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interactions among genes within the same molecular path-
way after adjusting for multiple testing via FDR control pro-
cedure.  Conclusion:  Genetic variation in  GHRL  may have a 
modest impact on BMI in European Americans. 
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 Introduction 

 Human adiposity resolves complex interactions among 
genetic, developmental, behavioral, and environmental 
influences. Obesity is primarily the result of a net imbal-
ance of caloric intake over energy expenditure. Even 
small differences resulting in positive energy balance – 
when integrated over long periods of time – can produce 
increased adiposity. In the United States, 65% of adults 
are overweight (BMI 25.0–29.9) and more than 30% of the 
adult population is obese (BMI  6 30)  [1] . The problem 
also affects children in whom the percentage with BMI 
 1 95 percentile between the ages of 6–19 defined by the 
CDC growth charts is now 16%  [2] . Increasing in parallel 
with these trends in obesity are the frequently associated 
comorbidities of diabetes, hypertension, and cardiovas-
cular disease  [3] .
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 Abstract 

  Objective:  Human adiposity is highly heritable, but few of 
the genes that predispose to obesity in most humans are 
known. We tested candidate genes in pathways related to 
food intake and energy expenditure for association with 
measures of adiposity.  Methods:  We studied 355 genetic 
variants in 30 candidate genes in 7 molecular pathways re-
lated to obesity in two groups of adult subjects: 1,982 unre-
lated European Americans living in the New York metropoli-
tan area drawn from the extremes of their body mass index 
(BMI) distribution and 593 related Yup’ik Eskimos living in 
rural Alaska characterized for BMI, body composition, waist 
circumference, and skin fold thicknesses. Data were ana-
lyzed by using a mixed model in conjunction with a false 
discovery rate (FDR) procedure to correct for multiple test-
ing.  Results:  After correcting for multiple testing, two single 
nucleotide polymorphisms (SNPs) in  Ghrelin  ( GHRL ) (rs35682 
and rs35683) were associated with BMI in the New York Eu-
ropean Americans. This association was not replicated in the 
Yup’ik participants. There was no evidence for gene ! gene 
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  Evidence for potent genetic contributions to human 
obesity is provided by familial clustering of increased ad-
iposity, including a 3–7 fold increased relative risk ( �  s ) 
among siblings  [4] , estimates of heritability for fat mass 
between 40 and 70% in twin studies  [5, 6] , and rare mono-
genic causes of syndromic and nonsyndromic obesity  [7] . 
Severe loss-of-function mutations in genes causing mono-
genic forms of obesity do not account for the heritable 
component of adiposity in the majority of individuals, 
although mutations in the  Melanocortin 4 Receptor  
 (MC4R)  may account for obesity in 1–5% of the extreme-
ly obese  [8] . The phenotypic differences among individu-
als at the extremes of adiposity presumably reflects – to a 
substantial degree – allelic variation at genes that affect 
energy intake, expenditure and the chemical form in 
which excess calories are stored (‘partitioning’). The na-
ture of these genes and their interactions is of obvious 
interest.

  Both linkage and association studies have been under-
taken to identify obesity candidate genes. The 2005 Hu-
man Obesity Gene Map update reports over 1,100 studies 
including 500 genes, markers, and chromosomal regions 
apparently linked to, or associated with, human obesity 
phenotypes in specific cohorts  [9] . Yet only 22 genes have 
been reproducibly implicated in  6 5 studies as statisti-
cally significant contributors to common obesity. For 
monogenic obesity, 176 mutations have been identified in 
11 genes, and 50 loci have been mapped corresponding to 
Mendelian syndromes related to obesity  [9] . Genome-
wide association studies have and will likely continue to 
identify additional genes associated with obesity, but of-
ten identify genetic variants that are not themselves func-
tionally significant and genes which were not previously 
known to be implicated in energy homeostasis. In most 
individuals, the genetic basis for obesity is complex and 
likely to involve the interaction of multiple genes as well 
as gene-by-environment interactions.

  In most candidate-based genetic analyses of complex 
disease phenotypes, fewer than five candidate genes are 
interrogated in a population. Moreover, the coverage of 
coding and non-coding polymorphisms genotyped with-
in a given candidate gene may be sparse, and pathways of 
functionally-related genes are rarely simultaneously in-
vestigated. In the present study, we evaluated seven groups 
of functionally-related obesity candidate genes (30 total 
genes) in two racially divergent population groups (Euro-
pean Americans and Alaskan Yup’ik Eskimos). Many of 
the candidate genes were selected from hypothalamic ar-
cuate pathways since the hypothalamus integrates com-
plex neuroendocrine, autonomic, and behavioral signal-

ing pathways that determine food intake, energy expen-
diture, and nutrient partitioning ( fig. 1 ).

  The seven groups of genes were included amongst the 
candidate genes:

  (1) The leptin pathway included the hormone leptin 
( LEP ), its receptor ( LEPR ), and downstream signaling 
molecules ( JAK2, SOCS3 , and  STAT3 ). 

 (2) The melanocortin pathway included agouti related 
peptide ( AGRP ), melanocortin 4 receptor ( MC4R ), pro-
opiomelanocortin ( POMC ), and carboxypeptidase E 
( CPE ) that processes preprohormones. 

 (3) The ghrelin pathway included ghrelin ( GHRL ) and 
its receptor,  GHSR . 

 (4) The glucagon-like peptide 1 pathway included  GCG  
and its receptor  GLP1R . 

 (5) The neuropeptide Y pathway included the recep-
tors  NPY1R  and  NPY5R . 

 (6) The serotonin pathway included the serotonin re-
ceptors  HTR2A  and  HTR2C . 

 (7) The Bardet-Biedl group included the genes identi-
fied  for BBS1, BBS2, ARL6, BBS4, BBS5, MKKS, BBS7,  and  
TTC8 . 

