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Abstract
Donor lymphocyte infusion (DLI) for patients who relapse following an allogeneic stem cell
transplant has proved remarkably durable. Because of the potential for second remissions with DLI,
the current leukemia free survival (CLFS), which is the probability that a patient has not failed the
entire course of the treatment, is becoming of interest to clinical investigators. Based on either a
multistate Markov model or a linear combination of Kaplan–Meier estimators, we explore regression
models for the CLFS. We focus on the two sample problem and we develop confidence bands for
the CLFS or for differences in CLFS as well as a Kolmogorov type hypothesis test using a re-sampling
technique. We also examine the use of pseudo-values to make inference on the direct effects of
covariates on the CLFS function and we develop a score test for the equality of two CLFS. We
illustrate these inference methods on a bone marrow transplant dataset.
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1 Introduction
Allogeneic bone marrow transplantation has in recent years become standard therapy for
patients with acute and chronic leukemia as well as other hematological malignancies. Here a
patient receives high doses of radiotherapy and/or chemotherapy to ablate the disease in the
marrow. The normal function of the bone marrow is restored by transfusion to the patient of
hematopoietic stem cells collected from a normal donor.

Most often studies have focused on the chance a patient is cured of his or her disease, the chance
a patient may die as a consequence of complications of the transplant procedure and/or the
chance that the leukemia may relapse and eventually be the cause of the patient’s death.

In recent years, particularly for leukemia patients, post-relapse therapies have been developed
that will induce a second remission. One such therapy was based on the anti-leukemic effect
of lymphocytes (The graft-versus-leukemia or GVL effect) derived from the donor’s marrow
when transfused to the patient (cf. Horowitz et al. 1990). The recognition of this so-called GVL
effect led to the development of a new approach to managing patients who relapse after
hematopoietic stem cell transplant (HSCT), namely collection of lymphocytes from the donor
and infusion to the patient without further radiotherapy or chemotherapy (cf. Kolb et al.
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1990; Collins et al. 1997; Craddock et al. 2000). The intention of this donor lymphocyte
infusion (DLI) therapy is to reinforce the GVL effect in the patient and restore complete
remission. In practice, this therapy has been remarkably successful in patients who relapse after
allografting for chronic myeloid leukemia (CML) and effective also in patients with acute
leukemia, myeloma and lymphoma.

With the advent of DLI and other post-transplant therapy, it is clear that patients who relapse
after transplantation are no longer considered as failures for the transplant. Traditional
statistical measures such as the relapse or treatment-related mortality cumulative incidence
functions or the leukemia free survival curve are not appropriate measures of the success of
the transplant. The current leukemia free survival function has been used to describe the success
of transplants with post-relapse therapy. This function is the probability that a patient is alive
and in remission (first or second) at a time after transplant.

In this report, we examine inference for the current leukemia free survival (CLFS) function.
In the next section we briefly review estimation for the CLFS function. In Sect. 3, we extend
the results of Lin (1997) to develop confidence bands for the CLFS function, an omnibus test
comparing two CLFS functions and a confidence band for the difference of two CLFS
functions. In Sect. 4, we show how the pseudo-value approach of Andersen et al. (2003) can
be used to make inference on the CLFS function. We develop a new score test to compare two
cumulative incidence functions. In the final section, we illustrate these techniques on a data
set of 614 CML patients treated at the Hammersmith hospital in London first reported in
Craddock et al. (2000).

2 Estimation of the current leukemia free survival
The Current leukemia Free Survival function can be estimated using either a multistate
modeling approach (cf. Klein et al. 2000b) or by using a representation as a linear combination
of survival functions (cf. Klein et al. 2000a). The multistate process on which the CLFS
function is based can be illustrated as in Fig. 1. In the HSCT process, patients at time t can be
in one of three transient states: Alive in remission after transplant (State 0), alive and relapsed
(State 2) or alive and in second remission (State 4) or in one of three possible absorbing states:
dead without disease (State 1), dead with disease (State 3) or dead or in second remission (State
5). The CLFS function is the probability a patient is alive in first remission (State 0) or alive
in second remission (State 4).

