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Abstract
Reduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and
extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main
mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins
responsible for GSH export from mammalian cells have recently been identified, and there is
increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a
number of key biological processes. In particular, the multidrug resistance-associated proteins (Mrp/
Abcc) appear to mediate GSH export and homeostasis. The Mrp proteins mediate not only GSH
efflux, but they also export oxidized glutathione derivatives (e.g., glutathione disulfide (GSSG), S-
nitrosoglutathione (GS-NO), and glutathione-metal complexes), as well as other glutathione S-
conjugates. The ability to export both GSH and oxidized derivatives of GSH, endows these
transporters with the capacity to directly regulate the cellular thiol-redox status, and therefore the
ability to influence many key signaling and biochemical pathways. Among the many processes that
are influenced by the GSH transporters are apoptosis, cell proliferation, and cell differentiation. This
report summarizes the evidence that Mrps contribute to the regulation of cellular GSH levels and the
thiol redox state, and thus to the many biochemical processes that are influenced by this tripeptide.
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Introduction
Reduced glutathione (GSH) plays an important role in cell metabolism, differentiation,
proliferation, and apoptosis, and as a result, disturbances in its homeostasis are implicated in
the etiology and/or progression of a number of human diseases, including cancer, diseases of
aging, and cardiovascular, inflammatory, immune, and neurodegenerative diseases. GSH is
synthesized in the cell cytosol, whereas its degradation occurs exclusively in the extracellular
space, and thus export from the cell is required for normal GSH turnover from all mammalian
cells. In the liver, a major site of GSH synthesis and export, GSH is released at high rates into
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both blood plasma and bile. GSH transport into bile functions as a driving force for bile
secretion and plays an important role in the transport and hepatic detoxification of reactive
compounds of both endogenous and exogenous origin. GSH is also released at high rates across
the sinusoidal membrane into blood plasma, for delivery to other tissues. Although the
molecular identity of GSH transporters has remained elusive, recent studies have implicated a
major role for some Mrp/Abcc proteins in this process. The present overview will summarize
the data demonstrating that the Mrp proteins are able to export GSH as well as various GSH
derivatives, and in doing so may contribute to several processes, including the control of
cellular redox status, delivery of cysteine to other tissues, export of signaling molecules,
elimination of xenobiotics and reactive metabolic intermediates, as well as to cell
differentiation, proliferation, and apoptosis.

Cellular GSH homeostasis
The synthesis and catabolism of GSH and GSH-adducts occurs by a regulated series of
enzymatic and plasma membrane transport steps that are collectively referred to as the gamma-
glutamyl cycle (Meister and Anderson, 1983; Meister and Tate, 1976;). Figure 1 depicts the
steps of this cycle as they occur in hepatocytes, which are a major site of GSH biosynthesis
and export. GSH is synthesized in the cell cytosol from its precursor amino acids. Within the
cell, it exists mainly (>98%) in the thiol-reduced form (GSH), but some is also present in the
thiol-oxidized (GSSG), thioether, mercaptide or other thioester forms (glutathione S-
conjugates and complexes) (Fig. 1). After its synthesis, some of the GSH is delivered into
specific intracellular compartments, including mitochondria and endoplasmic reticulum, but
much of the GSH is delivered to extracellular spaces, including blood plasma, epithelial lining
fluids, and exocrine secretions (e.g., bile; Fig. 1). In contrast to GSH synthesis, which occurs
intracellularly, GSH degradation occurs exclusively in the extracellular space, and only on the
surface of cells that express the ectoenzyme gamma-glutamyl transpeptidase (γGT; Fig. 1).
Thus, export from the cell is required for normal GSH turnover, and for metabolism and
disposition of GSH adducts.

The mechanisms of GSH transport into mitochondria and endoplasmic reticulum have not been
established, although some possibilities have been suggested. Studies with kidney and liver
mitochondria indicate that the dicarboxylate carrier (DIC, Slc25a10) and the oxoglutarate
carrier (OGC, Slc25a11) contribute to the transport of GSH across the mitochondrial inner
membrane (Lash 2006); however, differences between kidney and liver mitochondrial GSH
transport suggest the existence of additional unidentified carriers (Fernandez-Checa and
Kaplowitz 2005). For the endoplasmic reticulum, studies demonstrate that GSH accumulation
by isolated membrane vesicles correlates with the abundance of ryanodine receptor type 1
(RyR1), is inhibited by RyR1 blockers, and the inhibitory effect is counteracted by RyR1
agonists, suggesting that RyR1 is associated with GSH transport in this organelle (Banhegyi
et al. 2003; Csala et al. 2001). However, because ryanodine receptors contain many cysteine
residues that are susceptible to S-glutathionylation (Aracena et al. 2003), it is not clear whether
these effects on GSH accumulation by the vesicles are due to the actual transport of GSH across
the membrane or to altered binding of GSH to the ryanodine receptors or to other proteins in
the membrane vesicles (i.e., S-glutathionylation).

As noted above, although some of the GSH made within cells is delivered into intracellular
compartments, much of it is exported across the plasma membrane into extracellular spaces.
GSH turnover rates in most cells are relatively rapid, with half-lives of only 2–6 h (Meister
and Anderson, 1983; Meister and Tate, 1976), indicating high rates of both GSH synthesis and
export. Although large quantities of GSH are secreted into blood plasma, GSH concentrations
in this compartment are relatively low, ~0.01 mM, owing to the rapid catabolism of the
tripeptide in the circulation. Once GSH is released from cells it is rapidly degraded in the
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circulation by the plasma membrane-bound enzymes γGT and dipeptidases to release the free
amino acids (i.e., Glu, Cys, and Gly), the dipeptide Cys-Gly, and other peptides (Meister and
Anderson, 1983). The half-life of GSH in blood plasma is on the order of seconds to minutes
(Meister and Tate, 1976; Meister and Anderson, 1983).