 Five genes that encode proteins involved in the leptin 
signaling pathway  (LEP ,  LEPR ,  JAK2 ,  STAT3 ,  SOCS3)  
were selected for investigation since leptin is a key hor-
mone secreted in proportion to peripheral fat mass as a 
signal to the hypothalamus regarding the state of long-
term energy stores  [14] . Central regulation of energy ho-
meostasis begins as leptin binds receptors on (at least) 
two sets of neurons in the arcuate nucleus to decrease 
transcription of  Agouti Related Peptide   (AgRP)  and  Neu-
ropeptide Y   (NPY)  or to increase transcription of  Pro-
Opiomelanocortin   (POMC)  and  Cocaine and Amphet-
amine Related Transcript   (CARTPT)  that act reciprocally 
to increase and decrease food intake, respectively  [14] . 
AgRP is a naturally occurring inverse agonist of MC3R 
and MC4R that stimulates food intake.  Agouti Related 
Peptide   (AGRP) ,  Melanocortin 4 Receptor   (MC4R) ,  POMC 
 and  Carboxypeptidase E   (CPE)  represent orexigenic 
 (AGRP)  and anorexigenic  (POMC)  signaling pathways 
and downstream effector molecules  (MC4R) . CPE pro-
cesses prohormones in this pathway including POMC. 
Neuropeptide Y receptors (NPY1R and NPY5R) are ex-
pressed on downstream effector neurons responding to 
the orexigenic NPY signaling events originating in the 
arcuate nucleus. The orexigenic peptide ghrelin (GHRL) 
is secreted from the stomach and duodenum and binds to 
the ghrelin receptor (GHSR) in the arcuate nucleus acti-
vating AGRP/NPY neurons to stimulate food intake. 
Glucagon-like peptide 1 (GCG) is produced by the small 
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intestine and neurons in the nucleus of tractus solitarius 
post-prandially and decreases food intake and slows gas-
tric emptying upon binding to the glucagon-like peptide 
1 receptor (GLP1R) in the brain. Serotonin is involved in 
central signaling of satiety in hypothalamic downstream 
effector neurons and acts through the serotonin receptor 
genes ( HTR2A  and  HTR2C ). Lastly, included in the list of 
candidate genes are eight genes for Bardet-Biedl syn-
drome  (BBS1 ,  BBS2 ,  ARL6 ,  BBS4 ,  BBS5 ,  MKKS ,  BBS7 , 
 TTC8 ), a syndromic, oligogenic form of obesity resulting 
from mutations in at least twelve genes, some of which are 
apparent components of a ciliary motor that can indi-
vidually, or in some cases in combination, produce a dys-

morphic phenotype that includes obesity, polydactyly, 
and retinopathy  [15] .

  In summary, our candidate gene list ( table 1 ) includes 
genes encoding signaling peptides, receptors and down-
stream signaling molecules expressed in central nervous 
system and/or peripheral tissues, including adipocytes 
and gastrointestinal tract, involved in food intake, en-
ergy expenditure or energy storage. Bardet-Biedl syn-
drome is also caused by mutations within a common 
molecular pathway (ciliary structure), and hence also 
provides a paradigm for genetic variants in multiple can-
didate genes within the same pathway interacting to af-
fect adiposity.

Table 1. Candidate genes analyzed

Gene
symbol

Gene name Chromo-
somal
location

Size of
gene
bp

Number of
polymorphic
SNPs
genotyped

Average
interval
between
SNPs, kb

Number
of
nsSNPs

AGRP agouti related peptide 16q22 1,242 3 (2) 110 bp 1
ADIPOQ adiponectin, C1Q and collagen domain containing 3q27 15,789 18 (17) 14.0 1
BBS1 Bardet-Biedl syndrome 1 11q13 22,965 10 (9) 5.3 0
BBS2 Bardet-Biedl syndrome 2 16q21 33,895 9 (8) 5.1 0
ARL6 BBS3, ADP-ribosylation factor-like 6 3q11.2 33,778 7 (7) 26.4 0
BBS4 Bardet-Biedl syndrome 4 15q22.3-q23 52,281 8 (7) 12.0 0
BBS5 Bardet-Biedl syndrome 5 2q31 27,172 6 (6) 76.0 0
MKKS BBS6, McKusick-Kaufman syndrome 20p12 29,029 6 (5) 2.6 0
BBS7 Bardet-Biedl syndrome 7 4q27 46,005 6 (4) 14.0 0
TTC8 BBS8, tetratricopeptide repeat domain 8 14q31.3 53,354 4 (4) 8.4 0
CARTPT cocaine- and amphetamine-regulated transcript 5q13.2 1,878 6 (6) 11.1 0
CNR1 cannabinoid receptor 1 6q14-q15 5,469 10 (10) 3.0 0
CPE carboxypeptidase E 4q32.3 119,388 24 (23) 5.3 0
GHRL ghrelin/obestatin preprohormone 3p26-p25 5,111 11 (8) 1.1 1
GHSR ghrelin receptor, growth hormone secretagogue receptor 3q26.31 3,252 10 (9) 2.6 0
GCG glucagon 

glucagon-like peptide 1 (glucagon/GLP1/GLP2/ GRPP) 2q24.2 9,369 6 (6) 4.0 1
GLP1R glucagon-like peptide 1 receptor 6p21 38,903 24 (22) 2.6 2
HTR2A 5-hydroxytryptamine (serotonin) receptor 2A 13q14-q21 62,662 31 (31) 2.7 2
HTR2C 5-hydroxytryptamine (serotonin) receptor 2C     Xq23 326,073 20 (19) 18.0 1
JAK2 Janus kinase 2 (a protein tyrosine kinase) 9p24 142,750 18 (17) 8.8 1
LEP leptin 7q32 5,637 23 (21) 3.7 0
LEPR leptin receptor 1p31 212,190 35 (34) 15.6 3
MC4R melanocortin 4 receptor 18q22 998 10 (10) 19.7 1
NPY1R neuropeptide Y receptor Y1 4q31.3-q32 8,631 4 (4) 1.5 1
NPY5R neuropeptide Y receptor Y5 4q31-q32 7,995 7 (7) 3.9 1
PLIN perilipin 15q26 14,987 11 (8) 12.8 3
POMC proopiomelanocortin 2p23 7,664 13 (9) 10.2 0
SOCS3 suppressor of cytokine signaling 3 17q25.3 3,294 6 (6) 2.2 1
STAT3 signal transducer and activator of transcription 3 17q21 75,170 19 (18) 4.9 0
TUB tubby homolog 11p15.4 67,472 19 (18) 4.7 0

