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Abstract

Background: The importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its
mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an
inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain
ventral tegmental area (VTA) neurons.

Methodology/Principal Findings: We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus
and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of
synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within
the PFC. The addition of high ($1 mM) concentrations of exogenous DA to the cultures reduced Up-states and diminished
excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine
also reduced Up-states. Lower concentrations of exogenous DA (0.1 mM) had no effect on the up-state itself, but they
selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was
eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without
the VTA slice, Up-states could be enhanced by low concentrations (0.1–1 mM) of DA that had no effect in the VTA containing
cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest
concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA’s effects in
an active network.

Conclusions/Significance: Taken together, these data show concentration-dependent effects of DA on global PFC network
activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support
cognitive functioning.
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Introduction

Dopamine (DA) modulation of the prefrontal cortex (PFC) plays an

important role in cognitive functions, including working memory.

Dopamine modulation of working memory performance and the

associated task-related neuronal activity within the PFC follows an

inverted U-shape dose-response curve, with optimal signal processing

at the peak of the inverted-U function; [1–5]. Thus, DA can have

both facilitatory and suppressive effects on cortical neurons, and it has

been suggested that the concentration-dependent effects of DA in vivo

depend upon both the prevailing ‘‘tonic’’ DA concentration as well as

fluctuations in DA concentrations from ‘‘phasic’’ release [6,7].

Mechanistic studies in-vitro have identified a multitude of pre-

and postsynaptic as well as intrinsic ionic currents through which

DA modulates neural activity (reviewed in [8]). Virtually all of

these currents can produce non-linear changes in membrane

potential that involve multiplicative and/or opposing actions, and

are expected to have vastly different effects depending on whether

a neuron is at rest or is embedded in an active network. In

addition, DA has receptor- and concentration-specific effects that

are consistent with the inverted-U concept to explain its actions

[9,10]. However, acute slice preparations are largely devoid of the

ongoing network activity and functionally significant DA tone,

which can influence neuronal responses [11–14]. Thus, how the

effects of DA on intrinsic membrane excitability and synaptic

connections between various cell-types interact in an active

recurrent network is difficult to predict from observations of each

of these components in isolation.

Here, we used patch-clamp recordings in organotypic slice co-

cultures of the PFC, the hippocampus (Hipp), and the midbrain
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containing the ventral tegmental area (VTA) to investigate the

effects of varying levels of DA on recurrent synaptic activity in the

PFC in the presence or absence of a tonic DA level. These cultures

possess both an intrinsic source of DA from the VTA, as well as

intrinsic network activity in the form of ‘‘Up-’’ and ‘‘Down-states’’

[15,16]. We tracked the membrane potential, evoked spiking

behavior, and the response to synaptic inputs in PFC pyramidal

neurons under conditions designed to alter both tonic and phasic

levels of DA. Our results show that DA can independently alter

spontaneous network activity (the Up-state) and a superimposed

synaptic ‘‘signal’’, consistent with the idea that DA modulates the

signal-to-noise ratio (S:N) in active networks. The effects on both

Up-states and evoked synaptic potentials were concentration-

dependent, with activity declining at higher concentrations.

Furthermore, the concentration-dependent effects of DA on Up-

states were influenced by the presence or absence of tonic DA

levels in the cultures. Taken together, these data confirm

important aspects of the hypothesized inverted-U DA dose-

response curve and provide further support for the idea that DA

optimizes signal processing in active cortical networks by

improving the S:N ratio.

Methods

All animals were handled in strict accordance with the

Guidelines for the Care and Use of Animals published by the

USPHS and followed procedures approved by MUSC’s Institu-

tional Animal Care and Use Committee (protocol number

AR2605).

Preparation of triple slice co-cultures
Co-cultures were made from mice at postnatal days 2–4. We

used both C57BL/6 and mice expressing green fluorescent protein

(GFP) under the control of the tyrosine hydroxylase (TH) gene

promoter (c.f. Fig. 1; animals for establishing the TH-GFP

breeding colony were kindly provided by Dr Hideyuki Okano,

Keio, University; [17]). Pups were anesthetized by hypothermia

and decapitated. Sections (325 mm thick) containing the prelimbic

and infralimbic regions of the PFC, the level of the midbrain

containing the VTA, and the ventral hippocampus were prepared

on a vibratome (Leica VT 1000, Nussloch, Germany) in ice-cold

sucrose-substituted solution (in mM): 200 sucrose, 1.9 KCl, 6

MgCl2, 0.5 CaCl2, 10 glucose, 0.4 ascorbic acid, 10 HEPES.

Slices were placed close to each other on a Millipore millicell insert

in a six-well culture dish. The plating media consisted of: 50%

basal medium Eagle, 25% Earle’s balanced salt solution, 25%

horse serum plus 6.5 mg/ml glucose, 25 mM HEPES–NaOH

(pH 7.2), 100 mg/ml streptomycin and Glutamax for the first 3

days. Every 3–4 days thereafter, inserts were placed in a fresh dish

with 850 ml of the same media as above, except 70% basal

medium Eagle, 25% Earle’s solution and 5% horse serum were

substituted. After 15 days, 10 ml of 5-fluoro-2-deoxyuridine

(0.08 mM) plus uridine (0.2 mM) in MEM was added to the

media to prevent cell division and glial overgrowth.

Electrophysiological procedures and data analysis
After a minimum of 16 days in culture, individual co-cultures

were transferred to a recording chamber where they were bathed

in artificial cerebrospinal fluid (ACSF) consisting of (in mM): 125

NaCl, 3.8 KCl, 25 NaHCO3, 1.2 CaCl2,1 MgCl2, 10 dextrose and

0.4 ascorbic acid, saturated with 95% O2–5% CO2 at 37uC.

Whole-cell recordings were obtained with an Axon Multiclamp-

200 amplifier from neurons in deep cortical layers identified using

infrared differential-interference contrast optics and videomicro-

scopy on a Zeiss FS-2 microscope. For current-clamp recordings,

electrodes (3–5 MV open tip resistance) were filled with a solution

containing (in mM): 120 K-gluconate, 10 HEPES, 10 KCl, 10

NaCl, 4 ATP-Mg, 0.3 GTP-Na, 14 phosphocreatine and 0.04

Alexa 594, pH 7.2 (KOH). Signals were low-pass filtered at

3 kHz, and digitized at 5 kHz during voltage-clamp- and current-

clamp recordings. Data were stored on PC for off-line analysis

using HEKA Tida software, custom LabView software, or

Axograph X for Windows (Axograph, Sydney, AUS). The

morphology of pyramidal and non-pyramidal cells, respectively,

was confirmed using high-resolution confocal imaging of Alexa

Fluor 594.

