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Abstract

Background: Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With
the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets,
an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene
expression, protein, metabolites and phenotypes.

Methodology/Principal Findings: We performed a systematic, large-scale analysis of genomic expression profiles of human
diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the
,24.5 million comparisons between ,7,000 publicly available transcriptomic profiles. The network includes 645 disease-
disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same
disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a
molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between
bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008
disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some
antimalaria drugs for Crohn’s disease, and a variety of existing drugs for Huntington’s disease; while the positive scoring
connections can aid in drug side effect identification, such as tamoxifen’s undesired carcinogenic property. From the ,37K
drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a
potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint
regulation as potential pathway targets of daunorubicin.

Conclusions/Significance: We have automatically generated thousands of disease and drug expression profiles using GEO
datasets, and constructed a large scale disease-drug network for effective and efficient drug repositioning as well as drug
target/pathway identification.
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Introduction

Traditionally, human diseases are classified according to the

observational correlation between pathological analysis and clinical

syndromes via a reductionist approach [1,2]. Although serving the

clinicians fairly well to date, this classification suffers from a lack of

sensitivity to detect diseases before the appearance of symptoms and

ambiguity in disease diagnosis [1,3]. In a similar vein, the traditional

view of drug action on disease as a ‘‘key’’ fitting into the ‘‘lock’’ is

certainly over-simplified and has been challenged by a growing

body of evidence showing that there are many keys for each lock

and a single key can fit multiple locks [4,5]. The existence of

unwanted drug side effects and high rate of safety-related drug

failures also suggests that the current efforts of identifying highly

selective compounds based on limited comparative assays may be

ineffective. As argued by Loscalzo et al., the above shortcomings

could be alleviated to a great extent by a ‘‘network’’ approach that

both appreciates the use as well as the limits of reductionism and

incorporates the tenets of the non-reductionist approach of complex

systems analysis [1,5]. The latter component becomes increasingly

feasible in the post-genomic era because of the advent of high-

throughput technologies (such as genomics, transcriptomics,

proteomics, metabolomics, phenomics, etc.). This enables an

automated, somewhat comprehensive monitoring of the changes

of various molecular components associated with different disease

states and drug treatments, therefore enables the characterization of

disease and drug effects, and an elucidation of their relationships at

a molecular systems level [6–12].

Here we generate a large-scale disease-disease, drug-drug and

disease-drug network by directly matching their molecular profiles;

in particular, their transcriptomic profiles thanks to the accumu-

lation of whole-genome gene expression data available in the

public domain. The main assumption of our approach is that gene

expression profiles of many (but not all) diseases and drugs can

characterize to some extent the effects of disease and drugs;

therefore, these diseases and drugs can be related based on the

similarity/dissimilarity of their induced expression profiles. This

assumption, though not without caveats and limitations, has been

generally validated by numerous studies, including the recent

seminal work on the Connectivity Map [13–16].
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We also analyzed the transcriptomic effects of other agents (such

as tool compounds and infections) besides FDA-approved drugs.

For convenience, we collectively call any such agent that causes

potential perturbation in a biological sample a drug, and we use

disease-drug network as a general term referring to an intercon-

nected network containing all three types of links, namely disease-

disease, disease-drug, and drug-drug links. Our analysis showed

that the derived ‘‘disease-drug network’’ may not only provide

insights into how we can improve drug discovery for complex

diseases, but also provide a ‘‘rational’’ way for systematic drug

repositioning, target and pathway deconvolution, and identifica-

tion of potential side effects for closer monitoring.

Results

Generating human disease and drug genomic profiles
using GEO microarray datasets

We used human GEO datasets to generate human disease and

drug genomic profiles. A GEO DataSet (GDS) represents a

collection of biologically- and statistically-comparable samples

processed using the same platform [17]. An automatic process was

used to extract every subgroup of samples, and perform pair-wise

comparison between any two biologically-comparable subgroups

[18]. For more reliable results, we excluded any subgroup without

replication from the comparisons, and we applied the cyber-T test

(instead of a standard t-test) for comparative analysis to

appropriately account for the small sample size issue common in

GEO data sets [19]. In total, 4,936 comparative analyses were

carried out using GEO DataSets. This includes 395 comparisons

between pairs of disease states, or diseases versus controls, and also

coincidently includes 395 comparisons between pairs of drugs or

drugs versus controls. Only these combined 790 disease or drug

related profiles (as in Supplementary Table S1 online) were used

for further analysis. The remaining 4,146 comparisons were from

differences in age, cell line, cell type, development stage, dose,

genotype/variation, protocol, species, temperature, time, tissue

and others, and are excluded from this study.

Generating human disease–drug networks using GEO
microarray datasets

To establish the links between different diseases and drugs, we

applied two different methods to calculate the ‘‘similarity’’

between any two of the 790 genomic profiles obtained above.

The first method, based on the concept of ‘‘correlation’’, measures

the ‘‘profile-profile’’ similarity by calculating the Pearson correla-

tion of the cyber-T t-statistic values from two profiles. The second

method, based on the concept of ‘‘enrichment’’, measures the

‘‘signature-profile’’ similarity by first generating a signature (a

short list of top changed genes) from one profile, then applying a

nonparametric technique to assess the non-random distribution of

these signature genes in another ranked profile, as previously

described in the Connectivity Map (CMap) analysis [16]. This

enrichment-based method is critical for expanding the human

disease-drug network to data sources (such as curated disease gene

sets and many other genomic profiles) where whole genome

expression is not available.