For number of polymorphic SNPs genotyped, the number in parentheses indicates number of SNPs that were determined to be 
polymorphic in this study. nsSNPs are non-synonymous SNPs.
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  This study was designed to prioritize the relative con-
tributions of individual sequence variants, as well as to 
examine interactions among functionally related candi-
date genes and pathways. In an effort to identify more 
universally relevant genes/alleles, two racially divergent 
populations were genotyped in this study: a population 
of European American adults living in the New York City 
tri-state region, and a population of Yup’ik Eskimos from 
southwest Alaska.  GHRL  was associated with BMI in the 
NY European Americans, even after correction for mul-
tiple testing, suggesting that genetic variation in  GHRL  
may contribute to relative adiposity in this population.

  Materials and Methods 

 Subjects 
 European American participants were recruited from the New 

York Health Project (NYHP), a prospective cohort study under-
taken under the auspices of the Academic Medicine Development 
Corporation (AMDeC) of New York to analyze general health and 
cancer-related epidemiology  [16] . Approximately 18,000 subjects 
were enrolled between January, 2000 and December, 2002 at four-
teen sites across the five boroughs of New York City. The institu-
tional review boards at each of the fourteen sites and Columbia 
University approved the protocol. Enrollees had to be 30 years of 
age or older, reside in New York, New Jersey, or Connecticut, and 
have a literacy level sufficient to complete a consent and simple 
follow-up questionnaire. All subjects signed a written informed 
consent. A trained interviewer administered a questionnaire re-
garding health status and behaviors, drew blood, and measured 
standing height on a stadiometer and weight on a scale to the near-
est pound with light clothing. Written informed consent was ob-
tained from all subjects. Race/ethnicity was assessed by self report 
using the categories of the 2000 Census (http://www.census.gov/
main/www/cen2000.html). A total of 17,709 subjects with valid 
data were recruited. Of these, 10,260 (57.9%) were European 
Americans (non-Hispanic white). Individuals at the extremes of 
the BMI distribution are potentially the most informative in this 
context and were, therefore, selected for initial analysis. Cancer 
history was by self-report and confirmed in state cancer registries 
when possible. All subjects with a history of cancer were elimi-
nated from the study groups to eliminate the possible effect of 
cancer and its treatment on body weight. European American sub-
jects were sorted by ascending BMI. Subjects below the 10 th  per-
centile for BMI were not included to avoid the confounding effects 
of medical conditions that themselves might cause weight loss. 
Gender-and age-matched 1,003 pairs of European Americans with 
BMI between the 10th and 30th percentile or above the 80th per-
centile were selected for genotyping. In the European American 
subjects living in New York, with the sampling method we used 
we had 80% power at  �  level of 5% to detect a genetic variant ac-
counting for 0.27% of the variance in BMI. This sampling method 
involved identifying the 1,003 lean subjects between 10th and 30th 
percentiles for BMI and the 1,003 obese above the 80th percentile 
of the total sample BMI distribution. A random selection of 2,006 
subjects from the same 10,260 individuals would have 80% power 

to detect a genetic variant accounting for 0.39% of the phenotypic 
variance. Using all of the available (10,260) subjects would have 
provided 80% power to detect a gene accounting for 0.077% of the 
phenotypic variance. Therefore, this strategy of selective genotyp-
ing of subjects at the extremes of phenotype can be used to reduce 
genotyping costs without substantially diminishing power  [17] .

  Recruitment of Yup’ik Eskimo study participants started in 
December, 2003 and continued through May, 2005. All residents 
14 years of age and older from seven communities were invited to 
participate  [18] . All seven communities were located in rural 
southwest Alaska. On average, approximately 43% of eligible 
community members participated in the research project. The 
age distribution of our study population reflects the age distribu-
tion among eligible participants. All participants were consented 
using protocols approved by the University of Alaska Institution-
al Review Board, the National and Alaska Area Indian Health 
Service Institutional Review Boards, and the Yukon Kuskokwim 
Human Studies Committee.

  593 Yup’ik Eskimo participant samples were included in this 
study. The analysis for this report is based upon participants who 
identified themselves as non-pregnant Alaska Native Yup’ik Es-
kimos,  6 18 years, and as having fasted at least 8 h. Anthropomet-
ric measurements included height, weight, four circumferences 
(triceps, waist, hip, and thigh), four skinfolds (triceps, subscapu-
lar, abdominal and thigh), and were obtained by trained observers 
using previously published protocols implemented in the 
NHANES III survey  [19] . Percent body fat was estimated by elec-
trical bioimpedance using a Tanita TBF-300A body fat analyzer. 
Participants were selected from pedigrees based on availability of 
DNA for individuals within the family, individuals phenotyped 
for at least five obesity related traits, and a composite obesity score 
that is a weighted average of the primary phenotype (BMI) and 
secondary phenotypes (percent body fat, waist circumference, 
and four skinfold thicknesses) and weights were a function of the 
correlations between primary and secondary phenotypes (See the 
details of derivation of composite score in the Appendix A). The 
Yup’ik data set consists of 157 families with 731 individuals. 593 
individuals were included in the present study based on the fol-
lowing selection strategy. First we selected families with available 
DNA and at least five phenotypes within a family. We ordered the 
families with respect to the smallest amount of missing data. The 
family highest in this ranking is the family with the smallest 
amount of missing data among all individuals in the family. Then, 
we selected a minimum number of families that would enable us 
to achieve at least 80% power at significance level of 5% for traits 
with a broad-sense heritability of 50% and 5% locus heritability. 
Using these criteria, we identified 593 individuals belonging to 
the top 53 families (see Appendix A,  table A1 ).

  Candidate Gene Selection 
 Candidate genes were selected according to their physiological 

function and/or reported association/linkage with obesity or a 
related endophenotype. The 30 candidate genes are listed in  ta-
ble 1 . The relationships between genes in the respective molecular 
pathways is depicted in  figure 1 .