Intrinsic membrane properties and the evoked firing pattern

were used to distinguish potential subtypes of deep-layer PFC

neurons. Therefore, series of hyperpolarizing and depolarizing

current steps (500 ms duration; 10–20 pA increments at 0.3 Hz)

were delivered from resting membrane potential to evoke spike

firing at various steady-state membrane potentials. Evoked firing

by somatic current injection served as an internal control to

determine changes in neuronal excitability following DA applica-

tion, and it aided comparison with previous studies in acute brain

slices. Comparisons of changes in the number of evoked spikes

were made at a current level that reliably produced repetitive

firing under control conditions.

Up-states were evoked synaptically by electrical stimulation of

the VTA, the ventral hippocampus, or the contralateral PFC, as

indicated, using bipolar concentric tungsten electrodes

(TM33CCNON, World Precision Instruments). Current pulses

(2–9, 0.12 ms duration each, at 20 Hz) were generated by stimulus

isolation units (A360, World Precision Instruments), triggered

digitally by our acquisition software.

In order to assess changes in Up-states, we measured the total

duration of the Up-state (between the start of the synaptic

stimulation and the point when the membrane potential returned

to baseline values) and the number of spikes during the first 500 ms

of the Up-state. Under our baseline conditions, all Up-states were

longer than 500 ms. Therefore, restricting the spike count to the

first 500 ms served as a way to minimize the confounding influence

of changes in Up-state duration on the spike count.

In experiments in which we studied DA modulation of synaptic

short-term plasticity both during the Up-state and Down-state we

placed a theta-glass electrode in the deep layers within 100 mm

lateral to the recorded cell. Theta-glass electrodes were filled with

ACSF and connected to a stimulus isolation unit via silver wires to

evoke small excitatory postsynaptic potentials (EPSPs). The

glutamatergic nature of the evoked postsynaptic potentials was

confirmed at the end of the experiments by bath application of the

AMPA receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione

(CNQX, 20 mM) (see Results). Trains of 15 pulses at 20 Hz were

delivered every 30–45 s from the resting membrane potential. We

measured both the amplitude of each individual EPSP and the

area under each EPSP in the train relative to the initial voltage

before the train onset. Measuring the area under each EPSP

accounts for the amount of residual depolarization due to the

summation of EPSPs.

After collection of baseline data, DA was bath-applied for 2–3

minutes. Each culture was exposed to only a single application of

DA. When the effects of DA antagonists were examined, the D1

antagonist R-[+]-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-

tetrahydro-1H-3-benzazepine (SCH23390), or the D2 antagonist

(6)-Sulpiride (both from Sigma, St. Louis, MO) were bath-applied

at least 10 minutes prior to application of DA and continued to be

present throughout the remainder of the experiment. Some

experiments were conducted in the presence of 20 mM CNQX,

Dopamine in Prefrontal Cortex
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10 mM of the NMDA receptor antagonist (6)-3-(2-Carboxypiper-

azin-4-yl)propyl-1-phosphonic acid (CPP), or the GABAA receptor

antagonist picrotoxin (75 mM), as indicated.

For statistical comparisons, electrophysiological parameters

were measured at multiple time points before and after drug

application and averaged for each experimental condition (a

Figure 1. Properties of the organotypic triple co-culture system and the DA innervation of the PFC as demonstrated by tyrosine-
hydroxylase (TH) containing fibers. A) Schematic representation of the triple co-culture consisting of the PFC, VTA, and hippocampus. Electrical
stimulation of the afferents from the VTA (indicated as green lines) or ventral hippocampus (red lines) induces Up-states in the PFC. B-D)
Photomicrographs illustrating putative DAergic (TH-positive) neurons in the VTA and the distribution of TH-fibers in the PFC. Co-cultures were made
from mice expressing green fluorescent protein under the control of the TH gene promoter. C) Properties of putative DAergic (green TH-positive)
neurons in the VTA. Cell-attached recordings (top left inset) show that DA neurons are tonically active. Bottom right inset: Membrane properties and
firing response in whole-cell mode in response to a series of hyperpolarizing and depolarizing current steps (2150 to+120 pA). The recorded cell was
filled with Alexa 594 after break-in. D) shows the laminar distribution of fibers in the PFC. E) Morphological properties of a pyramidal cell (top) and
interneuron in the PFC of organotypic co-cultures. Cells were loaded with Alexa 594 during recording and visualized using series of confocal images.
Images are montages of convoluted z-stacked images at 406magnification in C-F. All images were contrast-enhanced for clarity. F) Electrochemical
detection of phasic DA release in the PFC following stimulation of the VTA. Stimulation trains (3–100 pulses) were initiated at time 0, and evoked an
increase in extracellular DA. Scale bar is 200 nM. The insert shows background-subtracted cyclical voltammograms taken at the peak of the response
for each of the stimulations. Abbreviations: VTA, ventral tegmental area; PFC, prefrontal cortex, Cg1, cingulate cortex; WM, white matter.
doi:10.1371/journal.pone.0006507.g001
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minimum of 5 repetitions over 10 minutes for each condition).

Comparisons were performed using analysis of variance (ANOVA)

and two-tailed, paired t-tests as indicated (differences of alpha

#0.05 were considered significant). For multiple post-hoc compar-

isons the alpha-level was Bonferroni-adjusted as indicated. All data

are presented as means6SEM. All statistical comparisons were

performed on the raw data, but in several figures we depict results

as percent changes over baseline values to aid comparison across

multiple treatment groups.

Measurement of DA concentration in the culture media
For analysis of DA level in the culture media, an aliquot of the

media (150 ml) was pre-cleared by centrifugation at 15,000 g for

10 min and the supernatant passed through a 3,000 KDa size

exclusion spin-column. For measurement of DA by HPLC using

electrochemical detection, twenty ml of each recovered sample was

injected onto a SPER C18 reverse-phase narrowbore column

(10062.1 mm, Princeton Chromatography, Cranbury, NJ) using

an Alcott Model 718 AL Autosampler (Norcross, GA). Flow rate

through the column was 0.23 ml/min and controlled by a Model

LC1120 isocratic pump (GBC Scientific, Hampshire, IL). A

Decade Amperometric Electrochemical Detector (Antec Leyden,

The Netherlands) was set to a working potential of+400 mV.

Mobile phase consisted of 6% methanol, 65 mg/l octane sulfonic

acid, 40 mg/l EDTA, 0.05 M phosphoric acid, 0.05 M citric acid;

pH = 3.0. Data were quantified by comparing peak areas against

those of a four-point calibration of DA standards (0, 1, 5 and

10 pg/ml).