In the correlation-based similarity matching, we excluded the

genes which were not meaningfully changed (i.e. P$0.05 or fold

change,1.2) in either profile from the calculation. With 790

profiles, we calculated the symmetric correlation for all 311,655

unique pairs. In the following analyses, we focused on a relatively

small fraction of these connections that passed a stringent

significance criteria based on false discovery rate corrected p-value

and number of changed genes (see methods for details). We also

limited the set to diseases/drugs in comparison with control (instead

of other diseases/drugs) because this subset is presumably more

interesting and also easier to interpret. In addition, we excluded

those correlating identical or similar effects as well as redundant

correlations (e.g. two connections that both relate obesity to type 2

diabetes) by only choosing the ones with higher correlation

coefficients. This process generated a total of 898 significant and

interesting links (222 disease-disease, 347 drug-drug, and 329

disease-drug) between 149 nodes (with 74 diseases and 75 drugs)

(Supplementary Table S2 online). To assess the reliability of these

connections, we mapped the connected diseases onto Medical

Subject Headings (MeSH) terms. Of the 145 disease-disease links

(where each of the pair could be mapped to a MeSH term) with

positive correlation, 108 (,75%) shared at least a common disease

area (Table 1 and Supplementary Table S3 online). For example,

Ulcerative Colitis and Crohn’s disease (with correlation coefficient

of 0.86) are both in the Digestive System diseases section of the

MeSH tree. Of the remaining 25% disease pairs not located in the

same branch of MeSH tree, many of them may still be related

biologically. For example, endometriosis has been connected to

several type of cancers, not surprisingly, as they are both

characterized by cell invasion and unrestrained growth [20],

however, they are not explicitly in the same disease area according

to MeSH. Moreover, it has been suggested that women suffering

from endometriosis are more susceptible to some forms of cancer

including ovarian, endocrine, brain and breast cancer [21,22].

In the enrichment-based analysis, we ranked the genes in a

profile primarily based on their signed fold changes (i.e. from

maximal positive to maximal negative), but with consideration of

their associated cyber-T significance P values because both

magnitude and significance are important to quantify a differential

expression. Indeed, it was reported that gene selections based on

fold change in combination with a ‘‘generous’’ P value cut-off

(P,0.05) were more reliable (and more consistent with the results

from similar studies) than those simply based on P value or fold

change alone [23]. For each of 790 profiles, we generated a

corresponding signature by extracting the 200 most changed genes

(i.e. 100 up-regulated plus 100 down-regulated genes excluding the

‘‘hypothetical genes’’). We then calculated a total of 623,310

(7906789) enrichment scores for every profile-signature pair

(except matching the profile to its own signature), from which we

obtained 2,882 non-redundant connections with P,0.05 (equiv-

alent to |enrichment scores|.0.45, Supplementary Table S4

online). The MeSH disease tree was also used to assess the

reliability of these relationships. We found that 350 of the 585

(60%) disease links (P,0.05) belong to same disease area (Table 1

and Supplementary Table S5 online), for example, Nevus and

Melanoma (with enrichment score of 1.5) are both part of the

Neoplasm MeSH tree. Again, some of the significantly connected

diseases that are not located in the same branch of MeSH tree may

still be biologically related.

Comparison of the two networks constructed from the selected

top connections by two different methods showed a statistically

significant overlap. For examples, among the top 898 correlation-

derived links, 336 (vs. 4.1 by chance) of them also covered by the

top 2,882 (P,0.05) enrichment-derived links. Because the results

from both methods are fairly reliable as shown by good MeSH

validation rates, the relatively low overlap suggests that both

methods have relatively low recall or sensitivity. This is consistent

with the different designs of the two techniques with the

enrichment method relying more on the ‘‘local’’ similarity, while

the correlation method depends on the ‘‘global’’ similarity.

Therefore, it is beneficial to combine the results to increase the

sensitivity in identifying interesting relationships.

Human Disease-Drug Network
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The connected diseases that are located in different branches of

MeSH tree are particularly interesting, because they provide

potentially novel disease relationships that primarily rely on

genomic expression profile similarity instead of phenotypic

classification. As an example, Bipolar disorder is linked to

Alzheimer’s disease and Schizophrenia; all three of which are

Mental disorders (Figure 1). But it is also linked to Hereditary

Spastic Paraplegia (HSP) which is not a Mental Disorder. HSP is a

group of inherited disorders characterized by progressive weakness

and stiffness of the legs, and therefore is regarded as a

neuromuscular disease[24]. Indeed, our disease network also links

HSP to a number of muscular diseases such as Dermatomyositis

and Muscular Dystrophies (Table 1 and Supplementary Table S6

online). The novel gene expression connection between HSP and

Bipolar disorder indicates that they may share some common

underlying molecular mechanism. Interestingly, there are some

clinical observations that complicated forms of HSP can be

accompanied by neurological symptoms including Dementia and

Mental retardation [25].

Another example, an Actinic keratosis, also known as a Solar

keratosis, is a small, rough spot occurring on skin that has been

chronically exposed to the sun [26]. Our disease network links it to

a number of cancers (including squamous cell carcinoma and

melanoma) in addition to some other benign skin conditions such

as Nevus (Figure 1), which provides molecular level support for the

clinical warning that Actinic keratoses are precancerous [27].

Besides providing a new way to redefine human diseases and

gain a broader understanding of disease mechanism, the genomic

profile-based disease relationship can also help us to find potential

new indications of existing drugs. The disease sub-network shows

that Crohn’s disease (a form of inflammatory bowel disease [28]) is

linked to the closely related ulcerative colitis as well as some other

immune/inflammatory diseases (such as dermatomyositis). More

interestingly, we find that Crohn’s disease is also linked to malaria

(Figure 1). This seemingly surprising connection is supported by

emerging evidence that Crohn’s disease has potential infectious

causes [29,30]. In fact, it has been proposed that some antimalarial

drugs might be also effective against Crohn’s disease [31]. This

was based on the observation that military duty in Vietnam

exerted a protective influence against the development of Crohn’s

disease, and most American soldiers, while stationed in Vietnam,

were prescribed malaria chemoprophylaxis.