  SNP Selection 
 Single nucleotide polymorphisms (SNPs) were gathered from 

multiple public databases, NCBI (http://www.ncbi.nlm.nih.gov/
projects/SNP/), Celera (ABI) (now publicly available through db-
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SNP), HapMap (http//:www.hapmap.org), the literature, and our 
local resequencing data. For each locus, SNPs were selected based 
upon the following criteria: (1) All SNPs with a minor allele fre-
quency  1 0.05 between 10,000 base pair (bp) upstream and 10,000 
bp downstream of the gene’s coding sequence were considered; (2) 
only one SNP from a group of SNPs in linkage disequilibrium 
with r 2   1  0.80 using the aggressive multimarker tagging method 
of the Haploview software (http://www.broad.mit.edu/mpg/hap-
loview/download.php); (3) coding SNPs and non-coding SNPs 
with previous evidence of linkage or association with obesity in 
the literature or from our local data with a minor allele frequency 
 1 0.05 were included; (4) non-coding SNPs within putative tran-
scription factor binding sites or sequences conserved across spe-
cies with a minor allele frequency  1 0.05 were included; (5) for 
large genes with large numbers of non-coding SNPs such as  LEPR , 
we limited SNPs to within 5,000 bp upstream and downstream of 
the coding sequence, and (6) all nonsynonymous coding SNPs 
(nsSNPs) with an allele frequency of at least 0.01 were included.

  Genomic DNA was extracted from whole blood and stored at 
4   °   C. SNPs were genotyped on an Illumina BeadArray �  assay 
according to the manufacturer’s directions. Due to technical 
characteristics of the Illumina BeadArray �  assay  [20] , we could 
not use SNPs within 60 bp of another SNP or SNPs with more 
than 3 alleles or insertion/deletion polymorphisms. 384 SNPs
in 30 genes were selected for a custom-designed BeadArray 
 (supplemental table S1; for online supplementary material, see 
www.karger.com/doi/10.1159/000181158).

  Eighteen subjects from the NYHP and 14 Yup’iks were blind-
ly genotyped in duplicate to assess assay reproducibility. In addi-
tion, 28 Illumina controls (4/plate) were included as positive and 

negative controls to assess bead assay performance. Twenty-five 
additional subjects for whom genotypes had been independently 
determined for a subset of the candidate genes were also included 
to independently determine accuracy of the bead array genotyp-
ing method.

  Statistical Analysis 
 For the NYHP BMI data, the BMI distribution for 1,982 indi-

viduals with valid genotypic data was evaluated, and were log-
transformed to normalize the residual distribution. The sample 
selected from 2 extremes of population distribution was highly 
skewed. The log transformation made it a distribution of 2 ex-
tremes of comparatively normal distribution. The Ordinary Least 
Squares (OLS) regression method is quite robust to the distribu-
tion. Past research has shown that when OLS regression is used, 
extreme sampling not only provides more power than random 
sampling on a per subject basis, but also that the tests are robust 
to the marked non-normality induced by the extreme sampling 
 [21–23] . Similarly, for the Yup’ik data, BMI, subscapular skinfold 
thickness, and waist circumference phenotypes were log trans-
formed; thigh-skinfold phenotype was square root transformed 
to render the residuals approximately normally distributed after 
adjusting for age, age 2 , and sex. The phenotypes were then tested 
for univariate and multivariate outliers. Multivariate outliers 
were identified by chi-square testing using Mahalanobis distance 
 [24] . For the NYHP data, the bivariate distribution of BMI and 
age was used to calculate Mahalanobis distance; for the Yup’ik 
data, multivariate distributions of all 8 phenotypes were used to 
identify possible outliers. None of the individuals in the NYHP 
study was found to be an outlier. Thirteen individuals were iden-
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  Fig. 1.  The molecular pathways affecting 
energy homeostasis. Depicted are candi-
date genes focused on hypothalamic con-
trol of energy homeostasis. The location of 
neurons in the hypothalamus and brain-
stem, and cells in the stomach and adipose 
tissue expressing various genes involved in 
energy homeostasis are demonstrated with 
interactions between cells shown with ar-
rows. Nuclei in the hypothalamus include 
the arcuate nucleus (ARC), ventral medial 
nucleus (VMN), dormal medial nucleus 
(DMN), paraventricular nucleus (PVN) 
and lateral hypothalamic area (LHA). 
Brainstem regions shown include the dor-
sal raphe nucleus (DRN) and nucleus trac-
tus solitarius (NTS). BBB = blood brain 
barrier. The figure is modified from  [10–
13] . 
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tified as outliers in the Yup’ik data, and their phenotypic data 
were not included in our final analyses. We did, however, perform 
an association analysis of all phenotypes in Yup’ik data including 
the 13 outlier individuals. The results did not vary significantly 
in comparison to those excluding the outliers. In single SNP, gene, 
and gene-group association analysis, Pearson’s correlation be-
tween the resulting p values corresponding to the significance of 
the test of the association for all phenotypes, including and ex-
cluding outliers were found to be between 0.65 and 0.95. The phe-
notypes in both populations were adjusted for the covariates sex, 
age, age 2 , and their respective interactions.

  The 355 SNP markers were tested for Hardy-Weinberg equi-
librium in both population data sets. For 17 SNPs in the NYHP 
data and 21 SNPs in the Yup’ik data, all subjects were homozygous 
for the major allele and were thus not polymorphic. These SNPs 
were excluded from further analysis. 43 SNPs in the NYHP data 
and 73 SNPs in the Yup’ik data were found to be in Hardy-Wein-
berg disequilibrium. In NYHP data there are 17 SNPs that are not 
in HWE among the entire sample but are in HWE among lean 
subjects. There would be 11 more SNPs in HWE if the threshold 
were moved from 0.05 to 0.01. We performed the association anal-
yses including and excluding the SNPs that were in HW disequi-
librium. None of the SNPs in HW disequilibrium demonstrated 
statistical significance at the 0.05 significance level.