Based on Fig. 1, we define Ni(t) be the indicator that the patient has visited state i prior to time
t and λi() the rate of transition into state i = 1, …, 5. Define the set of orthogonal martingales

where  is the number at risk for a transition into state i at time t. Note that  and 
are both equal to Y0(t), the number in State 0 at time t;  and  are both equal to Y2(t),
the number in State 2 at time t; and  is equal to Y4(t), the number in State 4 at time t. Using
basic results (cf. Andersen et al. 1993) on multistate modeling the state probabilities can be
estimated using the product-integral of the Nelson-Aalen estimators of the transition intensities
(See Klein et al. 2000b) as follows:
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where

(1)

An alternative estimator suggested by Klein et al. (2000a) is based on using the difference of
two Kaplan–Meier estimators to estimate P4(t). For this estimator, define N˜1(t) = N1(t) +
N2(t) to be the number of patients who have visited States 1 or 2; N˜2(t) = N1(t) + N3(t) +
N5(t) be the number of patients who have died or had a second relapse; and N˜3(t) = N1(t) +
N3(t) + N4(t) be the number of patient who have died prior to a second remission or who have
experienced a second remission. Let Y˜1(t) = Y0(t), Y˜2(t) = Y0(t)+Y2(t)+Y4(t) and Y˜3(t) =
Y0(t)+Y2(t) and λ̃k(t) be the intensity function for N˜k(t), k =1, 2, 3. One can show that

are martingales, but they are not orthogonal to each other since N1(t) at least is common to
each martingale. We define the three Kaplan–Meier estimators by

Note that S˜1(t) is the chance a patient is in State 0, S˜2(t) the chance the patient is in States 0,
2, or 4 and S˜3(t) the chance the patient is State 0 or 2. Hence the current leukemia free survival
function can be estimated as

(2)

This estimator, which can be computed using standard statistical software, is used in the sequel.

To make inference about the current leukemia free survival function, we use the fact (cf.
Andersen et al. 1993) that for large samples

(3)

The martingales M˜k(t) are not independent since they depend on common counting processes.
However, we can represent these martingales as functions of the basic martingales for the
individual transitions. Routine algebraic manipulation yields the following result.
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Lemma 1
1.

2.

3.

4.

5.

Using (4) and (5) after some simplification we can show that the variance of  can be
estimated consistently by

3 Inference for the CLFS based on Lin’s approach
To make inference about the distribution of the estimated CLFS function, we can use a
modification of the sampling technique proposed by Lin (1997). To apply this approach, first
substitute the martingale representation S˜k(t) − Sk(t), k = 1, 2, 3 in (3) into (2) to obtain a
representation for W(t) = [C˜(t) − C(t)]. In this representation, the three terms are based on
non-orthogonal martingales, M˜k(t), k = 1, 2, 3. We next use (1–3) in Lemma 1 to replace
M˜k(t) by sums of the orthogonal martingales, Mj(t). After this replacement, we then

approximate the distribution of Ŵ(t) by replacing Mj(t) with 
where the Gji’s are independent standard Normal variables and all other unknown quantities
are replaced by their sample estimates. After some simplification, we have
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(4)

Given the data, Ŵ(t) is asymptotically equivalent to the distribution of W(t) and the large sample
distribution of W(t) can be approximated by a large number of realizations from Ŵ based on
repeated sampling of the Gji’s. This approximation can be used in a number of applications.

3.1 Confidence bands for the CLFS function
Confidence bands for the current leukemia free survival function can be constructed as
suggested by Lin (1997). Consider the transformed process

where ϕ(t) is a known function with a non-zero continuous first derivative ϕ′ and g is a known
weight function which has a non-negative bounded limiting function. Note that we can use
either the Markov estimator (1) or the linear combination of Kaplan– Meier (2) estimators here.
Now using the functional delta method, we have that Q(t) is asymptotically equivalent to

 whose large sample distribution we can approximate by .
If we let qα be the critical value with the property that

