq[E(N\*) + N — E(N))]
= pqlvar(N)) + (E(N)))* + N — E(N,)]
= pq[Ne(1 = ¢) + (N¢)* + N — Nc]
= pq[N*¢* + N(1 = ¢)]
= pq[N*x + N(1 = x)].

Second term: var(E(X/N,)).

However,

E(X/N)) = 2P(N, = k) E(X/N, = k) = 2PN, = k)(kp

k=0 k=0
+ (N = k)p) = Np,
so that var(E(X/N,)) = 0;

thus, Var(X) = pg(N*x + N(1—x)).
These simple mathematical derivations are consistent with the
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results shown in Figures 4C and 5A. The power increases linearly
with the firing rate (p) for the asynchronous case in Figure 4C
(red line), increases as 67 for the synchronous case (black line),
and increases linearly with x in Figure 5A (black line).

References

Ball T, Demandt E, Mutschler I, Neitzel E, Mehring C, Vogt K, Aertsen A,
Schulze-Bonhage A (2008) Movement related activity in the high
gamma range of the human EEG. Neuroimage 41:302-310.

Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis
NK, Panzeri S (2008) Low-frequency local field potentials and spikes in
primary visual cortex convey independent visual information. ] Neurosci
28:5696-5709.

Bichot NP, Rossi AF, Desimone R (2005) Parallel and serial neural mecha-
nisms for visual search in macaque area V4. Science 308:529-534.

Brovelli A, Lachaux JP, Kahane P, Boussaoud D (2005) High gamma fre-
quency oscillatory activity dissociates attention from intention in the hu-
man premotor cortex. Neuroimage 28:154—164.

Buzsaki G, Chrobak JJ (1995) Temporal structure in spatially organized
neuronal ensembles: a role for interneuronal networks. Curr Opin Neu-
robiol 5:504-510.

Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks.
Science 304:1926-1929.

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger
MS, Barbaro NM, Knight RT (2006) High gamma power is phase-
locked to theta oscillations in human neocortex. Science 313:1626-1628.

Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping
of human sensorimotor cortex with electrocorticographic spectral analy-
sis. II. Event-related synchronization in the gamma band. Brain
121:2301-2315.

Crone NE, Boatman D, Gordon B, Hao L (2001a) Induced electrocortico-
graphic gamma activity during auditory perception. Brazier Award-
winning article, 2001. Clinical Neurophysiology 112:565-582.

Crone NE, Hao L, Hart J Jr, Boatman D, Lesser RP, Irizarry R, Gordon B
(2001b) Electrocorticographic gamma activity during word production
in spoken and sign language. Neurology 57:2045-2053.

Crone NE, Sinai AS, Korzeniewska A (2006) High-frequency gamma oscil-
lations and human brain mapping with electrocorticography. Prog Brain
Res 159: 275-295.

Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT,
Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS (2008)
Five-dimensional neuroimaging: localization of the time-frequency dy-
namics of cortical activity. Neuroimage 40:1686—1700.

delaRochaJ, Doiron B, Shea-Brown E, Josi¢, K, Reyes A (2007) Correlation
between neural spike trains increases with firing rate. Nature
448:802—806.

Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT (2005) High
gamma activity in response to deviant auditory stimuli recorded directly
from human cortex. ] Neurophysiol 94:4269—4280.

Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and
synchrony in top-down processing. Nat Rev Neurosci 2:704—-716.

Fries P (2005) A mechanism for cognitive dynamics: neuronal communica-
tion through neuronal coherence. Trends Cogn Sci 9:474—480.

Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscilla-
tory neuronal synchronization by selective visual attention. Science
291:1560-1563.

Fries P, Nikoli¢ D, Singer W (2007) The gamma cycle. Trends in Neuro-
sciences 30:309-316.

Gold C, Henze DA, Koch C, Buzsaki G (2006) On the origin of the extracel-
lular action potential waveform: a modeling study. ] Neurophysiol
95:3113-3128.

Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat
visual cortex exhibit inter-columnar synchronization which reflects
global stimulus properties. Nature 338:334-337.

Gross J, Schnitzler A, Timmermann L, Ploner M (2007) Gamma oscillations
in human primary somatosensory cortex reflect pain perception. Plos
Biology 5:1168-1173.

Hauck M, Lorenz J, Engel AK (2007) Attention to painful stimulation en-
hances gamma-band activity and synchronization in human sensorimo-
tor cortex. ] Neurosci 27:9270-9277.

Jung J, Mainy N, Kahane P, Minotti L, Hoffmann D, Bertrand O, Lachaux JP

J. Neurosci., November 5, 2008 - 28(45):11526 11536 * 11535

(2008) The neural bases of attentive reading. Hum Brain Mapp
29:1193-1206.

Kaiser J, Lutzenberger W (2005) Human gamma-band activity: a window to
cognitive processing. Neuroreport 16:207-211.

Lachaux JP, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti
L, Kahane P, Renault B (2005) The many faces of the gamma band re-
sponse to complex visual stimuli. Neuroimage 25:491-501.

Liu J, Newsome WT (2006) Local field potential in cortical area MT: stim-
ulus tuning and behavioral correlations. ] Neurosci 26:7779-7790.

Logothetis NK (2002) The neural basis of the blood-oxygen-level-
dependent functional magnetic resonance imaging signal. Philos Trans R
Soc Lond B Biol Sci 357:1003-1037.

Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of
cortical impedance spectrum in monkeys: implications for signal propa-
gation. Neuron 55:809—823.

Mainy N, Kahane P, Minotti L, Hoffmann D, Bertrand O, Lachaux JP
(2007a) Neural correlates of consolidation in working memory. Human
Brain Mapping 28:183-193.