  For the NYHP data, associations between BMI and both addi-
tive and dominance effects of each of 355 SNPs were tested using 
the Ordinary Least Squares (OLS) regression method. The Yup’ik 
data, comprised of families, could not be analyzed using the OLS 
regression method because of correlations present among related 
individuals. Before analyzing the Yup’ik data set, we compared 
Within Cluster Resampling (WCR) and Mixed Model procedures 
to determine the validity of these methods suited for Yup’ik fa-
milial data set (see Appendix B for more details). We found that 
the WCR method gave more false positive results than expected. 
The false positive rate for the WCR method increased at lower 
significance thresholds. The mixed model always gave valid type 
I error rates. Thus, association analysis on these data was per-
formed using a mixed model approach in which we used family 
membership as a random effect by fitting a mixed model with 
phenotype as a dependent variable and family ID as a random ef-
fect, and SNPs and covariates as fixed effects using the PROC 
MIXED procedure in the Statistical Analysis System (SAS 9.1, 
SAS Institute Inc. Cary, N.C., USA). Because of multiple testing 
(for 355 SNPs) in both data sets, association results were tested at 
threshold significance level of 0.05 using the false discovery rate 
method of corrected tests  [25] .

  To assess the overall effect of multiple genetic variants in a 
particular gene on relevant phenotypes, each gene was tested for 
association with each phenotype by linear regression of each phe-
notype on additive and dominance effects of all SNPs in the gene. 
For the Yup’ik family data, we used a similar method of regression 
using a mixed model in which family membership was treated as 
a random effect. As noted, the candidate genes were included 
(non-exclusively) in 7 groups based upon their membership in 
molecular/physiological pathways mediating energy homeosta-
sis. As was done for the individual genes, the effects of these 
groups on relevant phenotypes were tested using linear regression 
modeling all SNPs in the group.

  The haplotype analysis was performed using a sliding window 
of size 2, 3, and greater until all of the markers within each gene 

were analyzed  [26] . For each haplotype analysis, the score test, 
was used in the R package Haplo Stats  [27, 28] . In the haplotype 
association analyses, age and gender were included as covariates. 
Multiple testing adjustment was performed following the strategy 
proposed in  [18] .

  We also searched for interactions among SNPs by fitting a lo-
gistic regression model with at most nine parameters: intercept, 
additive and dominance effects at each locus, and four interaction 
effects. We used the log-likelihood ratio test statistic (LRT) com-
puted as  �  2  df  = 2(L full  – L reduced ) where L full  is the log-likelihood of 
the data computed under a fully specified model and L reduced  is the 
log-likelihood of the data computed under the constraint that one 
or more parameters in the model are equal to zero, to explore pres-
ence of epistatic interactions. Since testing for interaction among 
several SNPs tends to increase multiple testing error rates, which 
are largely responsible for false positive results and failure to rep-
licate numerous phenotype-genotype associations  [29] , we chose 
to minimize the impact of multiple testing adjustment by estimat-
ing the number of truly null hypotheses from observed p values by 
a finite mixture model approach  [30] . Posterior probabilities of 
true positives (PTP), true negatives (PTN) and false negatives 
(PFN) were also estimated. Mix-o-matic approach uses maximum 
likelihood (ML) to fit a mixture model to observed p values, which 
represent two hypotheses groups: the null (modeled as uniformly 
distributed) and alternative (modeled as beta distributed).

  Results 

 Phenotypic characteristics of the 1,982 New York Eu-
ropean American NYHP subjects with valid genotype 
data are summarized in  table 2 a. Obese and lean subjects 
were matched for sex (56.7% female) and age. The mean 
age  8  standard deviation of obese patients was 47.7  8  
10.2 years, and the lean subjects were 46.5  8  10.7 years. 
The BMI of the obese subjects was 36.3  8  4.6 kg/m 2 ; the 
lean subjects had a BMI of 22.7  8  1.4 kg/m 2 .

  The phenotypes of the 593 Yup’ik participants (333 fe-
males and 260 males) are summarized in  table 2 b. They 
had a mean age of 38.3 years, mean BMI of 27.6 kg/m 2 , 
mean percent body fat of 29.4%, and mean waist circum-
ference of 90.2 cm ( table 2 b). The mean triceps, subscap-
ular, abdominal and thigh skinfold thicknesses were 21.0, 
21.2, 27.5, and 22.9 mm, respectively.

  355 of the original 384 SNPs were used in these anal-
yses (suppl. table S1). The 29 SNPs that were not used 
were not polymorphic in European Americans and/or 
Yup’ik Eskimos. For the 18 replicate European Ameri-
can subjects and 14 replicate Yup’ik Eskimo partici-
pants, all of the genotypes were 100% concordant for the 
355 SNPs genotyped. There was 100% concordance of 
genotypes determined by the bead array and other 
methods of genotyping including dideoxy sequencing 
and TaqMan.
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  When each of the SNPs was analyzed individually, 17 
SNPs in 9 genes ( GLP1R ,  GHRL ,  JAK2 ,  GHSR ,  HTR2A , 
 LEP ,  LEPR ,  NPY5R , and  SOCS3 ) demonstrated associa-
tion with BMI in the NYHP European Americans sample 
at significance level of 0.05 ( table 3 ). In the Yup’ik par-
ticipants, 142 SNPs in 21 genes ( ADIPOQ ,  ARL6 ,  BBS4 , 
 BBS5 ,  CNR1 ,  CPE ,  GHRL ,  GCG ,  GHSR ,  GLP1R ,  HTR2A , 
 HTR2C ,  JAK2 ,  LEPR ,  MC4R ,  NPY1R ,  NPY5R ,  PLIN , 
 SOCS3 ,  STAT3 , and  TUB ) were associated with measures 
of adiposity at significance level of 0.05 (suppl. table 2). 
The complete distribution of observed p values in both 
data sets is given in  figure 2 . After correction for multiple 
testing by False Discovery Rate (FDR) controlling proce-
dure, two SNPs (rs35682 and rs35683) in  GHRL  within 
600 base pairs of each other had FDR values below 0.05 
in the NYHP European American sample. However, af-
ter such correction, none of the associations in the Yup’ik 
participants remained significant.