Expanding human disease – drug network
We expanded the disease-drug network by including the 6,100

reference gene-expression profiles from the CMap project [16].

This expanded network contains a total of 170,027 with P,0.05,

including 645 disease-disease, 5,008 disease-drug, and 164,374

drug-drug connections. Like many empirically observed biological

networks such as the protein-protein interaction network [32–34],

the disease-drug network is also a scale-free network whose degree

distribution follows a power law (data not shown), that is, most

nodes connect to only a few other nodes whereas a few nodes act

as hubs with a large number of links. The most connected drug

hub is Trichostatin A, an organic compound that serves as an

antifungal antibiotic and selectively inhibits the class I and II

Table 1. A manual selection of disease connections and their mapping on MeSH disease classification.

Profile1 or
Signature* Profile2* MeSH term for profile1/signature MeSH term for profile2

Level of matched
disease in MeSH tree#

Enrichment score
(correlation coefficient)

GDS1956.0.3 GDS1956.0.6 Amyotrophic Lateral Sclerosis Muscular Dystrophy, Emery-Dreifuss 2 1.29

GDS2118.0.1 GDS2118.0.2 Anemia, Refractory Anemia, Sideroblastic 4 1.58

GDS2118.0.3 GDS2397.0.1 Anemia, Refractory, with Excess of Blasts Myelofibrosis 3 (0.58)

GDS1321.0.1 GDS1321.0.2 Barrett Esophagus Adenocarcinoma 0 1.59

GDS2190.0.1 GDS810.0.2 Bipolar Disorder Alzheimer Disease 1 1.06

GDS2250.0.3 GDS2418.0.1 Carcinoma, Basal Cell Cervical Intraepithelial Neoplasia 4 1.2

GDS651.0.1 GDS651.0.2 Cardiomyopathy, Dilated Cardiomyopathy, Restrictive 3 1.42

GDS1989.1.7.0 GDS2418.0.1 Cervical Intraepithelial Neoplasia Lymphatic Metastasis 1 1.01

GDS1615.0.1 GDS1615.0.2 Colitis, Ulcerative Crohn Disease 4 (0.86)

GDS2200.0.1 GDS2200.0.2 Keratosis Carcinoma, Squamous Cell 0 1.5

GDS1989.1.6.0 GDS1989.1.7.0 Lymphatic Metastasis Melanoma 1 1.49

GDS1989.1.2.0 GDS1989.1.7.0 Lymphatic Metastasis Nevus 1 1.17

GDS2643.0.1.5 GDS2643.0.3.5 Multiple Myeloma Waldenstrom Macroglobulinemia 4 1.08

GDS1956.0.2 GDS1956.0.8 Muscular Dystrophy, Duchenne Dermatomyositis 3 (0.73)

GDS1956.0.6 GDS1956.0.7 Muscular Dystrophy, Emery-Dreifuss Muscular Dystrophies 5 (0.53)

GDS1956.0.1 GDS1956.0.5 Myopathy, Central Core Muscular Dystrophy,
Facioscapulohumeral

3 (0.57)

GDS1375.0.1 GDS1375.0.2 Nevus Melanoma 3 1.5

GDS1746.2.3.0 GDS1746.2.4.0 Prostatic Hyperplasia Prostatic Neoplasms 3 1.09

GDS1439.0.1 GDS1439.0.2 Prostatic Neoplasms Neoplasm Metastasis 1 1.09

GDS1282.0.1 GDS1282.0.2 Wilms Tumor Sarcoma, Clear Cell 2 1.1

Results from both the enrichment score and correlation coefficient method are included in this table. Numbers within parenthesis are correlation coefficients.
*The ‘‘names’’ of profiles or signatures refer to GEO datasets from which profiles or signatures are derived.
#The level number refers to the level that the two connected disease/drug entities are co-located. Level 0 indicates the two diseases are in different disease areas