then an approximate (1 − α) confidence band for ϕ(C(t)) is

which can be readily converted to a confidence band for the current leukemia free survival
function. As noted by Borgan and Liestøl (1990) confidence bands based on a log transform
seem to work well for small to moderate samples. Thus, we take ϕ(x) = ln[− ln[x]]. For g(t),
we use either  or . The two resulting confidence

bands are of the form  where for g1 we have  and
for g2 we have . When there are no transitions out of State 2,
then the CLFS function reduces to the usual leukemia free survival with death or relapse as an
event and the interval based on g1 is the (log-transformed) equal probability (EP) confidence
band of Nair (1984) and the interval based on g2 is the Hall and Wellner (1980) version of band
for the survival function. Following the recommendation of Nair (1984), we suggest using τ1
and τ2 so that t is restricted to those values with σ̂ (t)/[1 + σ̂2(t)] ∈ [0.01, 0.99].

Liu et al. Page 5

Lifetime Data Anal. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2 Confidence bands and test for the difference of two CLFS functions
The above approach can be extended to the comparison of two CLFS functions. Suppose that
we have two independent samples of size n1 and n2, respectively. Let , i = 1, 2 be the
estimated CLFS function for sample i. Using (4), we can approximate the distribution of

 by D^(t) = Ŵ1(t) − Ŵ2(t). Using this representation, we
can generate samples from the process D() using independent normal deviates for each sample.

An omnibus test of the null hypothesis that the two current leukemia free survival functions
are equal can be based on U = Sup|C^1(t) − C^2(t)|. Under the null hypothesis, the distribution
of U can be found by repeated sampling from D(·), so that based on M samples from D(), the
p-value of the test is the proportion of samples for which sup |D^(t)| ≥ U.

This approach can also be used to find confidence bands for the difference of two CLFS
functions. These bands are useful for assessing where the CLFS functions differ and what part
of the therapy is driving the difference. To construct the intervals, we find a confidence

coefficient dα, based on repeated sampling from D^(t), as . This leads
to the confidence band C^1(t) − C^2(t) ± dα for τ1 < t < τ2.

Both the confidence band and the hypothesis test could be easily modified to look at weighted
differences between the two CLFS functions.

4 Inference based on pseudo-values
An alternative approach to inference for the CLFS function is to use the methods for pseudo
values presented for CLFS functions in Andersen et al. (2003) and Andersen and Klein
(2007). This approach has been used in a general regression model approach in Andersen and
Klein (2007) to directly model the CLFS function. In this section, we will focus on the two
sample problem and present an approach to comparing two CLFS functions based on a score
test constructed using the pseudo-values at all the jump points of the estimated pooled sample
CLFS function. In this simple case, the score test has a simple closed form solution.

To construct the test let τ1,…,τD be the distinct times at which the estimated CLFS function
changes values. Note that these are the set of times where a transition to State 1, 2, 3, 4 or 5
occurs and that a single individual may contribute anywhere from zero to three times to this
set. Let

where C^(·) is the estimated CLFS function using the pooled sample of size n and C^(i) (·) is
based on the sample of size n − 1 obtained by deleting the ith observation. Either the Markov
estimator or the linear combination of Kaplan-Meier estimators can be used to estimate the
CLFS.

Once we have obtained the pseudo-values, we define a covariate Zi = 1 if the patient was in
group 1 and 0 if they were in the other group. We model the CLFS at time τj for the ith patient,
θij as g(θij) = αj+γ Zi. Here g() is a link function. Let µi(αj + γ Zi) = g−1 (αj + γ Zi), j = 1,…,D
and µ(β|Zi) = (µi(α1 + γ Zi), …, µi(αD + γ Zi)), where β = (γ, α1,…, αD). Estimates of model
parameters can be based on the unbiased estimating equations
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(5)

Here Vi is a working covariance matrix which we will for simplicity take to be the identity
matrix and θ̂i = (θ̂i1,…, θ ̂iD)t. A sandwich estimator can used to estimate the variance of β̂ =
(γ̂, α̂1,…, α̂D). Let

Alternative estimators of the variance of β̂ can be found by using a bootstrap technique.

When there is a limited number of time points, estimates of the α’s and γ can be obtained by
standard generalized estimating equation software such as PROC GENMOD in SAS or the
package GEESE in R.