Electrochemical detection of dopamine in the slice co-
culture

Changes in extracellular DA concentration within the PFC of

the slice co-culture were measured using fast-scan cyclic

voltammetry (FSCV) with carbon-fiber microelectrodes (7 mm

diameter; ,25 mm exposed surface; Goodfellow, PA). The

potential at the microelectrode was held at 20.4 V vs. a Ag/

AgCl reference electrode and then linearly ramped to+1.3 V and

back (400 V/s) every 100 ms. For analyte identification, oxidation

currents during a voltammetric scan were plotted against the

applied potential to yield a cyclic voltammogram. For quantifica-

tion of changes in dopamine concentration over time, the current

at its peak oxidation potential was plotted for consecutive

voltammetric scans. Waveform generation, data acquisition and

analysis were carried out on a PC-based system using software

written in LabVIEW (National Instruments, TX) that controlled a

custom built voltammetric amplifier.

Results

Cortical Dopamine innervation in VTA-PFC-Hipp co-
cultures

Coronal slices of the frontal cortex and the caudo-ventral Hipp

were co-cultured with a midbrain slice containing the VTA to

explore the impact of DA innervation on cortical physiology. To

verify a strong DA innervation of the PFC, a subset of co-cultures

were made from mice expressing GFP under the control of the TH

gene promoter and the GFP signal was visualized using confocal

fluorescent microscopy (Fig. 1). Similarly, in separate cultures

prepared from wildtype mice, we used immunohistochemistry for

TH to identify DAergic neurons and fibers (data not shown). In all

cases, numerous TH+neurons were observed in the VTA that

extensively innervated the co-cultured PFC slice (Fig. 1C-E),

replicating our own previous findings [16,18]. Also consistent with

our previous observations [18], the TH-GFP+cells in the VTA of

these slice co-cultures were spontaneously active in cell-attached

recordings (Fig. 1C, top left inset) thereby providing a DAergic

tone to PFC neurons.

We analyzed the incubation media from the culture wells using

HPLC with electrochemical detection in order to provide an

indication of the DA levels at equilibrium after 15+days in culture.

The DA levels in the culture media were 8.663.4 nM (n = 12).

Although this measurement is not likely a true estimate of the

tissue content of DA, it nevertheless indicates that DA was present

at levels close to those measured in-vivo using microdialysis when

corrected for probe recovery and depletion around the probe

[19,20]. We also tested whether the DA fibers in the PFC were

able to release DA in response to electrical stimulation of the VTA.

Figure 1F shows data that stimulation of the VTA could elicit

measurable DA release events as detected by fast-scan cyclic

voltammetry using a carbon electrode in the PFC. Dopamine was

detectable by this means in 6 of 10 cultures tested, with a detection

limit of ,40 nM. Peak extracellular DA concentration following

stimulation ranged from 50 nM for 1 pulse to 570 nM for 100

pulses (100 Hz). These data demonstrate that DA release in the

co-cultures occurs via both tonic and phasic processes and thus

closely mirror the in-vivo conditions.

Up-states in co-cultures require activation of AMPA and
NMDA receptors

Electrical stimulation of the VTA evoked Up-states in the PFC,

which we recorded in current clamp mode from deep layer

neurons (Fig. 2). As shown above the brief burst stimulation used

to initiate these Up-states also evoked measurable DA transients in

the PFC; however, both in-vivo [11,21] and in-vitro [16,22]

recurrent activity during Up-states primarily depends on the

balance of excitation and inhibition, and several lines of evidence

suggest that NMDA receptors play a crucial role in the

maintenance of the Up-state. Accordingly, bath application of

either the non-NMDA receptor antagonist CNQX (20 mM;

n = 18), or the NMDA antagonist CPP (10 mM; n = 7) completely

blocked all evoked Up-states (Fig. 2). In the presence of CPP, post-

synaptic potentials (PSPs) could still be evoked by stimulation of

long-range afferents from the VTA (Fig. 2, bottom left panel) or

the hippocampus (not shown), as well as by local stimulation

within the PFC. Bath application of CNQX blocked all evoked

responses following stimulation of either the VTA or the

hippocampus, as well as the majority of locally evoked PSPs

(Fig. 2, bottom right panel). Finally, blockade of sodium spikes in

the recorded neuron by addition of 2 mM QX314 to the

intracellular recording solution did not affect the generation and

maintenance of Up-states (Fig. 2, top right panel). Taken together,

these results show that cortical Up-states in slice co-cultures

represent a network phenomenon that requires activation

mediated by non-NMDA receptors and which is sustained by a

significant contribution of NMDA receptors. The remainder of the

study focused on how DA can modulate these largely glutamate

mediated up-states.

Effects of varying concentrations of exogenous
Dopamine on cortical Up-states

In the first set of experiments investigating DA modulation of

activity states, we examined the effects of increasing ambient DA

above the intrinsic background levels by bath application of known

concentrations of DA. We chose to focus on the effects resulting

from application of DA itself because DA is the endogenous

agonist and because of the complex cooperative and non-

cooperative interactions among DA receptor subtypes that may

Dopamine in Prefrontal Cortex
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also vary with time and concentration [25–27]. We examined a

range of concentrations (10 nM – 50 mM) that have previously

been utilized in acute slice preparations to study the effects of DA

on intrinsic membrane excitability [28–31] and synaptic trans-

mission [10,32,33] in the PFC.

Repeated measures ANOVA revealed a significant interaction

between the exogenous DA concentration and the changes in each

group for both the duration of Up-states (F = 10.46; P,0.0001;

df = 31) and the number of spikes during the first 500 ms of the

Up-state (F = 7.4; P,0.0001; df = 31) in PFC-Hipp-VTA co-

cultures. Post-hoc analysis using paired t-tests showed that both

measures were significantly decreased at concentrations equal to

or higher than 1 mM DA in the bath (Fig. 3A, B; Bonferroni-

corrected level of significance for multiple comparisons was

P,0.01). The majority of cells showed at least a partial wash-

out effect and return towards baseline values ,20 minutes after

DA was washed out of the bath.

In contrast to the effects on Up-state duration and the number

of spikes in the Up-state, the number of spikes evoked by somatic

current injection from the Down-state was reliably increased

following bath application of all but the lowest concentration

(10 nM) of DA (Fig. 3C). Furthermore, consistent with previous

studies in acute slices [30,31], the effects of DA on evoked spike

firing were long lasting and often outlasted the duration of the

recording (not shown). Both the effects on Up-states and on

current-evoked firing were specific for DA receptor activation, as

they were abolished when DA receptors were blocked (Fig. 3B, C).

Although these agents had no effects under basal conditions (see

below), combined pre-application of the specific D1 receptor

antagonist SCH-23390 (5 mM) and the D2 receptor antagonist

sulpiride (5 mM) for 10 min prevented the effects of exogenous DA

on Up-state duration and spike count (n = 4). Similarly, the

number of spikes evoked by somatic current injection did not

change when DA was applied in the presence of DA receptor

antagonists. Taken together, these results indicate that by

themselves changes in intrinsic excitability do not accurately

predict how DA influences synaptic activity and spiking behavior

in an active network. Furthermore, our finding that high

concentrations of exogenous DA (i.e., $1 mM) depressed activity

in the network despite robust increases in intrinsic membrane

excitability, suggests that elevations of DA beyond the normal

levels in the co-culture (as a result of the combination of tonic and

phasic release of DA from midbrain neurons) can alter the balance

of excitation and inhibition that characterizes cortical Up-states

under control conditions.