according to MeSH.
doi:10.1371/journal.pone.0006536.t001
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Figure 1. Human disease network. In the disease network, each node corresponds to a disease colored according to their MeSH disease category
as denoted by the MeSH Tree Number as shown on the right panel. The size of each node is proportional to the number of diseases connecting to it.
A solid line links two diseases from same MeSH disease category while the dot line links two diseases from different MeSH disease category. Multiple
nodes may represent the same disease, but they are from different studies or conditions, e.g. there are two bipolar disorder nodes, whose profiles are
derived from studies using two different tissues (dorsolateral prefrontal cortex tissue and orbitofrontal cortex tissue). Disease abbreviations used in
this figure include: C02, virus disease; C03, parasitic diseases; C04, neoplasms; C05, musculoskeletal diseases; C06, digestive system diseases; C07,
stomatognathic diseases; C08, respiratory tract diseases; C10, nervous system diseases; C12, male urogenital diseases; C13, female urogenital diseases
and pregnancy complications; C14, cardiovascular diseases; C15, hemic and lymphatic diseases; C16, congenital hereditary neonatal diseases and
abnormalities; C17, skin and connective tissue diseases; C18, nutritional and metabolic diseases; C19, endocrine system diseases; C20, immune system
diseases; C23, pathological conditions signs and symptoms; F03, mental disorders; AC, adenocarcinoma; AD, Alzheimer disease; AF, atrial fibrillation;
ALS, amyotrophic lateral sclerosis; Anemia_R, refractory anemia; Anemia_RE, refractory anemia with excess of blasts; Anemia_S, sideroblastic anemia;
BD, bipolar disorder; BE, Barrett esophagus; Carcinoma_B, basal cell carcinoma; Carcinoma_D, ductal carcinoma; Carcinoma_DB, breast ductal
carcinoma; Carcinoma_L, lobular carcinoma; Carcinoma_PD, pancreatic ductal carcinoma; Carcinoma_SC, squamous cell carcinoma; CCS, clear cell
sarcoma; CF cystic fibrosis; CIN, cervical intraepithelial neoplasia; CLL, chromic lymphocytic leukemia; CN, colorectal neoplasms; COPD, chronic
obstructive pulmonary disease; DC, dilated cardiomyopathy; GF, gingival fibromatosis; HSC, hemoglobin sickle cell disease; HSP, hereditary spastic
paraplegia; HT, hemorrhagic thrombocythemia; LM, lymphatic metastasis; M_myeloma, multiple myoloma; MD, muscular dystrophy; MD_D,
Duchenne muscular dystrophy; MD_ED, Emery-Dreifuss muscular dystrophy; MD_F, Facioscapulohumeral muscular dystrophy; MDs, muscular
diseases; MS, myelodysplastic syndromes; NM, neoplasm metastasis; Obesity_M, morbid obesity; PH, prostatic hyperplasia; POS polycystic ovary
syndrome; RC, restrictive cardiomyopathy; TN, thyroid neoplasms; UC, ulcerative colitis; WM, waldenstrom macroglobulinemia; WT, Wilms tumor.
doi:10.1371/journal.pone.0006536.g001
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mammalian histone deacetylases [35]. It links to hundreds of other

agents and a few diseases, partially because of its large effects on

transcription. The most connected disease hubs include many

types of cancers, some inflammatory diseases, Neisseria meningit-

ides, Huntington’s and Cardiomyopathy, all with at least several

dozen links to drugs and other diseases. The prominence of

cancers and inflammatory disorders among the most connected

diseases is partially because they have many subtypes or related

conditions sharing same biological dysfunctions. For examples,

many cancers involve common tumor activators (such as Ras and

Myc) or tumor suppressors (such as p53 and PTEN) [36], while

most inflammatory diseases are associated with the changes of

cytokines and chemokines [37]. This expanded human disease-

drug network may be used as a starting point in human disease

reclassification, target and pathway deconvolution, drug reposi-

tioning and elucidating potential side effects, some of which are

described in more details in the following sections.

Disease-drug connections: drug repositioning and side
effects

We extracted a disease-drug sub-network consisting of unique

and significant connections (i.e. P,0.05 for enrichment-derived

links; FDR-corrected P,1e-10, and |r|.0.3 for correlation-

derived links), with the drugs limited to those annotated by

DrugBank as of July 25, 2008 [38]. This sub-network, containing

a total of 906 non-redundant disease-drug links, 49 diseases and 213

drugs (Figure 2, Table 2 and Supplementary Table S7 online),

allows us to generate hypotheses on potential drug side effects and

drug repositioning. For example, the network suggests that drugs for

the treatment of Neurological disorders, Hypertension/Heart

diseases, Cancer, AIDs, Migraine Headaches, and Inflammation

may also help in Huntington’s disease (Supplementary Table S8

online). Huntington’s disease is a neurodegenerative disease

characterized by the build up of malformed proteins in brain cells,

mainly in the basal ganglia and the cerebral cortex [39]. It has

previously been shown that stimulating autophagy in the cells can be

an effective way of preventing the build up of malformed proteins. A

number of drugs for the treatment of Migraine and Hypertension

have been able to stimulate autophagy in fruit flies and zebrafish

[40], and therefore are potentially drug candidates for Hunting-

ton’s. Rapamycin, an immunosuppressant used to lower the body’s

natural immunity in patients who receive kidney transplants, is a

promising drug for Huntington’s, also likely via its autophagy-

inducing function [41]. Another promising area of research is

certain cancer and AIDS drugs. It has been shown that some cancer

drugs in combination with AIDs drugs halt the progress of

Huntington’s in fruit flies [42,43]. We also found some existing

drugs for Diabetes, Glaucoma and Gout connected with negative

scores to Huntington’s (Supplementary Table S8 online), suggesting

that they may be candidate drugs for Huntington’s as well.

Another example, the anti-breast cancer drug Tamoxifen is

linked with a negative score (in the network) to Atopy,

Huntington’s disease, and Idiopathic myelofibrosis besides the

expected Breast cancer (Figure 2). This suggests that in addition to

acting as an anti-breast agent via antagonizing estrogen receptor,

Tamoxifen could also be possibly used as a therapy for other

diseases such as Atopy. These hypotheses are aligned with some

published studies [44–49]. For example, tamoxifen inhibits mast

cell secretion in a rat study, probably via PKC [47]. The mast

cell’s critical role in allergic reactions indicates that this is

consistent with the negative connection between them in our

results. Interestingly, we find that tamoxifen is ‘‘positively’’ (i.e.

similar profile patterns with positive correlations and/or enrich-

ment score) linked to many types of cancers and other disorders

(namely, Endometriosis, Cystic fibrosis, HPV positive and early

HIV infection) that share common underlying biological processes

with cancer (such as cell invasion, uncontrolled growth, and

weakened immunity etc.). This suggests that Tamoxifen may have

an undesired ‘‘carcinogenic’’ property. Indeed, Tamoxifen causes

an increased incidence of Endometrial cancer in human [50] and

Liver cancer in rat [51]. When Tamoxifen is administrated to

neonatal rats, Uterine adenocarcinomas were induced along with

a lower frequency of Squamous cell carcinomas of the vagina/

cervix [52].