  When all SNPs within a gene for each of the 30 candi-
date genes were evaluated jointly, polymorphisms in 
 GHRL ,  GLP1R , and  JAK2  were significantly associated 
with BMI in the NYHP European American sample, with 
each gene accounting for approximately 1% of the vari-
ance.  Table 4  provides the p values associated with genes 
significant at  �  level of ^5%, R 2 , and adjusted R 2  values. 

Table 2. Characteristics of the participants

a NYHP European Americans

Obese Lean
>80th perc. 10th to 30th perc.

Number (F/M) 990 (561/429) 992 (563/429)
Subjects with diabetes (F/M) 61 (37/24) 9 (3/6)
Age, years 47.66810.24 46.48810.68
BMI, kg/m2 36.2884.64 22.6881.40

b Yup’ik Eskimo

Number (F/M) 593 (333/260)
Age, years 38.33817.42
BMI, kg/m2 27.5885.95
Triceps skinfold, mm 21.03810.81
Subscapular skinfold, mm 21.24811.80
Abdominal skinfold, mm 27.53814.29
Thigh skinfold, mm 22.86813.04
Body fat, % 29.44810.84
Waist circumference, cm 90.17814.18

Data are the means ± standard deviations.

Table 3. SNPs associated with BMI in NYHP European Ameri-
cans

Gene SNP
name

Map
location

BMI (NYHP)

raw p value FDR

GHRL rs35683 10303250 0.0001 0.04
GHRL rs35682 10303782 0.0001 0.02
GHSR rs560994 173636722 0.009 0.75
GHSR rs4144707 173641907 0.02 0.57
GHSR rs495225 173648735 0.02 0.59
GLP1R rs9380825 39118941 0.01 0.63
HTR2A rs912127 46349287 0.01 0.66
JAK2 rs3780365 5058520 0.008 0.91
JAK2 rs966871 5111070 0.01 0.55
JAK2 rs2230722 5040706 0.02 0.66
JAK2 rs1410779 5073173 0.02 0.60
JAK2 rs3780379 5102519 0.03 0.66
JAK2 rs3808850 4973311 0.04 0.82
LEP rs791601 127460064 0.04 0.86
LEPR rs3790419 65779130 0.01 0.58
NPY5R Y5R1c52 164410779 0.02 0.70
SOCS3 rs4969170 73872133 0.02 0.62

Raw p value (p values without correction for multiple testing) 
and false discovery rate (FDR) estimates.

Table 4. Gene association p values for BMI at � level of 5% and 
corresponding R2 accounted for by the genes in NYHP European 
Americans using all SNPs genotyped within the gene

Target locus BMI

raw p value R2 adjusted R2

GHRL 0.03 0.018 0.010
GLP1R 0.02 0.033 0.011
JAK2 0.04 0.026 0.0084

For none of the genes were the FDR values less than 0.05.

Table 5. Haplotype analysis of genes associated with adiposity in 
the NYHP European Americans

AGRP GHRL NPY1R-5R

Number of SNPs 2 8 2
Permutation p value 0.03 0.04 0.008

p value is the adjusted p value using 2,000 simulations corre-
sponding to permutation test.
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Gene
group

Genes in the group BMI

raw
p value

R2 adjusted 
R2

1 LEP, LEPR, SOCS3, JAK2, STAT3 0.22 0.099 0.009
2 AGRP, CPE, MC4R, POMC 0.64 0.040 –0.002
3 GHRL, GHSR 0.03 0.027 0.010
4 GCG, GLP1R 0.01 0.033 0.011
5 NPY1R, NPY5R 0.12 0.012 0.002
6 HTR2A, HTR2C 0.16 0.056 0.007
7 BBS1, BBS2, BBS3, BBS4, BBS5, BBS6, BBS7, BBS8 0.40 0.036 0.002

For none of the genes were the FDR values less than 0.05.

Table 6. Results of regression analysis
of gene groups [‘pathway’ components]
in NYHP European Americans

Percent body fat
BMI
Waist circumference

Triceps skinfold

Gene group

1

0

1

2

3

4
–log(p value)

Scatter plot for association analysis

2 3 4 5 6 7 8

Subscapular skinfold
Composite score

Abdominal skinfold
Thigh skinfold
AMDeC BMI

  Fig. 2.  The distribution of –log(p value) distribution corresponding to single SNP association tests for both data 
sets given location of each SNP within gene groups as shown in table 6. 
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Note that none of the genes were significant after correct-
ing for multiple testing procedures by FDR. R 2  is the pro-
portion of variability in the phenotypic data that is ac-
counted for by a statistical model, which is a combined 
additive and dominant effect of one SNP or group of 
SNPs on a gene. Adjusted R 2  is a modification of R 2  that 
adjusts for the number of predictors (SNPs in this con-
text) in a model. The adjusted R 2  value increases only if 
the newly added predictor improves the model more than 
would be expected by chance. In the Yup’ik participants, 
four genes were associated with obesity phenotypes 
 (suppl. table 3), but when corrected for multiple testing, 
none of the associations with all the SNPs in any of the 
genes remained significant.

  Haplotype analysis demonstrated an association of 
BMI with  AGRP  (p = 0.03),  GHRL  (p = 0.04), and  NPY1R-
5R  (0.008), in the NYHP European Americans after cor-
rection for multiple testing ( table 5 ). No haplotypes were 
associated with any measures of adiposity in the Yup’ik 
participants after multiple testing correction.

  As noted, the candidate genes were selected in part 
based upon the molecular pathways in which they inter-
act ( fig. 1 ). Genes were analyzed in the groups shown in 
 table 6  by modeling all SNPs within the genes in that 
pathway. The regression analyses of SNPs for genes with-
in a pathway showed significant associations with BMI in 
the NYHP European American subjects, in particular, 
the  GHRL/GHS R pathway (p = 0.03) and the  GLP/GLP1R 
 pathway (p = 0.01) ( table 6 ). However, after correcting for 
multiple testing by the FDR procedure, neither of these 
associations had FDR values below 0.05.  GHRL/GHSR  
and  GLP1R  pathways both account for approximately 1% 
of the attributable variance in BMI. Similar analyses re-
vealed that none of the gene pathways in the Yup’ik par-
ticipants had FDR values below 0.05.