In rat liver, approximately one-half of the GSH is released into blood plasma, and one-half
goes across the canalicular membrane into bile, with biliary GSH concentrations reaching 8–
10 mM (Ballatori et al., 1986b, 1988, 1989; Ballatori and Truong, 1989, 1992). The GSH
concentration within liver cells (~10 mM) is thus the result of a dynamic equilibrium between
its synthesis and its efflux into blood plasma and bile. Once GSH is released from hepatocytes,
there is an efficient intrahepatic cycle of glutathione degradation and utilization consisting of:
(a) extensive catabolism within biliary spaces (Ballatori et al., 1986b, 1988, 1989), as well as
within sinusoidal compartments of some species (Hinchman and Ballatori, 1990, 1994); (b)
direct hepatic reabsorption of some of the breakdown products (Ballatori et al., 1986a, 1988;
Simmons et al., 1991, 1992); and (c) intracellular utilization of the amino acids, or conversion
of cysteine S-conjugates to mercapturic acids, i.e., N-acetylcysteine S-conjugates (Hinchman
et al., 1991, 1993, 1998). Some of the functions of this cycle include regulation of GSH
turnover, thiol-redox status of the cell, mercapturic acid biosynthesis, and metal transport and
excretion. Another key function of GSH in bile is to serve as a primary osmotic driving force
in bile formation (Ballatori and Truong, 1989, 1992).

As noted above, the catabolism of GSH is catalyzed by the ectoproteins γGT and dipeptidases,
to release the free amino acids (i.e., Glu, Cys, and Gly), the dipeptide Cys-Gly, and other
peptides via transpeptidation. Cellular reuptake of the amino acids is mediated by various
amino acid transporters, whereas the reabsorption of Cys-Gly may be mediated by Pept2, a
transporter of di- and tripeptides (Frey et al., 2007). Frey et al. (2007) demonstrated that
dipeptides constitute a noticeable fraction of urinary amino acids in Pept2-deficient animals,
and dipeptide-bound glycine and cystine are increased in their urine samples, suggesting that
Pept2 is critical for the reabsorption of Cys-Gly originating from GSH breakdown, and that it
contributes to reabsorptions of amino acids that may be used for GSH resynthesis.

Although some studies have suggested that GSH itself is transported from the extracellular
space into mammalian cells (Lash 2005), this remains equivocal. The rapid catabolism of GSH
in the circulation leads to low extracellular GSH levels (i.e., ~10 μM), whereas intracellular
GSH concentrations are about three orders of magnitude higher, and thus any GSH uptake
transporter would have to have both a relatively high affinity for GSH, and would have to
overcome the large outwardly directed GSH electrochemical gradient in order to facilitate
uptake. None of the putative GSH uptake transporters that have been identified to date exhibit
the necessary kinetic properties that would enable them to mediate GSH uptake under
physiological conditions.

When exposed to oxidant stress or electrophilic chemicals, GSSG and glutathione S-conjugates
are generated within the cell, and the GSH-adducts are exported from cells mainly by the Mrp/
Abcc proteins. A total of nine functional Mrp genes have been identified (Mrp1 to Mrp9),
although the physiological functions of many remain poorly defined (Borst et al., 2007; Borst
and Oude Elferink, 2002; Deeley et al., 2006; Kruh et al., 2007a;). In general, the Mrps function
as organic anion export pumps, and they appear to have broad and partially overlapping
substrate specificity (Table 1). Nearly all of the Mrps accept glutathione S-conjugates as
substrates (Table 1: Borst et al., 2007; Deeley et al., 2006; Ilias et al., 2002; Konig et al.
1999; Kruh et al., 2007a; Lai and Tan, 2002).
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Mechanisms of GSH export from cells
In contrast to the transport of glutathione S-conjugates, the functional characterization and the
molecular identity of GSH transporters remain poorly defined. As discussed in a recent review
article (Ballatori et al., 2005), several factors have contributed to the slow progress in
identifying and characterizing GSH transport proteins, including: (a) The relative difficulty of
studying efflux transporters. (b) The low catalytic efficiency of GSH transport (Ballatori and
Dutczak, 1994; Paulusma et al., 1999; Rebbeor et al., 1998a, 1998b, 2000b, 2002). (c) The fact
that all cells have endogenous GSH export mechanisms (Meister and Anderson, 1983). This
high background rate of GSH transport is a major confounding variable in GSH transport
measurements, and severely limits the choice of cells with which this process can be studied.
(d) GSH is chemically reactive and is present in several chemical forms (glutathione-thioethers,
–thioesters, and –mercaptides). GSH participates in nucleophilic displacement reactions, in
thiol-redox reactions, and forms coordinate-covalent adducts with several transition metals
(Ballatori 1994, 2002). These adducts can form non-enzymatically, and many of them are
chemically unstable, present in low concentrations, and difficult to detect and quantify. (e) In
addition to the sulfhydryl-dependent reactions, GSH and GSH-containing molecules are also
subject to degradation by the ectoenzyme γGT. (f) GSH transporters are present both on the
plasma membrane and on intracellular membranes. Thus, in studies with subcellular membrane
fractions, these intracellular GSH transporters may contribute to the overall transport rate. (g)
The lack of specific GSH transport inhibitors, and (h) In addition, the search for GSH
transporters was significantly hampered by the publication of two papers that claimed to have
identified cDNA clones for canalicular (RcGshT) and sinusoidal (RsGshT) GSH transporters
(Yi et al. 1994, 1995). Subsequent experiments demonstrated that these putative gene products
not only have no GSH transport activity, but that they are cloning artifacts (Li et al., 1997).