Drug-drug connections: target and pathway
deconvolution

Drugs with similar expression profiles may target the same

molecules or biological pathways. We used the known drug-target

relationships from DrugBank [38] to assess this. The DrugBank

includes 1,692 approved/experimental drugs spanning 743

human protein targets. 360 of the 1,692 drugs were also covered

by our drug profile data. These 360 drugs had 3,668 connections

in the expression network, with an enrichment |score|.0.74

(corresponding to an empirical P value of 0.01), of which 7.3%

shared at least one common target (Figure 3 and Supplementary

Table S9 online). The actual chance of sharing a target is likely to

be higher because only the drug-target information documented in

the DrugBank was used, many binding partners for known drugs

are not documented by DrugBank or not known yet and were thus

counted as false negatives. The precision increases as the

enrichment score/significance threshold increases, though the

recall decreases as expected (Figure 3 and Supplementary Table

S9 online). For example, for the connections with enrichment

|score|.1.25 (i.e. P,0.002), about 25% (13 out of 51) of them

shared at least one common target, which is more than 6-fold

higher than what would be expected by random chance (3.8%).

Because proteins from same family often have similar tertiary

structures and active sites, if a compound binds a protein target, it

will likely have affinity with some of its family members as well.

Indeed, the percentage of the connected drugs sharing at least one

target from the same protein family is generally higher (Figure 3

and Supplementary Table S9 online), even when we only

restricted ourselves to just the obvious family members.

We examined the top 249 connections (with an enrichment

score cut-off of 1.25, corresponding to a precision of ,25%) that

linked drugs to those with known targets (Table 3 and

Supplementary Table S10 online). For example, our results

suggest that the potassium large conductance calcium-activated

channel KCNMA1 may be a protein targeted by Lobeline, a

natural alkaloid that has been used as a smoking cessation aid and

may have application in the treatment of addictions to drugs such

as Amphetamines or Cocaine [53–55]. The hypothetical link of

KCNMA1 with Lobeline appears to be consistent with a recent

report demonstrating the role of KCNMA1 in neuronal

excitability [56].

We next calculated the percentages of the connected drugs

perturbing at least one common well-defined biological pathway at

specified thresholds of enrichment score. We used pathways from

three manually-curated data sources: Biocarta (208 pathways,

1,321 unique genes) (http://www.biocarta.com), Ingenuity (166

pathways, 4,085 unique genes) (http://www.ingenuity.com) and

GeneGo (515 pathways, 2,685 unique genes) (http://www.genego.

com). Because there are substantial overlaps among them, the total

number of unique genes covered by the 3 pathway data sources is

only 5,166. 1,048 of 3,668 (,28.6%) of the related drug pairs (with

enrichment |score|.0.74 corresponding to an empirical P,0.01)

targeted the same pathway (Figure 3 and Supplementary Table S9

Human Disease-Drug Network
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Figure 2. Disease-drug network. This disease-drug network contains a total of 49 diseases in dark cyan nodes, 213 drugs in gold, and 906
connections. The size of the nodes is proportional to the number of links. Positive matches are shown by solid lines and negative relationships by
dotted lines. Multiple nodes with the same descriptive name exist because the corresponding profiles were generated under different conditions or
studies (refer to Supplementary Table S7 online for details). In addition to the abbreviations listed in the Figure 1 legend, other abbreviations used in
this figure include: AK, actinic keratosis; BC, breast cancer; BL_cancer, basal_like cancer; BRCA1_cancer, BRAC1-associated cancer; HPV, human
papillomavirus; IM, idiopathic myelofibrosis; LNM, lymph node metastasis; MCF, mild cystic fibrosis; NBL_cancer, non-basal-like cancer; NT_cancer,
non-tumorigenic cancer cell; P_cancer, metastatic prostate cancer; RA_M, rheumatoid arthritis on methotrexate; SCC, squamous cell carcinoma;
SCC_M, squamous cell carcinomas (lymph node metastasis); SCF, severe cystic fibrosis; T_cancer, tumorigenic cancer cell; VGP_melanoma, vertical
growth phase melanoma; VIN, vulvar intraepithelial neoplasia.
doi:10.1371/journal.pone.0006536.g002
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online). Moreover, for connections with enrichment |score|.1.25

(i.e. P,0.002), more than half (28 out of 51, vs. 21.3% by random

chance) of connected targets participate in at least one common

pathway. At this threshold (and an expected precision of 50%),

249 connections were generated, from which we identified

potential pathways targeted by 116 unique drugs (Table 3 and

Supplementary Table S11 online). As an example, two Anthra-

cycline chemotherapy drugs: Daunorubicin and Doxorubicin were

found to be significantly connected due to a high similarity of their

gene expression profiles. Doxorubicin targets topoisomerase II

alpha (TOP2A), which is involved in the biological pathways of

apoptotic DNA fragmentation and G2/M DNA damage check-

point regulation in cell cycle [57]. This suggests that Daunorubicin

may exert its anti-cancer function by perturbing the same two

pathways. This hypothesis is consistent with the general thought

that the cytotoxicity mediated by Daunorubicin is the result of

drug-induced damage to DNA [58].