  The results of interaction analyses are presented in 
suppl. fig. 1 and suppl. table 4. Of the over 50,000 inter-
action hypotheses tested, we estimate that for 16.4% 
(95% confidence interval, 13.5–17.5%) the null hypoth-
eses were estimated by finite mixture models  [30]  to be 
false, which implies that a model including epistatic 
 interactions will better characterize the available data. 
The ten pair-wise interactions with the lowest observed 
p values i.e.,  ̂  10 –3  and the highest posterior probabi-
lities of being true positives ( 1 30%) are presented in 
suppl. table 4.

  The SNP with the most significant association with 
sex-, age- and diabetes-adjusted BMI in NYHP European 
Americans was rs35683 in  GHRL  with A/A genotypes 
having an adjusted BMI of 29.47  8  0.01 kg/m 2 , A/C gen-

otypes having an adjusted BMI of 29.50  8  0.008 kg/m 2 , 
and C/C genotypes having the lowest adjusted BMI of 
29.44  8  0.01 kg/m 2 .

  Discussion 

 We studied two independent groups of subjects for 
association with 30 candidate genes for obesity involved 
in 7 molecular pathways regulating energy homeostasis. 
Of the 30 genes analyzed, two SNPs within  GHRL  
(rs35682 and rs35683 within 600 base pairs of each oth-
er) are associated with BMI in the New York European 
American population. Polymorphisms in  GHRL  have 
previously been associated with obesity, impaired glu-
cose tolerance, and the metabolic syndrome in several 
previous studies in European American children and 
adults  [31–40] . Both rs35682 and rs35683, the two SNPs 
in  GHRL  most highly associated with BMI, are intronic 
and are not located in regions that are conserved across 
species. The two SNPs themselves are not predicted to 
result in changes in splicing or expression. Therefore, 
the biological effect of these SNPs is likely through an-
other variant in linkage disequilibrium with rs35682 
and rs35683. Notably, the  GHRL  SNPs rs696217 (Leu-
72Met) and rs27647 (5 � UTR polymorphism) previously 
associated with adiposity in children and adults from 
Japan, Finland, Italy, and North America  [33–36, 38, 40]  
were not the SNPs most highly associated with BMI in 
our study. The phenotypic effect of the  GHRL  variants 
is modest, and account for a difference in BMI of only 
0.06 kg/m 2 , with the heterozygotes having a higher BMI 
than either of the homozygous genotypes. This is an ex-
ample of heterosis at a single locus conferring an in-
creased BMI for the heterozygotes.

  Our studies include two very different racial groups in 
two very different environments, European Americans 
living in the New York metropolitan area and Yup’ik Es-
kimos living in rural Alaska. Only one SNP in one gene, 
rs560994 in  GHSR , was found to be associated with BMI 
in both populations, but was not significant in the Yup’iks 
or European Americans after correction for multiple 
testing. The lack of replication may be in part based upon 
genetic and environmental differences between the 
groups, and is not surprising. Our study underscores the 
need to study large numbers of subjects in multiple popu-
lations.

  We analyzed the family data (Yup’ik participants) us-
ing a mixed model with correction for multiple testing 
using the FDR procedure. This methodology is conserva-
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tive and protects against false positives. Our results that 
did not meet rigorous FDR cutoffs might still be the basis 
for testing these genes in other populations.

  The genetics of complex traits such as obesity are likely 
to result from interactions among genes and between genes 
and the environment. We used the molecular physiology 
of the control of energy homeostasis to cluster genes with-
in molecular pathways and to examine interactions among 
these genes. Bardet Biedel syndrome represents an oligo-
genic example of interacting genes  [15]  and provides a ra-
tionale for this approach. By using prior knowledge of 
genes within networks/pathways, the number of tests for 
interactions that must be performed to test hypotheses of 
gene  !  gene interactions can be reduced. Given the num-
ber of genes we studied, testing for all possible combina-
tions of gene  !  gene interactions would have resulted in a 
prohibitive penalty for multiple testing. Even using our 
strategy of testing only for interactions of genes within 
common pathways, we were unable to demonstrate sig-
nificance for the interactions within the ghrelin/ghrelin 
receptor and  GLIP1R  pathways in the European Ameri-
cans after correcting using the false discovery method. 
Our experience highlights the need for extremely large 
studies to adequately power analyses of complex traits for 
gene ! gene and gene ! environment interactions.
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  Appendix A: Derivation of Composite Score 

 Often we are required to select the individuals from large data 
sets with a multivariate phenotype such that the sub-sample is best 
representative of the sample and preserves the correlation struc-
ture among the multivariate phenotype as well as provides optimal 
chance of finding putative genetic loci. In the Yup’ik sample, we 
have adiposity related multivariate phenotypic data consisting of 
BMI, skinfolds (subscapular, suprailiac, thigh, triceps), waist cir-
cumference, and percent body fat. However, it is not clear which 
phenotype or combination of phenotypes should be used in deter-
mining the sub-sample. In most situations investigators use a pri-
mary phenotype of interest to create a sub-sample by using an 
extreme sampling design (i.e. selecting only individuals from both 
extremes of the distribution using fixed threshold). This sampling 
design does provide optimal power for the primary phenotype, but 
not necessarily for other correlated phenotypes which may also be 

of interest. We used the selection strategy using all correlated phe-
notypes and incorporating the correlation structure in the pedi-
grees. Here, we provide a short description of a potentially useful 
measure to estimate individual phenotypic value based on multi-
variate data following Allison and Franklin  [41] .

  Consider k correlated phenotypes Y i  measured on individuals 
in a sample. Then the minimum variance estimator of combined 
phenotypes Y i  for j-th individual is given by
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 where k = the number of observed variables for individual j, Y ij  = 
the standardized i-th variable for the j-th individual, W j  = the 
weight for the i-th variable. 