Despite these difficulties in studying mechanisms of GSH transport, two plasma membrane
GSH export mechanisms have now been identified (Fig. 1). First, a role for the MRP proteins
in GSH transport was indicated by studies in the yeast Saccharomyces cerevisiae (Rebbeor et
al., 1998a,1998b,2002), and in membrane vesicles isolated from the liver of the little skate,
Leucoraja erinacea (Rebbeor et al., 2000) or from yeast and from rat liver (Rebbeor et al.,
2002). These studies in yeast provided the first direct evidence for ATP-dependent, low-affinity
transport of GSH in any cell type (Rebbeor et al., 1998a), and demonstrated that this ATP-
dependent GSH transport in yeast is mediated by Ycf1p, the yeast orthologue of mammalian
MRP1 and MRP2 (Rebbeor et al., 1998b). Additionally, the yeast transporter Bpt1p, which is
a homologue of Ycf1p, also transports GSH and glutathione conjugates (Klein et al.,
2002;Sharma et al., 2002). Because Ycf1p and Bpt1p are structurally and functionally
homologous to the MRP proteins, these data suggest that GSH efflux from mammalian cells
is mediated in part by MRP1 and MRP2. Second, rat Oatp1, the sinusoidal organic solute uptake
transporter, was shown to function as a GSH/organic solute exchanger (Li et al., 1998), and
thus could potentially contribute to GSH release from cells. However, more recent studies with
two human OATPs demonstrated no role of GSH in their transport mechanism (Mahagita et
al., 2007).

Studies in rat liver canalicular membrane vesicles by Rebbeor et al. (2002) provided the first
direct evidence for GSH transport on Mrp2. This study demonstrated that the inability to detect
ATP-dependent GSH transport in previous studies with mammalian plasma membrane vesicles
was due in part to the inhibitory effect of dithiothreitol (DTT) and some other reducing agents
on Mrp2-mediated transport. DTT is an effective reducing agent that is normally added to
prevent GSH oxidation in membrane vesicle studies. Because all previous studies of GSH
transport utilized high concentrations of reducing agents, they probably underestimated GSH
transport rates. Thus, these studies demonstrated that both rat Mrp2 and yeast Ycf1p are able
to transport GSH by an ATP-dependent, low-affinity mechanism (Rebbeor et al., 1998a,

Ballatori et al. Page 4

Mol Aspects Med. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1998b, 2002). Additional evidence in support of a role for the Mrps in GSH transport is
summarized in reviews by Ballatori et al. (2005) and Cole and Deeley (2006), and is discussed
further below.

Evidence for GSH transport on Mrp1, Mrp2, Mrp4, Mrp5, and Cftr, and
proposed transport mechanisms

MRP1 was cloned in 1992 from the human small cell lung cancer cell line H69 that had been
repeatedly exposed to doxorubicin, an anthracyclin (Cole et al., 1992). LTC4 and other
glutathione S-conjugates were identified as substrates for MRP1 (Jedlitschky et al., 1994; Leier
et al., 1994) (Table 1). Further analysis revealed that in addition to glutathione S-conjugates,
MRP1 is capable of transporting glucuronide and sulfate conjugates, antineoplastics, antivirals,
antibiotics, non-steroidal anti-inflammatory and antiepileptic drugs, flavonoids, natural folates,
fluorescent probes, and some peptides (Conseil et al., 2005) (Table 1).

As noted above, there is now strong evidence that GSH is a substrate for MRP1. One of the
first indications that GSH may be exported by the Mrps came from experiments conducted in
an MRP1-overexpressing lung carcinoma cell line, which had lower intracellular GSH levels
and higher extracellular GSH levels (Zaman et al., 1995). Subsequent studies confirmed that
MRP1 overexpressing cells have lower intracellular GSH (Laberge et al., 2007; Lautier et al.,
1996; Mao et al., 2000; Marchan et al., 2008). Furthermore, MDCKII cells overexpressing
MRP1 have increased amounts of GSH to the basal compartment (Paulusma et al., 1999).
Subsequent studies in membrane vesicles described GSH as a low affinity substrate for MRP1
(Km > 1mM: Leslie et al., 2001a; Paulusma et al., 1999; Qian et al., 2001).

Support for a role of both Mrp1 and Mrp2 in GSH export is provided by studies in knockout
mouse models. Measurements of GSH levels in tissues of mice deficient in Mrp1, Mrp2, or
Cftr, reveal that these mice have altered tissue GSH levels (Chu et al., 2006; Kruh et al.,
2007b; Lorico et al., 1997; Velsor et al., 2001). Lorico et al. (1997) reported that GSH levels
are about 20–40% higher in tissues of Mrp1−/− mice that normally express relatively high
levels of this protein. In Mrp2-deficient rats and mice, hepatic GSH levels are increased about
2-fold (e.g., Ballatori et al., 1995; Chu et al., 2006). In Cftr−/− mice, the epithelial lining fluid
GSH concentration is slightly lower than that of wild type mice, but the GSH concentration in
the lung tissue is not affected (Velsor et al., 2001). Because Mrp1 is expressed in all tissues,
it may play a ubiquitous role in GSH export from cells, whereas Mrp2 expression is more
restricted (Table 2), and thus can only contribute to GSH export in those cells.

The mechanism of GSH transport by the Mrp proteins is still not understood. There are at least
four potential mechanisms by which GSH interacts with the Mrps (Fig. 2). The first proposed
mechanism is that GSH itself is a substrate for the Mrps, and preliminary studies in MRP1-
containing proteoliposomes support this hypothesis; however, the observed GSH transport was
quite low in the absence of other substrates (Mao et al., 2000). Co-transport of GSH with
another substrate is a second possible mechanism of GSH transport on the Mrp proteins. Studies
utilizing membrane vesicles isolated from MRP1 overexpressing cells suggest that transport
of certain drugs is increased in the presence of GSH (Loe et al., 1996,1997;Mao et al.,
2000;Morrow et al., 2006;Renes et al., 1999). Additionally, depleting GSH with L-buthionine
sulfoximine (BSO) inhibited transport of these compounds (Gekeler et al., 1995;Loe et al.,
1998;Rappa et al., 1997;Salerno and Garnier-Suillerot, 2001; Schneider et al., 1995;Vanhoefer
et al., 1996;Versantvoort et al., 1995). In support of a co-transport mechanism, vincristine,
etoposide, and vinblastine have been shown to stimulate GSH transport (Loe et al., 1998;Mao
et al., 2000;Rappa et al., 1997). A third possible interaction between the Mrps and GSH is that
transport of some substrates is stimulated by or is dependent on GSH, but GSH itself is not
transported. It is still unknown what specific characteristics determine whether a substrate
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requires GSH for transport (Conseil et al., 2005;Leslie et al., 2001a;Loe et al., 1998;Qian et
al., 2001). The fourth possible mechanism by which the Mrps mediates GSH transport is that
GSH transport is stimulated by the presence of drugs that are not themselves transported by
the Mrps. Compounds in this category include verapamil and some bioflavonoids, such as the
dietary flavone apigenin (Leslie et al., 2001a,2003;Loe et al., 2000).