To demonstrate that endogenous DA in the cultures is also able

to produce a similar effect as bath applied DA, we applied cocaine

(5 or 10 mM, n = 10) to block catecholamine reuptake and thereby

enhance the endogenous levels of extracellular DA. In the

presence of cocaine, the duration and spike count of VTA-

induced cortical Up-states were also significantly reduced (Fig. 4).

This further demonstrates that increasing DA levels above a

previously established level in the co-culture can alter Up-state

properties.

Reducing dopaminergic tone in the co-cultures alters the
network response to bath application of dopamine

Next we employed various strategies to test the effects of reducing

or removing the background DA tone on Up-states. The first series

of experiments tested the effects of acute blockade of DA receptors

by bath application of either the D1 antagonist SCH23390 (5 mM)

alone (n = 9), or a combination of SCH23390 and the D2 receptor

antagonist sulpiride (5 mM; n = 5). None of these manipulations

affected Up-state duration or the number of spikes during the first

500 ms of Up-states evoked by VTA stimulation (Fig. 5). This

suggested that while adding DA on top of the background levels

could significantly impact Up-state properties (Figs. 3, 4), the

initiation and maintenance of cortical Up-states does not seem to be

acutely modulated by the tonic level of DA found in the cultures, a

situation that mirrors findings in the striatum in-vivo [23,24] and

our own previous findings in-vitro [18; but see 34 for striatum].

However, the background levels of DA may still influence the

network response to changing levels of exogenous DA. In order to

address this issue we examined the effects of exogenous DA on

cultures that lacked the VTA-containing midbrain slice and

therefore background DA levels. Because Up-states are a network

phenomenon and require a critical mass of synaptic connections

[35], we included a second prefrontal cortical section in place of the

VTA section to ensure that the PFC slice from which recordings

were obtained received comparable degrees of afferent innervation

across all groups. In these corticolimbic cultures (i.e., PFC-PFC-

Hipp), Up-states could be evoked reliably by electrical stimulation of

either the contralateral PFC (n = 12) or the ventral hippocampus

(n = 23). Both groups showed qualitatively similar responses to the

application of DA (see below) and were therefore pooled for further

analysis. Under baseline conditions, no significant differences were

observed in the number of spikes and the duration of evoked Up-

states among neurons recorded from co-cultures that lacked the

VTA (spikes: 9.42+/21.28; duration: 2806.7+/2293.1 ms; N = 35)

and those that contained the VTA (spikes: 8.56+/21.24; duration:

3476.3+/2307.5; N = 75) again showing that the tonic background

level of DA on its own had little impact on Up-states. However

when various concentrations of DA were added to PFC-PFC-HIPP

co-cultures, notable differences from VTA containing cultures were

Figure 2. Cortical Up-states in organotypic co-cultures are a
network phenomenon. The membrane potential of cortical neurons
in PFC-Hipp-VTA co-cultures alternates between a hyperpolarized
Down-state close to the resting membrane potential and a depolarized
Up-state during which action potential firing occurs. Up-states could be
evoked synaptically by short burst stimulation of the VTA, the
hippocampus, or the contralateral PFC, respectively (see text for
details). Inclusion of the Na+ channel blocker QX-314 in the recording
pipette did not alter the occurrence or duration of Up-states. In
contrast, glutamatergic transmission at both non-NMDA and NMDA
receptors is required to initiate and sustain Up-states, respectively. In
the presence of the NMDA receptor antagonist CPP (10 mM; n = 7),
stimulation of the VTA or the hippocampus evoked large EPSPs, but
these failed to evoke recurrent activity and Up-states. Bath application
of CNQX (20 mM; n = 18) blocked all evoked responses following
stimulation of either the VTA or the hippocampus, as well as a large
portion of locally evoked PSPs.
doi:10.1371/journal.pone.0006507.g002
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observed. Repeated measures ANOVA revealed a significant

interaction between the exogenous DA concentration and the

changes in each group for both the duration of evoked Up-states

(F = 20.09; P,0.0001; df = 31) and the number of spikes during the

first 500 ms of the Up-state (F = 9.72; P,0.0001; df = 31). Post-hoc

analysis showed that Up-states were significantly prolonged and the

number of spikes increased at extracellular concentrations of

100 nM and 1 mM DA (Fig. 6A, B). Higher concentrations of DA

(10 mM) again dramatically reduced the duration and number of

spikes in evoked Up-states (Fig. 6B). Therefore unlike in VTA

Figure 3. Dopamine-modulation of cortical Up-states is concentration-dependent. DA was bath-applied to VTA-PFC-Hipp co-cultures and
Up-states were evoked by VTA stimulation (see insert). A) Representative traces showing the effects of high (10 mM) DA on VTA-evoked Up-states. B)
At concentrations of 1 mM exogenous DA or higher the duration and number of spikes during the initial 500 ms of the Up-state were significantly
reduced. These effects on Up-states were abolished when DA receptors were blocked by combined pre-application of the D1 receptor antagonists
SCH 23390 and sulpiride (5 mM each) to the bath for 10 minutes before application of DA (10 mM). C) In marked contrast to the reductions in Up-state
duration and action potential firing due to network activity, the number of spikes evoked by somatic current injection was consistently increased
across a wide range of exogenous DA concentrations, starting at 100 nM. C1) In the presence of DA, the same cell as shown in A) displays a significant
increase in evoked spikes in response to a square pulse current injection. C2) Summary graph of the effects of various bath-applied DA
concentrations on spike firing evoked by somatic current injection. Similar to the effects on Up-states shown in B), increases in current-evoked spike
firing depended on DA receptor activation, and accordingly pre-application of SCH-23390 and sulpiride blocked the effects of 10 mM DA. Statistical
comparisons used paired t-tests after repeated measures ANOVA. Levels of significance for multiple comparison were * P,0.01, and ** P,0.005. The
number of cells in each group used for comparisons in B) and C) are indicated in B1. The same cells were used for measurements in B) and C).
doi:10.1371/journal.pone.0006507.g003
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containing cultures, in the cultures lacking the VTA low

concentrations of exogenous DA were able to increase Up-states.

This suggests that one function of the background DA tone may be

to dampen overall excitability in the network by preventing

elevations in DA levels from non-selectively increasing in Up-states.