Mainy N, Jung J, Baciu M, Kahane P, Schoendorff B, Minotti L, Hoffmann D,
Bertrand O, LachauxJP (2007b) Cortical dynamics of word recognition.
Hum Brain Mapp, in press.

Mallat S, Zhang Z (1993) Matching pursuit with time-frequency dictionar-
ies. IEEE Trans Signal Proc 41:3397-3415.

Malmivuo J, Plonsey R (1995) Bioelectromagnetism. New York: Oxford
UP.

Meador KJ, Ray PG, Echauz JR, Loring DW, Vachtsevanos GJ (2002)
Gamma coherence and conscious perception. Neurology 59:847—854.

Mikula S, Niebur E (2003) The effects of input rate and synchrony on a
coincidence detector: analytical solution. Neural Comput 15:539-547.

Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Miller
JW, Ojemann JG (2007) Spectral changes in cortical surface potentials
during motor movement. ] Neurosci 27:2424-2432.

Miltner WH, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of
gamma-band EEG activity as a basis for associative learning. Nature
397:434—-436.

Mountcastle VB, Reitboeck HJ, Poggio GF, Steinmetz MA (1991) Adapta-
tion of the Reitboeck method of multiple microelectrode recording to the
neocortex of the waking monkey. ] Neurosci Methods 36:77—84.

Murthy VN, Fetz EE (1992) Coherent 25- to 35-Hz oscillations in the sen-
sorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A
89:5670-5674.

Niebur E (2007) Generation of synthetic spike trains with defined pairwise
correlations. Neural Comput 19:1720—1738.

Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005)
Hemodynamic signals correlate tightly with synchronized gamma oscil-
lations. Science 309:948-951.

Noctor SC, Palmer SL, McLaughlin DF, Juliano SL (2001) Disruption of
layers 3 and 4 during development results in altered thalamocortical pro-
jections in ferret somatosensory cortex. ] Neurosci 21:3184-3195.

Nunez PL (1981) Electrical fields of the brain: the neurophysics of EEG.
New York: Oxford UP.

Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford:
Oxford UP.

Ohara S, Ikeda A, Kunieda T, Yazawa S, Baba K, Nagamine T, Taki W, Hashi-
moto N, Mihara T, Shibasaki H (2000) Movement-related change of
electrocorticographic activity in human supplementary motor area
proper. Brain 123:1203-1215.

Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal
structure in neuronal activity during working memory in macaque pari-
etal cortex. Nat Neurosci 5:805-811.

Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA (2003) Spa-
tiotemporal patterns of beta desynchronization and gamma synchroniza-
tion in corticographic data during self-paced movement. Clin Neuro-
physiol 114:1226-1236.

Ray S, Niebur E, Hsiao SS, Sinai A, Crone NE (2008a) High-frequency
gamma activity (80—150 Hz) is increased in human cortex during selec-
tive attention. Clin Neurophysiol 119:116-133.

Ray S, Hsiao SS, Crone NE, Franaszczuk PJ, Niebur E (2008b) Effect of
stimulus intensity on the spike-local field potential relationship in the
secondary somatosensory cortex. ] Neurosci 28:7334-7343.

Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999)



11536 - J. Neurosci., November 5, 2008 - 28(45):11526 11536

Perception’s shadow: long-distance synchronization of human brain ac-
tivity. Nature 397:430—433.

Roelfsema PE, Engel AE, Konig P, Singer W (1997) Visuomotor integration
is associated with zero time-lag synchronization among cortical areas.
Nature 385:157-161.

Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of
neural information. Nat Rev Neurosci 2:539-550.

Scherberger H, Jarvis MR, Andersen RA (2005) Cortical local field potential
encodes movement intentions in the posterior parietal cortex. Neuron
46:347-354.

Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mech-
anism of effective corticospinal interaction. Science 308:111-113.

Sederberg PB, Schulze-Bonhage A, Madsen JR, Bromfield EB, Litt B, Brandt
A, Kahana MJ (2007) Gamma oscillations distinguish true from false
memories. Psychol Sci 18:927-932.

Singer W, Gray CM  (1995) Visual feature integration and the temporal cor-
relation hypothesis. Ann Rev Neurosci 18:555-586.

Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000)
Attention modulates synchronized neuronal firing in primate somato-
sensory cortex. Nature 404:187-190.

Tallon-Baudry C, Bertrand O, Hénaft MA, Isnard J, Fischer C (2005) Atten-

Ray et al. @ Neural Correlates of High-Gamma

tion modulates gamma-band oscillations differently in the human lateral
occipital cortex and fusiform gyrus. Cereb Cortex 15:654—662.

Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Niitinen R
(1993) Selective attention enhances the auditory 40-Hz transient re-
sponse in humans. Nature 364:59 —60.

Trautner P, Rosburg T, Dietl T, Fell J, Korzyukov OA, Kurthen M, Schaller C,
Elger CE, Boutros NN (2006) Sensory gating of auditory evoked and
induced gamma band activity in intracranial recordings. Neuroimage
32:790-798.

Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral
cortex reflects synaptic more than spiking activity. Nat Neurosci
10:1308-1312.

Womelsdorf T, Fries P (2006) Neuronal coherence during selective atten-
tional processing and sensory-motor integration. J Physiol Paris
100:182-193.

Womelsdorf T, Fries P, Mitra PP, Desimone R (2006) Gamma-band syn-
chronization in visual cortex predicts speed of change detection. Nature
439:733-736.

Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel
AK, FriesP (2007) Modulation of neuronal interactions through neuro-
nal synchronization. Science 316:1609-1612.