Approximately four years after the cloning of MRP1, the second member of the ABCC family,
Mrp2 was identified in normal rat liver using probes against evolutionarily conserved regions
of MRP1 (Buchler et al., 1996). Many functional characteristics of Mrp2 were already known
prior to its molecular identification because it was discovered that Mrp2 is the protein
responsible for transporting organic anions into the bile, a functional entity previously
identified as the canalicular multispecific organic anion transporter (cMoat) (Jansen et al.,
1985; Oude Elferink et al., 1989). The characterization of cMoat, including its substrate
specificity, was performed in vesicles isolated from wild type rats and rats deficient in biliary
transport, namely the Wistar transport deficient (TR-), the Groningen Yellow (GY), and the
Sprague-Dawley Eisai hyperbilirubinuric rat (EHBR) (Ballatori et al., 1995; Dijkstra et al.,
1990; Fernandez-Checa et al., 1992; Jansen et al., 1985; Kurisu et al., 1991; Oude Elferink et
al., 1989). The observed phenotypes in these rats, including the defect in transport of
endogenous and exogenous conjugated anions from hepatocytes to bile leading to
hyperbilirubinemia, were similar to those observed in patients diagnosed with Dubin-Johnson
syndrome. Mutations in the human MRP2 gene were eventually recognized as the underlying
cause of Dubin-Johnson syndrome (Paulusma et al., 1999; Toh et al., 1999; Wada et al.,
1998).

Unlike MRP1, which is expressed in all tissues, MRP2 has a more limited tissue distribution
and is primarily found on the apical membrane of epithelial cells (Table 2). MRP2 is found in
relatively high levels on the canalicular membrane of hepatocytes, and on the apical membrane
of the kidney proximal tubule, small intestine, colon, gallbladder, bronchi, and placenta
(Jedlitschky et al., 2006;Nies and Keppler, 2007). The substrate specificity of MRP2 is similar
to MRP1 (Table 1), having the highest affinity for glucuronide conjugates, and glutathione S-
conjugates of lipophilic compounds, including LTC4, LTD4, and LTE4 (Oude Elferink et al.,
1989;Paulusma et al., 1999). Other endogenous compounds that are substrates for these
proteins include conjugated steroids and bile salts. MRP2 also transports many exogenous
compounds including the anticancer drugs doxorubicin, etoposide, methotrexate, cisplatin,
vinblastine, and vincristine as well as several HIV drugs, antibiotics, environmental toxicants,
and metal complexes (Jedlitschky et al., 2006;Nies and Keppler, 2007).

MRP2 also appears to mediate transport of GSH itself as well as cotransport of GSH with other
compounds (Paulusma et al., 1999; Rebbeor et al., 2002). For many MRP2 substrates shared
by MRP1, the mechanism of transport appears similar to MRP1. Transport of compounds such
as vinblastine, vincristine, and etoposide all require GSH for their transport (Cui et al., 1999;
Evers et al., 2000; Kawabe et al., 1999; van Aubel et al., 1999). Similar to MRP1, vinblastine
and GSH are co-transported by MRP2 (Evers et al., 2000) and GSH appears to stimulate
ATPase activity of MRP2 (Bakos et al., 2000). Further evidence that MRP2 transports GSH
is observed in MRP2-overexpressing cells that have higher rates of GSH transport to the apical
compartment (Evers et al., 2000; Paulusma et al., 1999). Conversely, hepatocytes transfected
with antisense MRP2 have higher levels of intracellular GSH (Koike et al., 1997).

MRP4 (ABCC4) and MRP5 (ABCC5) were both identified in 1997 by searching databases of
human expressed sequence tags (Kool et al., 1997). Both MRP4 and MRP5 lack the additional
N-terminal spanning domain present in MRP1 and MRP2 (MSD0) (Belinsky et al., 1998; Lee
et al., 1998), indicating that their functions might be distinct from the other members of the
MRP family. Indeed, the substrates identified for these proteins appear to be somewhat unique;
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however, a common substrate may be GSH. MRP4 mRNA is found at low levels in lung,
kidney, bladder, tonsil, liver, prostate, testes, ovary, and brain (Table 2: Kool et al., 1997; Lee
et al., 1998, 2000; Schuetz et al., 2001). Although levels in the liver appear to be low across
species, a recent study localizes MRP4/Mrp4 to the basolateral membrane in human, mouse,
and rat hepatocytes, and in HepG2 cells, providing an alternative pathway for these cells to
transport GSH and monoanionic bile salts across the sinusoidal membrane into the blood (Rius
et al., 2003). Another recent study indicates a potential function of this protein by showing that
upregulation of Mrp4 is associated with increased export of cAMP into plasma and urine in
mice that had undergone bile duct ligation (Denk et al., 2004). MRP5 appears to be ubiquitously
expressed, with high levels of mRNA found in brain, skeletal muscle, lung, and heart (Table
2: Belinsky et al., 1998; Kool et al., 1997; McAleer et al., 1999).