Without loss of generality, we can assume Y 1  is the primary 
trait. Let  �  1  i  = genetic correlation between i-th secondary variable 
and primary variable Y 1  (for example, BMI can be considered as 
a primary variable and percent body fat (PBF) or skin fold mea-
surements can be considered as secondary variables). Then fol-
lowing Allison and Franklin  [41] , we can define W 1  = 1/�1–h2

1 and 
the weight for the correlated secondary n-th variable is defined as 
W n  = 1/�1–�2

1n. Note that weights as function of heritability of pri-
mary trait and/or genetic correlations between primary and sec-
ondary traits will allow us to capture the genetic variance of each 
trait in the composite score. We can further refine the combined 
score by using variance shrinkage method, and the new updated 
combined score is given by Y j  = Ŷ j  (�1–SE2

Ŷj).  Note that this score 
can easily accommodate missing data and also preserves the cor-
relation between primary trait and secondary traits. 

 After calculating a composite score for each individual in the 
pedigrees, we calculated the total variance of the composite score 
for each family. The distribution of the composite score is given 
in  figure A1  and the power estimates using selected pedigrees are 
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  Fig. A1.  The distribution of composite scores for obesity for the 
non-pregnant Alaska Native Yup’ik Eskimos,  6 18 years. The 
composite measure score is a weighted average of BMI and percent 
body fat, waist circumference, and four skinfold thicknesses. 
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given in  table A1 . The power was calculated using simulated data 
set those mimic the Alaska pedigrees. We simulated 1,000 repli-
cates of pedigrees keeping structure of the pedigrees exactly same 
as Alaska pedigrees and also only simulating phenotypes and 
genotypes of individuals with available DNA and obesity related 
traits as in real data. The analysis was performed using ASSOC of 
SAGE suite of programs. We have sufficient power to detect puta-
tive loci with locus heritability of 0.05 at 5%  �  level.

  Appendix B 

 Before analyzing the Yup’ik data set that consists of genotypes 
and multivariate phenotypes in pedigrees, we compared the 
Within Cluster Resampling and Mixed-Model procedure to de-
termine the validity of these methods suited for Yup’ik familial 
data set. We briefly describe both methods.

  Within-Cluster Resampling (WCR) 
 WCR was first introduced by Hoffman et al.  [42]  and subse-

quently expanded upon by Follmann et al.  [43] . WCR is an elegant 
method for analyzing correlated clustered data and is a simple but 
computationally intensive estimation method. The steps of the 
methods are described below.

  Step 1: Select one individual from each cluster with replace-
ment. Repeat this  m  times to create  m  data sets.

  Step 2: Analyze each of the  m  data sets using standard com-
plete-data methods such as SAS or SPSS.

  Step 3: Integrate or combine  m  analyses to get a single estimate 
of parameters and their variances. This involves averaging the 
values of the parameter estimates across the  m  samples to produce 
a single point estimate and variance. Formally, we can describe it 
as follows:

  Let  m =  the number of data sets analyzed,      Q̂  j  = Estimate of the 
parameter of interest from the i-th set,    T̂  i    = Variance Estimate of 
the    Q̂  i  from the i-th set.

  The point estimate from the WCR method is the average of the 
estimates from  m  analyses and is given by
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 and the total variance estimate of the point estimate is the differ-
ence of within replicate variance 
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 The original method was used for binary correlated clusters where 
cluster size is informative, but it could easily be extended to con-
tinuous phenotypes. 

 Mixed-Model Procedure 
 The linear mixed effects model may be viewed as a generaliza-

tion of the variance component and regression analysis models in 
which SNPs are modeled as fixed effects and family ID as random 
effect. In particular, we can write the model as

  Y =  �  +  �  1  SNP +  �  2  FamID +  � ,

  where 	 is the outcome variable (phenotype) such as BMI,  �  is 
overall mean of the phenotype,  �  1  is treated as fixed effect,  �  2  is 
treated as random effect, and  �  as non-shared random effect. 

 Simulation Procedure 
 We simulated 100,000 replicates each with 50 unequal size 

families shown in  figure B1 .

  Quantitative Trait Simulation 
 We simulated a mixed model quantitative trait for each indi-

vidual in the family structures described above assuming no ma-
jor locus effect to determine the behavior of the null distribution. 
The polygenic component was assumed to be normally distrib-
uted with mean 0 and variance 0.30 and the random environmen-
tal component was assumed to be normally distributed with mean 
0 and variance 0.70.

  Marker Simulation 
 Marker with 2 alleles was simulated for testing the null hy-

pothesis of no association with allele frequency of 0.2. Genotypes 
of founders were simulated by two random draws from binomial 

Table A1. Power of association test for given locus and polygenic 
heritability when only 593 individuals have phenotype and geno-
type data available

h2
total h2

locus h2
poly Power

� = 0.05 � = 0.01

0.2 0.05 0.15 0.766 0.618
0.1 0.1 0.940 0.923

0.5 0.05 0.45 0.827 0.673
0.1 0.4 1.000 0.951

0.7 0.05 0.65 0.837 0.719
0.1 0.6 1.000 1.000
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  Fig. B1.  Pedigrees of unequal size used for simulation.   

distribution with p = 0.2 and n = 2 to get both alleles in the geno-
type. The non-founders genotypes were randomly assigned fol-
lowing Mendelian inheritance.

  The Type I error rate of both WCR and Mixed Model is given 
in the  table B1  at nominal  �  levels at 0.05, 0.01, 0.001, and 0.0001, 
respectively. Clearly, WCR produces inflated type I error rates 
compared to mixed model. Mixed model always gave valid type I 
error rates. Thus, we have shown that mixed model is an attractive 
choice as a method to test association in pedigree data since it rep-
resents a good balance between quality of results and ease of use.
 

Table B1. Comparison of WCR and mixed model methods with 
respect to Type I error rates

Method Nominal � level

0.05 0.01 0.001 0.001

WCR 0.07935 0.03476 0.01673 0.01027
Mixed model 0.05036 0.00996 0.00091 0.00010

The results are shown for 100,000 replicates of 50 unequal size 
pedigrees. We used 10,000 bootstrap samples in WCR.
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