An alternative use of the pseudo values is a score test of the hypothesis of no group effect (i.e.,
γ = 0). Note that for the two sample problem with no covariates we have that

where g¨(x) = ∂g−1 (x)/∂x. This leads to a set of score equation given by

Under the null hypothesis that γ = 0 one can solve the score equations explicitly for α so that

 where  for k=1,…, D.

To construct the score statistics we need an estimator, under H0, of the model, ∑M, and
empirical, ∑E, based variance estimates. The model based variance is given by . Here
we have that Io is the partitioned matrix given by
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where A11 is the scalar ;  and A22 is the D × D diagonal

matrix with (j, j) element , , and n1 is the number in sample 1. The inverse
of this partitioned matrix is also a partitioned matrix with

Here  and

The empirical based variance is given by  where . Here we have
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The generalized score statistic for testing the hypothesis of no treatment effect, γ = 0 (Boos

1992; Rotnitzky and Jewell 1990) is  where (11) implies the
(1,1) term of the matrix. This statistic reduces to

which has a chi-square 1 distribution under Ho.

For some standard models, the weights are easy to compute. That is  reduce to 1 for the

identity link function; to  for the complimentary log–log link function and to

 for the logit link function.

5 Application
To illustrate the techniques, we use a set of 614 CML patients treated at the Hammersmith
hospital in London. The data were reported in Craddock et al. (2000). In the study, there were
202 patients who died in first remission and 245 patients who relapsed. Of the 245 relapse
patients, 118 died without achieving a second remission and 77 achieved a second remission.
Thirteen of the 77 second remission patients either died or experienced a second relapse at
which time they were considered as treatment failures. The mean follow-up of all patients was
5.2 years (range 0.02–21.1 years). We will focus on comparing the current leukemia free
survival between patients with a HLA matched sibling donor (n1 =371) and those with a HLA-
matched unrelated donor (n2 = 243).

In Fig. 2, we present a plot of the two current leukemia free survival functions. Note that the
CLFS function is not a monotone function of time reflecting that a patient may relapse, recover
and then fail again.

Figure 3 shows the CLFS function for the HLA-matched sibling donor group. The solid line
is the estimate of the CLFS, the dashed line the 95% pointwise confidence interval, the dotted
line is the 95% EP like confidence band and the dot-dash lines the 95% Wellner type confidence
bands. The confidence bands are based on a log transformation of the CLFS and 1000 Monte
Carlo replicates. They are both over the range 30 days–15 years. Note that there is little
difference between the two bands.

Figure 4 shows the estimate (solid line) and a 95% confidence band (dashed lines) for the
difference in the two CLFS functions. Again the confidence bands are based on 1000 replicates.
The maximum difference between the two CLFS function was 0.2898 and the p-value for
testing the hypothesis that the two curves are different, based on 1000 independent replicates,
was less than 1/1000. Note the figure clearly shows the advantage of using a sibling donor for
this procedure.

Using the pseudo-value approach the score statistics using the identity, the log-log and the logit
link and all time points gave chi-squares of 24.56, 25.60 and 26.34, respectively. All tests are
highly significant when compared to a chi-square with one degree of freedom. This is again
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strong evidence that the CLFS functions are different between the sibling and unrelated donor
transplant recipients.

Some additional modeling/testing is available if we restrict the number of time points at which
the pseudo-values are computed. Below we base estimation on nine pseudo values computed
at approximately 100 days, 6 months and 1, 2, 3, 4, 5, 6, and 9 years. Using the complementary
log–log (CLL) and logistic models, we can estimate the relative risk or the odds ratio,
respectively, of the effect of donor type on the CLFS, as eγ. For the CLL model, we have that
γ̂ = 0.49 and the relative risk of an unrelated donor as compared to a sibling donor is 1.6 (95%
confidence interval [1.3,2.0]), while for logistic model we have that γ̂ = .74 and the odds ratio
is 2.1 [1.6,2.8]. Both have p < 0.0001. We can also adjust our estimates for other effects. Here
we adjust for the effect of stage of disease (early 73.8%, intermediate 22.5%, and advanced
3.7%) and patient age. Table 1 shows the results of a model with donor type and the other two
factors. Note that the effect of donor is more pronounced in the adjusted model. We can also
examine the effect of donor by looking at a model with an interaction between time and donor
type. This model is shown in Table 2. As the confidence band in Fig.4 showed there is an
advantage for sibling donors for most time points and that this advantage is the highest at about
one year.