GSH has been suggested to be a substrate for both MRP4 and MRP5 (Lai and Tan, 2002;
Wijnholds et al., 2000). Overexpression of MRP4 in HepG2 cells is associated with a marked
increase in GSH efflux (Lai and Tan, 2002), and MDCKII cells transfected with MRP5 exhibit
higher GSH transport across the basolateral membrane with a concurrent decrease in
intracellular GSH levels (Wijnholds et al., 2000). Similar to MRP1 and MRP2 that co-transport
compounds out of cells with GSH, fibroblasts transfected with MRP4 appear to co-transport
bile salts (glycocholate, taurocholate and cholate) with GSH or S-methylglutathione (Rius et
al., 2003, 2006). However, additional studies are needed to establish this possibility and to
determine whether co-transport is necessary for all MRP4 substrates.

Interestingly, there is now significant evidence that Cftr/Abcc7 may also be able to export GSH
across the plasma membrane, although this remains controversial. As noted above, the GSH
concentration in epithelial lining fluid of Cftr−/− mice is slightly lower than that of wild type
mice, but the GSH concentration in the lung tissue is not affected (Velsor et al., 2001). Likewise,
the GSH content of epithelial lining fluid from cystic fibrosis patients is approximately one-
third of normal humans (Roum et al., 1993), and this deficiency may render the lung epithelia
more susceptible to oxidative damage from chronic infection and inflammation (Gao et al.,
1999). CFTR was originally shown to allow passage of GSH using the patch clamp technique,
but whether this is physiologically relevant is debatable (Linsdell and Hanrahan, 1998). Cells
from cystic fibrosis patients lacking functional CFTR still transport GSH, albeit at a
significantly slower rate (Gao et al., 1999). When chloride transport is restored to these cells
by an artificial peptide channel that cannot transport or conduct GSH itself, GSH transport
increased to a normal rate (Gao et al., 2001). Thus, CFTR may not actually conduct GSH, but
may regulate its transport indirectly through chloride transport. As mice have more chloride
channels than humans in their lungs, it is possible that the cystic fibrosis mouse does not have
as much of a decrease in GSH because of this.

More recently, direct transport of GSH on CFTR was observed in membrane vesicle and
proteoliposome experiments (Kogan et al., 2003). ATP binding and hydrolysis in CFTR
regulates channel gating from open and closed conductance states, suggesting that ATP may
alter substrate affinity on CFTR (Ikuma and Welsh, 2000; Li et al., 1996;). Interestingly, GSH
appears to inhibit CFTR ATPase activity (Kogan et al., 2001), and this inhibition may alter the
properties of CFTR such that it now favors GSH flux over chloride flux (Kogan et al., 2003).
In addition, the MRP1 substrates taurolithocholate-3-sulphate and 17β-estradiol 17-(β-D-
glucuronide) are able to block the CFTR channel, suggesting that MRP1 and CFTR share some
binding properties (Linsdell and Hanrahan, 1999). Because CFTR is the only MRP family
member that is in the apical membrane of lung epithelial cells, it could play a key role in GSH
delivery into the apical compartment of this tissue.
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Mrp and cellular thiol redox control
Cellular oxidant stresses almost invariably lead to increased intracellular concentrations of
GSSG and of other oxidized glutathione derivatives. Although GSSG may be reduced back to
GSH, excess GSSG is also eliminated from the cell by export into the extracellular space. For
example, in the liver, oxidants lead to a marked increase in biliary GSSG excretion, with GSSG
concentrations in bile usually exceeding those in hepatocytes, indicating an active canalicular
membrane transport process (Keppler et al., 1997; Sies et al., 1980; Suzuki and Sugiyama,
1998). Strong evidence that this export step is mediated by Mrp2 was provided by studies of
GSSG transport with canalicular membrane-enriched vesicles derived from normal and EHBR
rats (Fernandez-Checa et al. 1992). This study demonstrated ATP-dependent GSSG transport
in control, but not in EHBR-derived vesicles, indicating that the defect in the EHBR rats is
associated with GSSG transport (Fernandez-Checa et al. 1992).

Likewise, MRP1 has been implicated in the GSSG export that is observed in various cell types
challenged with oxidant stresses, including human endothelial cells (Mueller et al., 2005;
Widder et al., 2007), rat cardiac myocytes (Krause et al., 2007), and primary cultures of rat
astrocytes (Ronaldson and Bendayan, 2008) and mouse astrocytes (Minich et al., 2006).

In addition to GSSG export, the Mrp proteins may also mediate the export of other oxidized
GSH derivatives, including nitric oxide (NO) the various oxidized metabolites of arachidonic
acid. For example, Kolberg et al. (2006) reported that the low expression of Mrp1 in
lymphocytes of Walker 256 tumour-bearing rats is associated with cyclopentenone
prostaglandin accumulation and cancer immunodeficiency. Watts et al. (2006) demonstrated
that cells overexpressing MRP1 exhibited a 3- to 4-fold increase in NO-mediated Fe and GSH
efflux compared with wild type cells. Similar results were found for other MRP1-
overexpressing cell types but not those expressing another drug efflux pump, MDR1. NO-
mediated Fe and GSH efflux were temperature- and energy-dependent and were significantly
decreased by MRP1 transport inhibitors and by GSH-depletion, suggesting that MRP1 may
mediate the export of the GS-Fe-NO complex, but this was not measured directly.

Trauner et al. (1997) reported that the NO donors sodium nitroprusside (SNP) and S-nitroso-
acetyl-penicillamine stimulate bile flow and increase both bicarbonate and total glutathione
excretion in perfused rat liver. Increases in bile flow were linearly related to increases in biliary
glutathione concentration and output (P < .0001), which were almost entirely caused by
increases in GSSG excretion, whereas GSH excretion remained unchanged. In contrast to the
NO donors, dibutyryl cGMP did not increase glutathione excretion. Furthermore, the NO
donors failed to stimulate bile flow in the Mrp2-deficient TR- rats. These findings indicate that
exogenous sources of NO increase bile acid-independent bile flow by stimulating Mrp2-
mediated GSSG and GS-NO excretion.

In addition to the many organic chemicals that can disrupt the cellular thiol-redox status, a
number of metals can also disrupt this balance. As discussed below, GSH and its transporters
play important roles in preventing these reactions and in transporting toxic metals across cell
membranes.