Discussion

Disease-drug relationships are of great interest because such

knowledge can not only significantly enhance our understanding

of disease mechanisms, but also accelerate many aspects of drug

discovery. We took advantage of an ever-increasing accumulation

of whole genome gene expression data to generate a large-scale

disease-drug network. This network provides a valuable resource

to revisit disease classification (nosology), to reposition therapeutic

agents, identify potential drug side effects and deconvolute drug

targets or pathways in a cost-effective way. It is worth noting that

this network suggests many testable hypotheses with potentially

fairly good chances of success, though the actual success rate can

only be determined by experimental validation. A contribution of

this work is the establishment of an automatic process that allows

us to efficiently scale-up and update our disease-drug network

when more gene expression data are generated, deposited and

annotated as GDS datasets in GEO.

For the significantly-associated disease pairs, the majority

(,70%) of them were positively connected, while the rest (,30%)

were negatively linked (Supplementary Table S12 online). Although

it is possible that the two diseases in some of these negatively

connected pairs are mutually exclusive (that is to say, if a person has

one disease, it will protect the person from having the other disease),

we found that most of these pairs merely reflect the existence of

some inversely regulated biological processes. For example, a Nevus

is a benign overgrowth of skin pigment forming cells called

melanocytes on the skin surface, present at birth or appearing early

in life [59]. It was found to be negatively linked to some ‘‘cancer-

like’’ conditions (such as Adenocarcinoma, Colorectal neoplasms,

Table 2. A manual selection of a few disease-drug connections.

Drug Disease Enrichment score (correlation coefficient)

Tamoxifen Atopy (20.58)

Tamoxifen Basal-like cancer 0.95

Captopril Benign nevi 20.83

Etoposide Breast cancer (adenovirus carrying estrogen receptor beta) 0.82

Tamoxifen Breast cancer (adenovirus carrying estrogen receptor beta) 21.41

Tamoxifen Endometriosis 0.86

Apomorphine Huntington’s disease (symptomatic) 20.82

Dacarbazine Huntington’s disease (symptomatic) 20.84

Ethosuximide Huntington’s disease (symptomatic) 20.85

Haloperidol Huntington’s disease (symptomatic) 0.86

Remoxipride Huntington’s disease (symptomatic) 20.83

Bumetanide Neisseria meningitidis (delta pilD mutant) 0.82

Fenoprofen Neisseria meningitidis (delta pilD mutant) 20.81

Gliclazide Neisseria meningitidis (delta pilD mutant) 20.82

Haloperidol Neisseria meningitidis (delta pilD mutant) 0.83

Levocabastine Neisseria meningitidis (delta pilD mutant) 0.84

Metolazone Neisseria meningitidis (delta pilD mutant) 20.81

Verapamil Neisseria meningitidis (delta pilD mutant) 0.83

Tamoxifen Non-basal-like cancer 20.7

Diltiazem Non-ischemic cardiomyopathy 20.88

Diphenhydramine Non-ischemic cardiomyopathy 0.84

Ethosuximide Non-ischemic cardiomyopathy 20.86

Fenoprofen Non-ischemic cardiomyopathy 20.87

Glipizide Non-ischemic cardiomyopathy 20.81

Paclitaxel Non-ischemic cardiomyopathy 20.82

Valproic acid Polycystic ovary syndrome 0.92

Tamoxifen Prostate cancer (metastatic) 0.95

Results from both the enrichment score and correlation coefficient method are included in this table. Numbers within parenthesis are correlation coefficients.
doi:10.1371/journal.pone.0006536.t002
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and Barrett’s esophagus) and Muscular diseases (including several

types of Muscular dystrophy, Myopathy and Dermatomyositis etc.).

The dissimilarity of nevus with ‘‘cancer-like’’ conditions may be

because it is benign in contrast of cancerous, while the inverse

relationship with muscular weakness/wasting might be due to its

characteristic cell overgrowth.

Although our approach has a number of advantages, such as

scalability, efficiency and reliability, it is not without shortcomings.

One major issue is the high false negative rate, for example, it is

not uncommon to find that two similar or ‘‘identical’’ diseases

have a very low correlation/enrichment score. That is possibly

because the gene expression profiles under comparison were

generated under different conditions, such as different tissue

samples, cell lines/types, treatment doses and time durations,

disease/development stages, ages, genotypes/variations, and

experiment protocols etc. The ‘‘recovery’’ rate (i.e. Recall) is

expected to increase as more data sets are generated under similar

conditions. Connectivity Map already goes a long way towards at

least providing many data sets for drugs. What is needed is a

similar comprehensive effort for diseases. Another problem of our

approach is that it relies on gene expression data alone; therefore it

may fail to match disease and drug effects that are not manifested

at the gene expression level. However, because the methodology

per se is general, one approach to this issue is to apply a similar

method to other types of Omic data (such as proteomic and

metabolomic data) when similar repositories become available.

Integrating other results obtained via conceptually different

approaches may also improve the reliability and sensitivity. For

examples, we can add links (or modify scores) between two diseases

that share at least one gene whose mutations are associated with

both diseases [7]. Moreover, diseases may be related using

statistical analysis of patient records [10], quantitative measure-

ments of the phenotypic overlap of Online Mendelian Inheritance

in Man (OMIM) records [11], and annotative concepts [6], and

metabolic diseases may be connected via metabolites and common

reactions [9]. For the drug-drug relationship and target deconvo-

lution, we can integrate the results derived from assessing drug

side-effect and chemical similarity, target sequence similarity and

drug-target network [4,12,60]. The disease-drug association results

could also be improved by data mining of medical records and

biomedical literature [61,62].

Methods

GEO
GEO datasets (GDS) are reassembled by GEO staff from user

deposited gene expression data [17]. We downloaded the GEO

datasets from ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SOFT/

GDS. As of March 17, 2008, the database contains 2,085 sets of

GDS entries, including 306 datasets generated from human studies

using GPL96 (Affymetrix U133A chip) or GPL570 (U133plus2)

platform (Supplementary Table S13 online). All of our analyses

were limited to genes commonly covered by both U133A and

U133plus2 chips. In addition, we also queried the GEO website

(http://www.ncbi.nlm.nih.gov/geo/) for ‘‘GPL96’’ and ‘‘GPL570’’

to obtain the annotation summary for each of the datasets.