A potential confound of these results using PFC-PFC-HIPP co-

cultures is that the circuitry underlying Up-states may differ from

that in VTA-PFC-Hipp cultures. The lack of DA innervation for

an extended period of time during development may further

contribute to these potential differences. In order to address these

potential confounds, we allowed VTA-PFC-HIPP cultures to

develop as usual for 16–25 days, but prior to the electrophysio-

logical experiments pretreated them with a cocktail of reserpine

and alpha-methyl-p-tyrosine (AMPT). Reserpine disrupts vesicular

storage of DA and thus leads to depletion of DA from the terminal,

while AMPT limits the amount of newly synthesized DA in the

cytosol via direct inhibition of tyrosine hydroxylase [36].

Reserpine (10 mM) and AMPT (100 mM) were dissolved in

DMSO (0.5% final concentration in the media) and added to

the culture media for a minimum of 5 hours prior to recordings.

The low levels of DMSO in the media had no apparent effect on

the membrane properties of the recorded neurons or the ability to

evoke up-states via VTA stimulation (Fig. 6D). The properties of

Up-states evoked by VTA stimulation in DA-depleted cultures

were comparable to those evoked in untreated cultures (duration:

4382.36794 ms; spikes 4.8161.25; n = 12). Bath application of

100 nM DA to reserpine/AMPT pretreated cultures had

qualitatively similar effects to those seen in PFC-PFC-HIPP

cultures in that it increased up-state duration and the number of

spikes in the up-state (Fig. 6E). Therefore, since the effects of

reserpine/AMPT were similar to the effects observed in VTA

lacking cultures, it indicated that the increase in Up-states was not

an artifact of the preparation but an effect that emerges when low

concentrations of DA are applied in the absence of a background

tone. Finally, as in previous experiments, the number of spikes

evoked by somatic current injection was similarly increased by

bath application of DA (Fig. 6E).

Taken together, results from the VTA-PFC-Hipp and PFC-

PFC-Hipp co-cultures demonstrate that DA can modulate

recurrent network activity in the PFC, and suggests that the

direction of this modulation depends at least partially on the

presence of a background DAergic tone. In VTA-PFC-Hipp

cultures, spontaneous activity of VTA neurons supplied DAergic

tone while the short burst stimulation of the VTA used to elicit

Up-states in the PFC provided phasic DA release. Under these

conditions, bath application of DA at a concentration of 1 mM or

higher lead to robust reductions in Up-state duration and spike

Figure 4. Cocaine enhances endogenous DA activity to reduce
VTA-evoked Up-states. A) Representative traces illustrating the
effects of 5 mM cocaine on cortical Up-states evoked by VTA-
stimulation. B) Altering DA transmission with cocaine (5 or 10 mM,
N = 10) resulted in transient reductions in Up-state duration and spike
number during the Up-state (Level of significance * P,0.05, and **
P,0.01, compared to baseline, paired Student’s t-tests).
doi:10.1371/journal.pone.0006507.g004

Figure 5. Acute blockade of DA receptors does not affect
properties of cortical Up-states in VTA-PFC-Hipp co-cultures. A)
Representative traces of cortical Up-states synaptically evoked by brief
burst stimulation of the VTA (2–6 pulses at 20 Hz), before (top), during
(middle) and 20 minutes after bath application of the DA receptor
antagonists SCH23390 and sulpiride (both 5 mM). The insert shows a
diagram of the recording configuration with the stimulation electrode
in the VTA and the recording electrode in the PFC. B) Bath application
of either the DA D1 receptor antagonist SCH23390 (5 mM) alone (n = 9),
or in combination with the D2 receptor antagonist sulpiride (5 mM;
n = 5) had no significant effect on Up-state duration, or the number of
spikes during the first 500 ms of VTA-evoked Up-states.
doi:10.1371/journal.pone.0006507.g005
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Figure 6. In co-cultures that show no or reduced DAergic tone bath application of DA can increase Up-state duration. A-C) PFC-PFC-
Hipp co-cultures were prepared to study the acute effects of DA in the absence of DAergic innervation from the midbrain. Up-states were evoked by
electrical stimulation of either the ventral Hipp (n = 23) or the contralateral PFC (n = 12) and the data were pooled (see text for details). The insert in A)
shows a diagram of the 2 possible recording configurations. A) Representative traces of Up-states evoked by stimulation of the contralateral PFC
before, during and after bath application of 1 mM DA. B) Summary graph of the effects of various doses of bath-applied DA on Up-states in PFC-PFC-
Hipp co-cultures. At low to moderate doses (100 nM – 1 mM) DA augmented Up-state duration (B1) and the number of spikes in evoked Up-states
(B2). Further increasing exogenous DA concentrations (10 mM) significantly shortened Up-states and the number of spikes in the Up-state, similar to
the effects observed in VTA-PFC-Hipp co-cultures. C) Summary graph of the effects of various bath-applied DA concentrations on spike firing evoked
by somatic current injection. With the exception of the lowest dose (10 nM) DA consistently increased the number of spikes evoked by somatic
current pulses. Statistical comparisons used paired t-tests after repeated measures ANOVA. Levels of significance for multiple comparison were *
P,0.0125, and ** P,0.00625. The numbers of cells in each group used for comparisons are indicated in B1 and C), respectively. D) DA levels in VTA-
PFC-Hipp cultures were reduced by adding reserpine (10 mM) and AMPT (100 mM) to the culture media for 5 hours prior to recordings. Up-states
were evoked by VTA stimulation and 100 nM DA were bath applied. E) In co-cultures in which DA release was reduced over several hours application
of 100 nM DA significantly increased the duration of Up-states as well as the number of spikes in the Up-state. The number of spikes evoked by
somatic current injection was also increased (paired t-tests; n = 12).
doi:10.1371/journal.pone.0006507.g006
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firing. In contrast, in co-cultures that lacked intrinsic DA tonic and

phasic DA release from the VTA, bath application of DA at a

concentration of 1 mM or lower had the opposite effect as it

increased Up-state duration and spike firing.

Dopamine modulation of synaptic short-term dynamics
and EPSP-spike coupling

Catecholamines, and particularly DA, are believed to increase

the efficiency of cortical processing by augmenting the signal-to-

noise ratio or gain within cortical networks [4,37–39]. Specifically,

it has been hypothesized that by increasing the effects of strong,

sustained depolarizing inputs relative to background firing [40,41],

DA augments task-related activity. One way that DA could

achieve this is to alter the response to trains of inputs so that they

would produce a more prolonged depolarization that in turn

would aid the persistent firing associated with working memory.

Previous experimental studies in acute slice preparations [32,42]

have described effects of exogenous DA on short-term synaptic

plasticity that are consistent with this idea. Here, we examined

whether similar effects are observed in co-cultures in the presence

of a functional DA tone and how these changes could influence the

effectiveness of EPSPs to induce spike firing during the Up-state.