GSH transport and the disposition of endo- and xenobiotics
As illustrated in figures 1 and 2, GSH facilitates the plasma membrane transport of endo- and
xenobiotics by at least four different mechanisms. Perhaps the best-known and most important
role of GSH is in the formation of glutathione S-conjugates. Conjugation may occur either with
the parent compound, its metabolites, and/or reactive metabolic intermediates that may be
formed as a result of the processing of the compound. Because GSH adducts are typically
excellent substrates for the Mrps, GSH conjugation is critical for the membrane transport and
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eventual elimination of many toxic chemicals of both endogenous and exogenous origin,
including metals (Ballatori, 1994). In terms of metal binding, GSH contains six potential
coordination sites for metals: the cysteinyl thiolate, the glutamyl amino, and the glycyl and
glutamyl carboxyl groups, and the peptide linkages. Of these, the thiolate residue exhibits high
affinity for a number of metals, including Hg, Cd, Cu, Zn, Ag, As and Pb (Ballatori, 1994).
GSH modulates the disposition and toxicity of metals by at least four mechanisms: 1) it
functions in the mobilization and delivery of metals between ligands; 2) it functions to transport
metals across cell membranes as GSH-complexes; 3) serves as a source of cysteine, an amino
acid that plays a central role in metal homeostasis; and 4) serves as a cofactor for redox
reactions, yielding metal compounds with different speciation or biochemical forms (Ballatori,
1994).

Second, GSH appears to serve as a driving force for uptake of organic molecules into cells via
the rat Oatp1 transporter (Fig. 1; Li et al., 1998). That is, the large outwardly-directed GSH
electrochemical gradient serves to energize the uptake of drugs and other xenobiotics into the
cells by an exchange mechanism (Li et al., 1998). However, more recent studies with two
human OATPs demonstrated no role of GSH in their transport mechanism (Mahagita et al.,
2007).

Third, MRP-mediated transport of many compounds occurs by a GSH-cotransport mechanism.
As noted earlier, transport of certain compounds by MRP1-containing plasma membrane
vesicles is increased in the presence of GSH (Loe et al., 1996, 1997; Mao et al., 2000; Morrow
et al., 2006; Renes et al., 1999), and conversely, GSH depletion decreases transport of these
compounds (Gekeler et al., 1995; Loe et al., 1998; Rappa et al., 1997;Salerno and Garnier-
Suillerot, 2001; Schneider et al., 1995; Vanhoefer et al., 1996; Versantvoort et al., 1995). In
support of a co-transport mechanism, vincristine, etoposide, and vinblastine have been shown
to stimulate GSH transport (Loe et al., 1998; Mao et al., 2000; Rappa et al., 1997).

The fourth mechanism by which GSH facilitates membrane transport of endo- and xenobiotics
is by stimulating MRP-mediated transport, but the tripeptide itself is not transported. It is still
unknown what specific characteristics determine whether a substrate requires GSH for
transport or cotransport (Conseil et al., 2005; Leslie et al., 2001a; Loe et al., 1998; Qian et al.,
2001).

GSH transport during apoptosis
Apoptosis is critical throughout life, from embryonic development through adulthood in
mammals. Dysregulation within apoptotic signaling pathways can result in too much or
insufficient apoptosis, and this has been linked to several diseases, including cancer,
neurodegenerative diseases, inflammation, and autoimmune diseases (Fadeel and Orrenius,
2005; Reed, 2002).

Intracellular GSH levels appear to regulate the ability of cells to undergo apoptosis.
Experimentally increasing intracellular GSH decreases apoptosis (Chiba et al., 1996; Devadas
et al., 2003; Wang, 2001), and alternatively, cells with less GSH and hence, less antioxidant
capacity, are more susceptible to apoptotic stimuli (Anderson et al., 1999; Beaver and Waring,
1995; Chiba et al., 1996; Devadas et al., 2003; Haouzi et al., 2001). Furthermore, several studies
demonstrate that depleting GSH is enough to induce apoptosis in cells sensitive to oxidative
stress (Anderson et al., 1999; Celli et al., 1998; Merad-Boudia et al., 1998), and can accelerate
apoptosis in apoptotic resistant cell lines (Chiba et al., 1996; Filomeni et al., 2005; Friesen et
al., 2004). Overall, the data support a protective role for GSH against cellular demise. Although
the exact mechanism is unknown, high GSH levels are likely protecting cells against reactive
oxygen species and are facilitating the conjugation and elimination of reactive intermediates
or signaling molecules (Vlachaki and Meyn, 1998).
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Cells undergoing apoptosis also appear to rapidly and selectively release GSH into the
extracellular space (Ghibelli et al., 1995; Ghibelli et al., 1998; Hammond et al., 2004 and
2007; He et al., 2003; van den Dobbelsteen et al., 1996). Most of the GSH can be recovered
in the extracellular media within hours after apoptosis induction. Organic anion transport
inhibitors decrease apoptotic GSH release and plasma membrane integrity is not compromised
during this time interval, indicating that a specific transport mechanism is involved.

Both the MRP and OATP families of transporters have been implicated in apoptotic GSH
export. Franco and colleagues (2006, 2007) suggested that the OATP transporters are
responsible for GSH export from apoptotic cells; however, only indirect evidence was provided
for this conclusion. In contrast, Hammond et al. (2007) demonstrated a direct role for the MRPs
in apoptotic GSH export. Basal and apoptotic GSH release were decreased after RNAi
reduction of MRP1 expression in Jurkat cells, indicating that MRP1 is a major player in both
of these processes (Hammond et al., 2007). In addition, a comparison of two cell lines, one of
which releases GSH during apoptosis (Jurkat cells) and one that does not (Raji cells), showed
that differences exist in MRP1 localization and function. In Jurkat cells, MRP1 is largely
localized to the plasma membrane and this MRP is functional, as evidenced by the export of
calcein. Calcein export was further enhanced during apoptosis. In contrast, Raji cells have little
MRP1 at the plasma membrane and did not export calcein under basal or apoptotic conditions,
indicating that these cells lack functional MRPs at the plasma membrane (Hammond et al.,
2007).