Identification of single most appropriate Affymetrix
probe set for gene

In Affymetrix U133 microarray chips, many genes are

represented by multiple probe sets. To avoid correlation/scoring

Figure 3. The precision and recall of target and pathway
deconvolution. Precision is the fraction of the identified targets or
pathways that are correct, calculated as ‘‘true positive’’/(‘‘true positive’’
+ ‘‘false positive’’). Recall is the fraction of all true targets or pathways
that are successfully identified, calculated as ‘‘true positive’’/(‘‘true
positive’’ + ‘‘false negative’’).
doi:10.1371/journal.pone.0006536.g003

Table 3. A manual selection of compounds with predicted drug target(s) based on similarity in expression profiles to another drug
with known target.

Drug Predicted Target(s) Predicted targeting pathways

Ajmaline KCNMA1 HRH2 GPCRs in the regulation of smooth muscle tone; G-Protein Coupled Receptor Signaling; cAMP-mediated Signaling

Cicloheximide ATP1A1 Leptin signaling via PI3K-dependent pathway

Lobeline KCNMA1 GPCRs in the regulation of smooth muscle tone

Quercetin NR3C2 FKBP1A Glucocorticoid Receptor Signaling; IL-4 Signaling; Neutrophil and Its Surface Molecules; mTOR Signaling Pathway

Salbutamol DRD2 Regulation of cell cycle progression by Plk3; Dopamine Receptor Signaling; G-Protein Coupled Receptor Signaling;
cAMP-mediated Signaling

Strophanthidin ATP1A1 Leptin signaling via PI3K-dependent pathway

Daunorubicin TOP2A Apoptotic DNA fragmentation and tissue homeostasis; Cell Cycle: G2/M DNA Damage Checkpoint Regulation

The last column is the list of pathways that the target of the known drug participates. Thus, the hypothesis is that the shown drug may act either through the predicted
target or at least through the shown pathway.
doi:10.1371/journal.pone.0006536.t003
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biases brought by such over-representation during similarity-

matching, we identified and used a single probe set as the sole

representative for each gene as follows. The 11 individual probes

(25mers) from each probeset were blasted against the NCBI

RefSeq database. The distance to the 39end for each probeset was

calculated as the average distance of 11 individual probes. For

those probesets which do not match any RefSeq sequences, they

were mapped onto assembled human genome using BLAT: 1)

when a probeset is less than 100 bp downstream from a RefSeq, it

is defined as ‘‘derived from 39UTR’’ of that RefSeq sequence; 2)

when a probeset is less than 10 kb downstream from a RefSeq, it is

defined as ‘‘derived from putative 39UTR’’ of that RefSeq

sequence; 3) when a probeset is located within the coordinates

of a RefSeq but does not overlap, its is defined as ‘‘derived from

potential alternative transcription’’; 4) when a probeset is located

within the coordinates of a RefSeq but on the opposite strand, its is

defined as ‘‘derived from potential antisense transcription’’. To

identify the single most appropriate probe set for each gene, we

adopted the following preference order of probe sets derived from:

1) 39 UTR; 2) coding region with shortest distance to 39 UTR; 3)

putative 39 UTR; 4) sequence representing potential alternative

transcription; 5) sequence representing potential anti-sense

transcription; 6) sequence not associated with known genes (in

this case, we assigned the probe set ID’s as their ‘‘gene names’’). In

the end, we obtained 26,201 probe sets uniquely representing each

gene/transcript covered by U133plus2 chip (Supplementary Table

S14 online).

Generating disease/drug profiles from GEO GDS datasets
For each GEO GDS dataset together with its associated

annotation summary, a Python program modified from a previous

version [18] was used to extract every subgroup of samples with

clearly defined conditions, generate pairs between any two

biologically comparable subgroups, and perform cyber-T test for

each of these pairs. For example, if a dataset has two subset types

T and D (T for ‘‘time point’’ and D for ‘‘dose of treatment’’), and

each subset type has two conditions T1/T2 (for two different time

points) and D1/D2 (for two different doses), then 4 sample

subgroups are generated: T1D1, T1D2, T2D1 and T2D2, and 4

pair-wise comparisons via cyber-T test are performed: T1D1 vs.

T2D1 (i.e. T1 vs. T2 at fixed D1), T1D2 vs. T2D2 (i.e. T1 vs. T2

at fixed D2), T1D1 vs. T1D2 (i.e. D1 vs. D2 at fixed T1), and

T2D1 vs. T2D2 (i.e. D1 vs. D2 at fixed T2). The possible types of

conditions include disease state, agent treatment, time, tissue,

infection, age, cell line, cell type, development stage, treatment

dose, genotype/variation, growth protocol, protocol, species,

specimen, stress, temperature, and others. For more reliable

results, we excluded any subgroups without replication from the

comparisons. The result was a profile for each disease/drug,

containing the fold change, signed cyber-T t-statistic and P value

of differential expression for each probe set. These profiles were

then filtered to retain the comparative analysis information limited

to those most appropriate probe sets identified above. We also

replaced the probe sets with their corresponding HUGO gene

symbols if they existed.