To this end, we again used PFC-HIPP-VTA co-cultures and

evoked trains of PSPs (15 pulses at 20 Hz) by local stimulation of

afferents within 100 mm lateral of the soma of the recorded cell.

Synaptic responses in the train typically showed a mixture of

synaptic depression and summation (Fig. 7A). Under our

recording conditions, both inhibitory GABAergic and excitatory

glutamatergic synaptic responses produced depolarizing postsyn-

aptic potentials from the Down-state. In order to verify the nature

of the synaptic connection at the end of the experiment, we

applied 20 mM CNQX to the bath. This invariably eliminated the

Up-state and the synaptic response from the hippocampus (c.f.

Fig. 2). In the majority of cells tested (25 out of 32), this also

completely blocked the locally evoked synaptic inputs (Fig. 2,

bottom right). The synaptic potentials in the remaining 7 cells

contained a significant GABAergic component (,40–100% of the

PSP under baseline conditions) that was blocked by subsequent

bath application of the GABAA receptor antagonist picrotoxin

(75 mM), and these cells were not considered for further analysis.

After recording a minimum of 20 EPSP trains in the Down-

state, we evoked Up-states in the PFC via brief burst stimulation of

the Hipp (3–5 pulses at 20 Hz) and repeated the local synaptic

stimulation in the presence of these Up-states. The trains of EPSPs

were timed such that they occurred at least 500 ms (but typically

more than 1 s) after the onset of the Up-state. We obtained at least

10 pairings of EPSP trains with hippocampus-evoked Up-states

before we recorded another 5–10 EPSP trains during the Down-

state alone. This was done to ensure that pairing the EPSPs with

the Up-state by itself did not significantly alter EPSP properties.

No significant increases in EPSP amplitude or area were observed

during the Down-state as a result of pairing EPSPs with Up-states

alone (not shown). Next, we bath-applied 10 nM, 100 nM, or

10 mM DA for 5 minutes and continued to evoke Up-states via

hippocampal stimulation and/or trains of local EPSPs. Typically,

sweeps in which EPSP trains were paired with Up-states, and

sweeps in which EPSP trains were stimulated alone were

alternated until at least 10 (but typically more than 20) repetitions

were obtained for each condition. At the end of the experiment,

AMPA and GABA receptor antagonists were bath applied as

described above to determine the nature of the local synaptic

inputs.

Figure 7 summarizes the effects of DA on trains of EPSPs in the

Down-state. For the group that received 100 nM DA, a two-way

ANOVA with repeated measures showed a significant interaction

between the pulse number in the train and the effect of DA

modulation (F = 4.72; P,0.0001, df = 9). Post-hoc comparisons

using paired t-tests showed that both the amplitude and area under

the EPSP (c.f. insert in Fig. 7A) differed between the baseline and

DA condition, and that these changes became significant after the

4th pulse in the train. While EPSPs in the train showed synaptic

depression under baseline conditions, DA application markedly

increased the amplitude and area of later EPSPs in the train.

These results are consistent with our own previous data from acute

slices that suggested that DA could enhance the effectiveness of

strong continuous inputs over single or brief stimuli [32,42].

This result implies that in the context of an active, spiking

network, DA receptor activation would be predicted to increase

the effectiveness of EPSPs to evoke action potentials. To test this

hypothesis directly, we examined the number of spikes in the Up-

state that occurred during the train of EPSPs before and after

application of 100 nM DA. We examined both the change in the

total number of spikes evoked over the 750 ms of stimulation and,

more specifically, the likelihood that a spike occurred within a

narrow window (10 ms) following EPSP onset (EPSP-spike

coupling). Consistent with results shown in Figure 4, bath

application of 100 nM DA had no significant effect on Up-state

properties in PFC-Hipp-VTA co-cultures. This low dose of DA

affected neither the duration of Up-states nor the number of spikes

that occurred within the first 500 ms of the Up-state before local

synaptic stimulation occurred (Fig. 8D). In stark contrast, the

number of spikes was significantly increased above baseline during

the period of local synaptic stimulation in the presence of 100 nM

DA. Figure 8C shows the probability that a spike occurred within

a 10 ms window following local synaptic stimulation under

baseline conditions (black trace) and in the presence of 100 nM

DA (red trace). The insert (C2) shows the change in the absolute

number of spikes during the stimulation period over baseline

values, including spikes that fell outside our strict 10 ms criteria for

EPSP-spike coupling. For each cell (n = 10) at least 10 repetitions

(but typically more than 20) were averaged for each condition. A

two-way ANOVA with repeated measures revealed 2 significant

main effects: An effect of pulse number (lower spike probabilities at

later pulses; F = 20.49; P,0.001), which most likely reflected the

reduced synaptic strength due to synaptic depression during

repetitive stimulation; and a main effect of drug application

(F = 101.49; P,0.0001), which was evident as an overall increase

in the probability that EPSPs were closely followed by a spike (i.e.

an upward-shift in the curve). Post-hoc comparisons using paired t-

tests showed that the relative difference in the curves became

significant starting with the 4th pulse (Bonferroni-adjusted level of

significance of P,0.0033). However, as can be seen in Figure 8C,

the probability that EPSPs evoked a spike varied considerably

throughout the duration of the 15 pulse train.