Additional evidence that MRP1 is directly involved in GSH release was provided by measuring
basal and apoptotic GSH efflux in HEK293 cells overexpressing human MRP1 (Marchan et
al., 2008). MRP1-overexpressing cells have lower intracellular GSH levels and higher levels
of GSH release, under both basal conditions and after apoptosis induction. Despite the
enhanced GSH efflux in MRP1-overexpressing cells, intracellular GSH levels are not further
depleted after apoptotic induction, suggesting that there is an increase in GSH synthesis. The
higher GSH levels may have protective effects as these cells are more resistant to apoptosis.
Overall, these results indicate that MRP1 is a major mediator of both basal and apoptotic
glutathione release. The enhanced GSH release, with a concurrent decrease of intracellular
GSH, appears to be necessary for the progression of apoptosis (Marchan et al., 2008). Other
studies have also associated increases in cytotoxicity for cells overexpressing MRP1 due to
the loss of intracellular GSH (Laberge et al., 2007; Trompier et al., 2004).

Interestingly, there is also a direct connection between the Bcl-2 familiy of apoptotic proteins
and GSH export. Cells overexpressing the antiapoptotic proteins Bcl-2 and Bcl-XL have higher
levels of intracellular GSH and conversely, cells with low levels of Bcl-2 have lower
intracellular GSH (Benlloch et al., 2005; Bojes et al., 1997; Ellerby et al., 1996; Ortega et al.,
2003; Voehringer, 1999). The higher levels of intracellular GSH in cells with elevated Bcl-2
are achieved by a decrease in export rather than an increase in synthesis (Benlloch et al.,
2005; Meredith et al., 1998; Ortega et al., 2003). The mechanism in which Bcl-2 prevents GSH
export is not yet understood, although a recent paper suggests that there is an interaction
between the BH3 domain of Bcl-2 and GSH (Zimmermann et al., 2007).

GSH and glutathione S-conjugate transport, and cell signaling
As summarized by Wang and Ballatori (1998), in addition to the multitude of foreign chemicals
that require GSH for their detoxification and elimination, GSH is also required for the formation
of specific biological mediators and for the disposition of many endogenous signaling
molecules, including certain hormones, second messengers, and neurotransmitters. For
example, GSH forms thioether conjugates with leukotrienes, prostaglandins, hepoxilin, nitric
oxide, hydroxyalkenals, ascorbic acid, dopa, dopamine, and maleic acid, and it forms thioesters
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with cysteine, coenzyme A, proteins, and other cellular thiols. The glycine carboxyl group of
GSH binds to the amino group of spermidine to produce glutathione-amides, in reactions
catalyzed by glutathionylspermidine synthetase and trypanothione synthetase in bacterial
systems. GSH also binds endogenous metals such as Cu, Se, Cr and Zn via nonenzymatic
reactions (Ballatori, 1994).

Binding of GSH to these endogenous compounds serves several important roles: it serves to
limit and regulate the reactivity of the chemicals, it facilitates their membrane transport and
elimination from the cell and organism, and in some cases it leads to the formation of essential
biological mediators. The cysteinyl leukotrienes, for example, are involved in inflammatory
and anaphylactic reactions. The GSH conjugate of 9-deoxy-▴9,▴12-prostaglandin D2 may
modulate the antiproliferative activity of the parent compound (Atsmon et al., 1990), whereas
S-nitrosoglutathione, a relatively stable intermediate derived from the nonenzymatic reaction
of nitric oxide with intracellular GSH, appears to have the same biological functions as nitric
oxide itself (Ignarro, 1990). Recent studies by Alexander and coworkers (2006), demonstrate
that GSH conjugation of nitrolinoleic acid and the subsequent MRP1-mediated transport of
the conjugate can attenuate nitrolinoleic acid bioactivity and thereby play important roles in
the regulation of cellular signaling. Nitrolinoleic acid is an electrophilic derivative of linoleic
acid that has several important bioactivities including anti-inflammatory, anti-platelet, and
vasorelaxation activities, and is a ligand of PPARgamma.

Many proteins are activated or inhibited in vitro by disulfide exchange between the protein and
GSH or GSSG (Dalle-Donne et al., 2007; Ghezzi and Disimplicio, 2007; Lillig et al., 2008;
Shelton Mieyal, 2008; Townsend, 2007; Ziegler, 1985). For example, GSSG can activate
enzymes such as glucose-6-phosphatase, acid phosphatase, γ-aminolaevulinate synthetase, and
fructose 1,6-bisphosphatase, whereas it inhibits glycogen synthetase, pyruvate kinase,
adenylate cyclase, phosphorylase/phosphatase, ribonucleotide reductase,
phosphofructokinase, glycogen debranching enzyme, and fatty acid synthase.

GSH and Cell Proliferation and Cell Differentiation
The ratio of GSH to GSSG reflects the intracellular thiol redox environment. Thiol redox
environment is a critical determinant of cell function, and is thought to modulate major cell
processes, including cell differentiation (Anselmo and Cobb, 2004; Ardite et al., 2004; Henmi
et al., 2001; Huh et al., 2005; Kim et al., 2004; Chenais et al., 2000; Smith et al., 2000),
proliferation (Kang et al., 1994; Shaw and Chou, 1986; Suthanthiran et al., 1990), and apoptosis
(Ghibelli et al., 1995; Hall, 1999; Voehringer, 1999). It does so through affecting signal
transduction, (Blackburn et al., 1999; Staal et al., 1990; Suzuki et al., 1997), gene expression
(Arrigo, 1999; Hammond et al., 2001), and modulating protein function (Barrett et al., 1999;
Dinkova-Kostova et al., 2002; Staal et al., 1994).