6 Discussion
The analysis of multistate models in general and inference for the current leukemia free survival
function in particular provides a challenge to statisticians, especially when interest is the direct
modeling of the effect of treatment on outcome. These problems are of particular interest in
HSCT studies where post-transplant events or therapy may influence the patient’s health state.
In the case of the CLFS function, it is of interest to compare how various treatment therapies
may affect the chance a patient is in the healthy state of remission.

These techniques provide a way to estimate the CLFS and to provide an idea of the statistical
uncertainty associated with that estimate. As seen in the example and Fig. 2 for HLA identical
siblings we can say with 95% confidence that between 3 and 15 years after transplant that
between 30% and 50% of the patients will be in either first or second remission.

More useful, perhaps, than the estimates of CLFS is the tests and associated confidence bands
for comparing treatment effects. The test and methods based on the approach in Sect.3 provide
an omnibus test to compare the two treatments. The test simply asks the question are the
treatments different at some point in time while the confidence band for the difference in
survival curves tells us where they are different and by how much. In the example, we see that
patients with an HLA sibling donor do significantly better than patients given an unrelated
donor transplant. Figure 4 shows that the improvement in CLFS is highest at about 9 months
where the difference is between about 20% and 40% and that in the long run after about 3 years
there is between 3% and 27% increase in CLFS on an absolute scale.

The pseudo-observation approach provides an alternative approach to inference for the CLFS.
The score test provides a relatively simple, closed form test which does not require extensive
Monte Carlo work to obtain the p-value. The pseudo-observation approach allows direct
regression modeling of the CLFS function. In this example, the tests based on the pseudo-
observation method tell the same story as the omnibus test, namely, that patients given a sibling
donor transplant are more likely to be in remission then those with an unrelated donor
transplant. Here the magnitude of the difference is expressed by an odds ratio or relative risk
as opposed to a figure such as Fig. 4.
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An obvious question is which method is better. Clearly the power of these tests depends on the
type of differences one expects to see. For crossing CLFS functions, the omnibus test in Sect.
4 has higher power while the tests based on pseudo-observations may have limited power. The
tests based on the pseudo-observations will depend on the structure of the alternative hypothesis
and the selection of the link function. This question is currently being investigated.

While these methods were developed for inference for the CLFS function they can be extended
and applied to other multistate models that explain the HSCT recovery process. The pseudo-
observation approach is particularly adaptable as shown in Andersen and Klein (2007).
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Fig. 1.
Multistate model for donor leukocyte infusion
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Fig. 2.
Current leukemia free survival
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Fig. 3.
Estimated CLFS for HLA identical sibling donors. Solid line estimated CLFS; dashed line is
the 95% pointwise confidence interval; dotted line is 95% EP like confidence band and the
dot-dash lines are the 95% Wellner type confidence bands
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Fig. 4.
95% Confidence band for the difference in CLFS
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Table 2
Effect of donor type over time

Time CLL model Logit model

Relative risk 95% Confidence interval Odds ratio 95% Confidence interval

100 days 1.44 1.06–1.97 1.53 1.06–2.20

6 months 1.82 1.41–2.36 2.16 1.55–3.02

1 year 2.35 1.87–2.95 3.51 2.48–4.95

2 years 1.77 1.42–2.21 2.40 1.70–3.38

3 years 1.57 1.26–1.95 2.03 1.43–2.89

4 years 1.52 1.22–1.89 1.93 1.36–2.76

5 years 1.45 1.16–1.81 1.81 1.27–2.60

6 years 1.44 1.15–1.80 1.79 1.25–2.58

9 years 1.45 1.16–1.83 1.86 1.26–2.74
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