Taken together, these observations demonstrate that in slice co-

cultures, activation of DA receptors can induce a similar shift in

EPSP short-term plasticity of PFC pyramidal cells as was

previously observed in acute slices of the PFC. Specifically, in

the Down-state, DA augmented the depolarization produced by

EPSPs late in the train relative to baseline values. In the Up-state,

this effect was paralleled by increased effectiveness of EPSPs to

evoke spikes. The relative magnitude of this effect over baseline

conditions tended to be greatest late in the stimulus train. In PFC-

Hipp-VTA co-cultures, this selective enhancement of EPSP-spike

coupling during patterned activity was independent of changes in

the Up-state properties overall. Importantly, this increase in the

effects of a synchronous signal is perfectly consistent with the

previously theorized DA-mediated increase in gain.
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Figure 7. Dopamine modulation of synaptic short-term plasticity in the Down-state. A) Representative traces of EPSPs under baseline
conditions (black trace) and following bath application of 100 nM DA. Trains of EPSPs (15 pulses at 20 Hz) were evoked by local stimulation of
afferents in the PFC in PFC-Hipp-VTA co-cultures. Under control conditions trains of EPSPs typically showed a mixture of synaptic depression and
summation. The glutamatergic nature of the synaptic response was confirmed at the end of the experiment through bath application of the AMPA
antagonist CNQX (20 mM; right trace) Traces represent averages of 20 sweeps. The insert illustrates the measurements (amplitude and area) obtained
for each EPSP in the train. The EPSPs shown in this example are indicated by the shaded area in the train on the left. B, C) Dopamine (red symbols) at
100 nM increased both the amplitude B), and area under the EPSP C) over baseline values (black symbols). The DA-induced changes in EPSP
amplitude and area became significant after short repetitive stimulation, starting with the 4th pulse. Statistical comparisons used paired t-tests after
repeated measures ANOVA (* P,0.0033, and ** P,0.00165). D, E) The low concentration of 10 nM DA did not alter EPSP amplitude D) or area under
the curve E). At high levels of exogenous DA (10 mM) the amplitude of the EPSPs, F), was reduced across all pulses in the train (repeated measures
ANOVA; P,0.05). G) The area under the curve showed a similar trend but this change did not reach significance in our sample (n = 8).
doi:10.1371/journal.pone.0006507.g007
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Figure 8. Dopamine enhances EPSP-spike coupling at moderate concentrations. A) Example trace illustrating the recording set-up used to
test DA modulation of EPSPs during active network states. Up-states were evoked by stimulation of the hippocampus in PFC-Hipp-VTA co-cultures.
After a minimum of 500 ms (but typically between 1000–1500 ms) into the Up-state, trains of EPSPs (15 pulses at 20 Hz, indicated by the red box)
were evoked by local stimulation of afferents close to the neuron recorded in the PFC using the same neurons and stimulation parameters as shown
in Figure 7 for the Down-state (N = 10). B) Representative traces showing the effectiveness of EPSPs to induce action potential firing during the Up-
state under the baseline (black trace) and 100 nM DA condition (red trace). The green trace shows the averaged synaptic response during the Down-
state before DA application. C) Summary graph showing the overall increase in spike number during the period of synaptic stimulation C2) and the
change in EPSP-spike coupling in the 100 nM DA condition (red symbols) over baseline (black symbols). The plot shows for each pulse in the train the
probability that a spike occurred within 10 ms of the onset of the stimulation. In the 100 nM DA condition the probability that an EPSP evoked an
action potential was generally increased across all pulses. The relative magnitude of this effect was greater at later pulses in the train, with pairwise
comparisons showing significant increases in spike probability over baseline starting at the 4th pulse. D) In contrast to the effects during synaptic
stimulation, bath application of 100 nM DA had no significant overall effect on Up-state duration (top) or the number of spikes before local synaptic
stimulation (during the first 500 ms of the Up-state). Post-hoc comparisons used paired t-tests after repeated measures ANOVA (Bonferroni-adjusted
level of significance * P,0.0033, and ** P,0.00165). E) The low dose of 10 nM DA had no effect of EPSP spike-coupling during the Up-state, or the
overall properties of the Up-state (the inserts show measures for total Up-state duration, top bar graph; or number of spikes during the period before
local synaptic stimulation, bottom; n = 7). F) In contrast, the high concentration of DA (10 mM) significantly reduced both Up-state duration (top) and
the number of spikes within the Up-state. Thus, under these conditions both the synaptic signal (c.f. Fig. 7) as well as the background network activity
were reduced. For comparisons at all concentrations the same cells were used as in Figure 7. In the 10 mM DA condition one cell dropped out
because the Up-states evoked by hippocampal stimulation were too brief to allow stimulation of EPSP trains during the Up-state.
doi:10.1371/journal.pone.0006507.g008
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Finally, we examined the effects of a low (10 nM) and high

(10 mM) concentration of exogenous DA on locally evoked EPSPs

during the Down-state and Up-state, respectively. As shown in

Figure 7D-E, 10 nM DA had no effect on EPSP amplitude or area

under the curve in trains of EPSPs evoked in isolation in PFC-

Hipp-VTA co-cultures. Similarly, when EPSPs were evoked

during Hipp-evoked Up-states, 10 nM DA did not affect the

likelihood that EPSPs evoked spike firing, or the properties

(duration and number of spikes) of the Up-state itself (Fig. 8E). In

contrast, a high concentration of DA attenuated both the EPSPs

and the Up-state. Specifically, 10 mM DA decreased the peak

amplitude of the EPSP during the Down-state (F = 5.66; P,0.05;

df = 7; Fig. 7F). The area under the curve was affected in a similar

way, but these changes did not reach significance (Fig. 7G). More

importantly, the high dose of DA reduced the duration and

number of spikes in Up-states evoked by Hipp stimulation,

replicating the effects seen in Up-states evoked by VTA

stimulation (Fig. 8F). In the majority of cells, the duration of the

Up-states were reduced to such an extent that the locally evoked

train of EPSPs and the Up-state no longer completely overlapped,

rendering an analysis of the effects of high DA on EPSP-spike

coupling moot. Therefore, while low doses of DA had little effect,

moderate concentrations of DA appeared to optimize signal gain

while higher levels of DA significantly reduced gain by attenuating

both the signal and the background firing. These data are

therefore consistent with the proposed inverted-U profile for DA

actions on PFC function [43].

Discussion

We used organotypic slice co-cultures to show that DA

modulates recurrent synaptic activity in the PFC in a concentra-

tion-dependent manner. In the presence of functional DAergic

inputs from the VTA, high ($1 mM) concentrations of exogenous

DA reduced Up-states in the PFC and diminished EPSPs evoked

during the Down-state, while lower doses had no effect. In

contrast, in corticolimbic co-cultures lacking VTA DAergic inputs,

and in VTA-PFC-Hipp cultures in which DA was depleted by

reserpine/AMPT, Up-states could be enhanced by low doses of

exogenous DA that had no effect in VTA containing cultures. We

also demonstrate that within a narrow range of concentrations,

DA selectively increased the efficiency of a train of excitatory

synaptic inputs without affecting the background network activity.

As detailed below, we propose that the presence or absence of

an ambient DA tone can impact a variety of physiological

mechanisms that together determine a dynamic range of network

responses to transient elevations of DA. However, we note that the

concentrations that made up this range in our study likely reflect

properties of our model system and they might be affected by

differences in the pattern and density of the cortical innervation by

DA fibers and alterations at the DA receptors. We used bath

application of known concentrations of DA to minimize variability

across cultures and to have clearly defined groups of concentra-

tions for the comparison of DA effects. However, results from

experiments in which we enhanced endogenous DAergic trans-

mission through bath application of cocaine not only replicated

the results observed with bath applied DA, but closely mimicked

effects seen in adult animals in-vivo [44,45], providing evidence

that in our model system physiologically relevant levels of DA are

released upon VTA stimulation. Thus, while the absolute

concentrations of DA that produce effects in intact animals may

differ from those used here, their relative position on the DA dose-

response curve may be comparable. Another potential caveat for

the interpretation of our data may be age-related changes in DA

function over development as they have recently been shown for

the effects of D2 receptor stimulation in interneurons [46].

Clearly, our co-culture system can not replicate developmental

changes that may occur only after puberty; however, given that D2

receptors in the PFC are preferentially activated by higher DA

concentrations [8,10] an additional D2 receptor-mediated increase

in interneuron firing as described by Tseng and O’Donnell [46]

would likely only serve to reinforce the reduction in up-state

activity described here.