Correlation calculation
The signed cyber-T t-statistic values were used to calculate a

Pearson correlation [18]. For each pair of profiles, we only

included those probe sets that are the most appropriate gene

representatives, and they must be ‘‘meaningfully’’ changed

(p,0.05, and fold change.1.2) in at least one of the profiles. In

addition, the number of ‘‘meaningfully’’ changed genes in each

profile must be more than 100. R code was used to calculate the

correlation significance P values, and Storey’s FDR method was

used calculate the false discovery rate q values via the R package

‘‘QVALUE’’ [63]. We chose an extremely conservative FDR cut-

off of p,1e-18 in this paper.

Connectivity Map profile database and process
The Connectivity Map (CMap) is a collection of genome-wide

transcriptional expression data from cultured human cells treated

with bioactive small molecules [16]. As of July 8, 2008, CMap

contains 6,100 expression profiles representing 1,309 compounds.

We downloaded the data file ‘‘rankMatrix.txt.zip’’ and its

associated annotation file ‘‘cmap_instance_02.xls’’ from the CMap

website (http://www.broad.mit.edu/cmap/). We kept only the

single most appropriate probe set for each gene, and replaced the

probe sets with their corresponding HUGO gene symbols.

Disease and drug signatures
A signature is a relatively short list of genes associated with

disease or drug effects, and can be derived either by manual

curation or automated filtering from high-throughput experi-

ments. In this work, signatures are directly derived from disease/

drug expression profiles by taking the most changed non-

redundant genes. We first removed hypothetical and not-

significantly-changed (P$0.05) genes if the P-value is available;

then selected a total of 200 genes with maximal fold changes (100

positive, and 100 negative each). The size of signature (i.e. 200

genes) was chosen primarily based on our experience and testing of

the impact of different sizes (50, 100 and 200) on signature-profile

matching scores. We found empirically that any size from a few

dozens to a few hundreds did not affect the results qualitatively,

while signatures with too few or too many genes led to lower

sensitivity and specificity in similarity detection.

Enrichment scores
We first reformatted each disease/drug profile by ranking the

probe sets according to their signed fold changes. For those profiles

with P values (e.g. those generated from GEO datasets),

significantly (p,0.05) and insignificantly (p$0.05) changed probe

sets are ranked separately by their fold changes first, and then

merged by inserting the ranked but insignificantly changed probe

sets into the +/2 fold change boundary of ranked significant ones.

We then generated a signature from each profile, and assessed the

similarity between the signatures and the profiles by quantitatively

measuring the enrichment of signature genes in the top/bottom

ranked region of the profiles, similar to as previously described in

CMap [16]. We generated a score distribution generated from 1.5

million real data points, showing any |score|.0.74 indicates a p-

value of less than 0.01, and |score|.0.45 indicates a p-value of

less than 0.05. Random permutation test was also used to assess

the significance of enrichment scores. Based on a score distribution

generated from 1 million permutations, any non-zero score is

statistically significant, therefore potentially interesting.

MeSH thesaurus and disease mapping
MeSH is the National Library of Medicine’s controlled

vocabulary thesaurus. It consists of sets of terms naming

descriptors in a hierarchical structure that permits searching at

various levels of specificity. We downloaded the disease tree file

mtree2008.txt from MeSH website (http://www.nlm.nih.gov/

mesh/), which, as of June 17, 2008, contains 48,443 subjects and

24,766 unique descriptors grouped in 16 categories, including

Disease category, Chemicals and Drugs category, and Pharmaco-

logical Actions category etc. Many disease/drug names used in
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GEO and CMap do not match corresponding MeSH terms. For a

subset of 360 selected unique disease/drug terms used in GEO

and CMap, only 86 of them can be directly matched to MeSH

terms. Of the remaining 274 terms, 120 have also been covered by

MeSH but with slightly different names, which we manually

corrected. In total, we have 206 matched terms that allowed us to

do disease/drug mapping. For matched pairs, Perl scripts and

MySQL queries were used to obtain the level of matching in the

MeSH hierarchical tree structure. The level indicates the distance

from the tree root for the lowest common ancestor of the two

connected diseases/drugs. Level 0 indicates that the two diseases/

pertubagens belong to different MeSH categories.

DrugBank database and target deconvolution
The DrugBank database stores drug data with corresponding

drug target and treatment indication information [38]. As of July

25, 2008, the database contains nearly 4,800 drug entries,

including.1,480 FDA-approved small molecule drugs, 128

FDA-approved biotech drugs, 71 nutraceuticals and more than

3,200 experimental drugs. We selected the drugs which are known

to have human target proteins. Perl scripts and MySQL queries

were used to match drugs to DrugBank, calculate precision and

recall rates, and make prediction of potential targets for drugs

whose targets are unknown. To determine whether two proteins

are from the same family, we used a simple (and conservative) way

by checking whether their HUGO gene symbols only differ at

their ending numbers (such as PTGER1 and PTGER2). To

determine the expected percentage of two drugs sharing at least

one common target by random chance, we generated 10,000

random drug pairs, and assessed how many of them target at least

one common molecule according to the DrugBank drug-target

information. We also generated all the possible drug pairs (a total

of 129,240) and identified all the targets (4,858) and same family

targets (7,200) to calculate the fractions as expected rates. Both

methods resulted in similar expected percentages.

Pathway databases and pathway deconvolution
3 curated canonical pathway resources were used in this work:

GeneGO (www.genego.com), Ingenuity (www.ingenuity.com) and

Biocarta (www.biocarta.com).

Precision and recall of target and pathway deconvolution
Precision is the fraction of the identified targets or pathways that

are correct, calculated as ‘‘true positive’’/(‘‘true positive’’ + ‘‘false

positive’’). Recall is the fraction of all true targets or pathways that

are successfully identified, calculated as ‘‘true positive’’/(‘‘true

positive’’ + ‘‘false negative’’).
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