Dopamine modulation of synaptic and ionic currents that

govern spike initiation and repetitive firing has long been studied

in isolation (for review see [8,47]). Such studies carried out in acute

slices and dissociated cells have suggested that the effect of DA

receptor activation on evoked firing is membrane state-dependent

[47–49]. Here, we replicated a main finding of these studies

showing that DA increases action potential firing evoked by

somatic current injection over a wide range of concentrations.

Importantly, we further demonstrate that these effects could be

dissociated from effects on Up-states, as the Up-states in these

same cells were significantly shortened by high doses of DA. This

highlights the fact that the effects of DA on intrinsic membrane

excitability and synaptic connections between various cell-types in

a recurrent network cannot be easily predicted from observations

of each of these components in isolation.

The ability to generate multiple states of activity within local

and long-distance recurrent networks is a basic feature of cortical

networks [35,50]. Reverberating synaptic activity and Up-states

appear to be an emergent property of networks of a certain size

and degree of connectivity [35,51]. Up-states in-vivo and in-vitro

are generated through local recurrent synaptic excitation that is

balanced and controlled by the activity of GABAergic interneu-

rons [12,21,52,53]. This ongoing activity in the network can

influence the response characteristics of individual neurons,

serving an important role in the tuning of network processes

[54–58]. In the waking state, the cerebral cortex generates self-

sustained spontaneous ‘‘background’’ activity that is similar to and

mechanistically related to a persistent Up-state [11,59].

In-vivo, the occurrence of up-states in the PFC is synchronous

with activity in the VTA [60] and stimulation of the VTA can

induce up-states in the PFC, and their duration can be significantly

shortened through systemic application of a D1 antagonist [61].

Furthermore, activity resembling Up-states can be evoked by co-

application of a D1 agonist and NMDA to acute PFC slices [62–

64]. These data highlight the important synergistic roles of

glutamate and DA in regulating network activity in the PFC. The

present results build on these findings by again showing that

glutamate is responsible for the generation and maintenance of the

Up-states while increases in DA levels over the background tone

tend to reduce the Up-state once it is evoked.

Computationally, the variable recurrent activity of the Up-state

enhances neuronal responsiveness to a wide range of inputs

[12,21,55,65,66]. In our data, a train of synaptic inputs that was

ineffective in evoking spikes from the Down-state did evoke spikes

when delivered during an Up-state. This type of behavior is

reminiscent of stochastic resonance [67–70] whereby noise

enhances signal transmission in moderate regimes, but is

detrimental if noise levels are too high or signals are too small.

As a result, in order to effectively control the gain within active

cortical networks, it would be beneficial to modulate Up-states

(background) and synchronous inputs (signals) independently.

Catecholamines, and particularly DA, are believed to increase

the efficiency of cortical processing by augmenting the signal to

noise (S:N) ratio, or the gain within cortical networks [4,37–39].

Specifically, it has been hypothesized that by increasing the effects
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of strong, sustained depolarizing inputs relative to background

firing [40,41,71], DA augments task-related activity (i.e. a

‘‘signal’’) in working memory [1,3–5]. At higher DA levels, S:N

degrades due to an overall suppressive effect on both S and N [5].

The present data show that DA can modulate both a signal and

network background activity (the Up-state) in a concentration-

dependent manner. Importantly, there existed an intermediate

range of DA concentrations at which a synaptic signal was

selectively enhanced without affecting global network activity.

Very high or very low levels of DA (i.e. supranormal

concentrations of DA higher than those that could be evoked by

synaptic stimulation of the VTA, or the lack of a tonic DA level,

respectively) both affected the global network activity, either by

directly modulating Up-states or by influencing how Up-states

responded to transient applications of DA. High concentrations of

DA consistently reduced network activity during the Up-state,

regardless of whether the cultures possessed an intrinsic source of

DA innervation from the VTA or not (Figs. 3 and 6). This effect

mirrored the suppressive action of high levels of DA on trains of

synaptic inputs evoked during the Down-state (Fig. 7). The

detrimental effects of supranormal concentrations of DA on VTA-

evoked Up-states were replicated by bath application of cocaine

that increases extracellular DA content by blocking DA reuptake

and enhancing DA release [72]. These convergent lines of

evidence suggest that when a certain cumulative level of DA is

exceeded, a reduction in network activity occurs. In contrast, when

no tonic release of DA was present the dose-response curve was

altered such that in corticolimbic cultures that lacked VTA DA

neurons Up-states were enhanced by moderate DA concentra-

tions, which had no effect when delivered to VTA-containing

cultures. The background tone therefore appears to alter the

response to subsequent more phasic release of DA as originally

suggested by Grace [6]. Functionally, the low nM background DA

may act to constrain changes in general excitability and prevent

subsequent transient or phasic elevations of DA from enhancing

network ‘‘noise’’.

The present results support the idea that DA modulation of

active networks follows an inverted-U dose-response curve [43,73].

In the original formulation of that theory, persistent activity

related to working memory was said to be optimized by moderate

D1 receptor activation while either very weak or supranormal

stimulation of D1 receptors had detrimental effects [43,73]. The

present results expand on this idea in the following ways: Low

background extrasynaptic DA levels appear to prevent the

increases in excitability that would otherwise occur in response

to a phasic elevation in DA (Fig. 6). Moderate elevations of DA

above the tonic background levels appear to bring the system to

the peak of the inverted U-curve where signals are potently

increased without affecting noise, thereby optimizing S:N (Fig. 8).

In our data, an intermediate concentration of DA (100 nM)

increased both the depolarization produced by the train of inputs,

as well as EPSP-spike coupling during the Up-state In acute PFC

brain slices, DA similarly modulated short-term synaptic plasticity

of EPSPs onto primate interneurons [42] and rodent pyramidal

cells [32]. In pyramidal cells (but not in interneurons) this effect

depended on NMDA receptor activation and was hypothesized to

promote persistent firing [32]. Finally, the high levels of DA on the

far right hand side of the hypothesized inverted U curve decrease

both signal and noise, effectively quelling overall PFC activity,

which is similar to what is observed in the behaving animal [5].

This type of differential modulation of signal and noise at varying

DA levels is predicted by computational models that simulate the

known effects of DA on AMPA, GABA and NMDA currents

[40,41,74–76].

The results of the present study show in a biological system that

the hypothesized concentration-dependent effects of DA combine

in a manner that is consistent with an inverted U-curve of DA

function and directly demonstrate a role of DA in S:N modulation

as predicted by theoretical models. The combination of theoretical

and experimental approaches may allow us to better define this

curve and provide new insights into the normal function of the

mesofrontal DA system as well as its possible dysfunction in the

pathophysiology of schizophrenia, chronic stress, or drug addic-

tion.
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