It has become clear in recent years that redox modification of intracellular proteins plays a
significant role in cell signaling, not only in periods of oxidative stress, but under physiological
conditions as well (Chiarugi and Cirri, 2003; Filomeni et al., 2005; Forman et al., 2004;
Salmeen and Barford, 2005; Sauer et al., 2001; Sen, 2000). The sulfhydryl group in cysteine
residues appears to be a primary target for redox regulation, and many enzymes and
transcription factors contain cysteine in their active sites or in their binding domains. These
cysteine residues exist in the thiolate anion form at physiological pH, making them excellent
targets for specific and reversible redox reactions (Dalle-Donne et al., 2007).

The ability of redox signaling events to take place depends largely on the availability of redox-
active thiol groups. Although a few proteins have been identified as thiol-sensitive, the specific
mechanisms as to how thiols affect protein function remain unclear. Some possible
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mechanisms through which GSH affects cell signaling include the scavenging of free radicals,
maintenance of protein thiol status, and the covalent binding to cysteine moieties of cytosolic
proteins (S-glutathionylation). Although all of these mechanisms are likely contributing to
thiol-associated effects on cell processes, S-glutathionylation has come to the forefront as a
viable redox regulatory mechanism (Anselmo and Cobb, 2004; Fratelli et al., 2005; Ghezzi,
2005; Ghezzi et al., 2005; Giustarini et al., 2004).

In particular, S-glutathionylation has been identified as a regulator of signaling proteins,
transcription factors, ras proteins, ion channels and pumps, mitochondrial proteins, as well as
cytoskeletal proteins, some of which play roles in cell differentiation (Dalle-Donne et al.,
2007; Ghezzi and Disimplicio, 2007; Lillig et al., 2008; Shelton Mieyal, 2008; Townsend,
2007; Ziegler, 1985). The targets of these reactions are proteins that contain cysteine residues
in their catalytic, activation, and/or binding domains. Recently, S-glutathionylation has been
implicated in the expression of a number of genes involved in NFkB activation, transcription
(AP-1, JNK), DNA methylation, and immune function (cytokines and cytokine receptors)
(Fratelli et al., 2005). S-Glutathionylation occurs under both basal conditions and during
periods of oxidative stress (Chai et al., 2003; Lind et al., 2002; Reynaert et al., 2006).

The intracellular redox environment also influences cellular differentiation. However, the
effects of thiols on differentiation are quite varied and in many aspects contradictory. Whereas
some reports suggest that thiol supplementation maintains a cell’s proliferative capacity or
inhibits differentiation (Chenais et al., 2000; Debbas et al., 2007; Fidelus et al., 1987; Iemata
et al., 2007; Mayer and Noble, 1994), other reports demonstrate that increasing thiol levels
promotes differentiation or decreases proliferative capacity (Jun et al., 2008; Kim et al.,
2001; Paranjpe et al., 2007; Parasassi et al., 2005). Likewise, some studies report that thiol
depletion enhances differentiation (Benard and Balasubramanian, 1997; Davison et al., 2003;
Dietrich et al., 2006; Smith et al., 2000), whereas others suggest that it inhibits the process
(Esposito et al., 1994; Hansen et al., 2001; Huh et al., 2005; Kim et al., 2004). Many of these
discrepancies are undoubtedly due to differences in cell type. Careful consideration must be
paid not only to the cell type, but normal versus immortal status, the background activity of
cell signaling pathways, endogenous GSH levels, as well as the extent and timing of thiol
supplementation or depletion. A spectrum of thiol redox conditions can exist within a cell, with
either extreme (i.e., too reduced or too oxidized) adversely affecting cell physiology and
perhaps creating similar effects. Although data interpretation remains complicated and no
coalescing theory has been established, it is clear that thiol status affects the differentiation
program. Additional research is needed to elucidate how thiol status affects differentiation and
proliferation and to identify the cellular factors that mediate these effects.

Summary
Recent studies provide strong evidence that GSH is a substrate for the Mrp proteins, and thus
indicate that these proteins play an important role in cellular GSH homeostasis. Because the
Mrp proteins also mediate export of GSSG and glutathione S-conjugates and complexes, they
likely contribute to the control of cellular redox status, delivery of cysteine to other tissues,
export of signaling molecules, elimination of xenobiotics and reactive metabolic intermediates,
as well as to cell differentiation, proliferation, and apoptosis.
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Abbreviations
ABC  

ATP-binding cassette

BSO  
L-buthionine (S,R)-sulfoximine

CFTR  
cystic fibrosis transmembrane conductance regulator

EHBR  
Sprague Dawley Eisai hyperbilirubinuric rat, mutant rat strain that lacks Mrp2
activity

GY  
Groningen Yellow rat, Wistar rat strain that lacks Mrp2 activity

GSH  
reduced glutathione

GS-NO  
S-nitrosoglutathione

GSSG  
glutathione disulfide

MDR1  
multidrug resistance protein 1

MRP and Mrp 
multidrug resistance-associated protein

OATP and Oatp 
organic anion transporting polypeptide

TR-  
transport deficient rat, Wistar rat strain that lacks Mrp2 activity
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Figure 1. Glutathione homeostasis in hepatocytes
GSH is synthesized in the cell cytosol from its precursor amino acids, glutamate, cysteine and
glycine. Within the cell, it exists mainly (>98%) in the thiol-reduced form (GSH), but some is
also present in the thiol-oxidized (GSSG) and as glutathione S-conjugates. After its synthesis,
some of the GSH is delivered into specific intracellular compartments, including mitochondria
and endoplasmic reticulum, but much of the GSH is delivered to extracellular spaces, namely
blood and bile. Transport of GSH and its conjugates into bile is mediated largely by Mrp2,
whereas Mrp1 and Oatp1 may contribute to GSH efflux into blood, although this is still poorly
defined. In contrast to GSH synthesis, which occurs intracellularly, GSH degradation occurs
exclusively in the extracellular space, and only on the surface of cells that express the
ectoenzyme gamma-glutamyl transpeptidase (γGT). In the liver this enzyme is most abundant
on the canalicular membrane of hepatocytes and on the apical membrane of bile duct cells.
Once GSH and GSH-containing compounds are released from liver cells there is an efficient
intrahepatic cycle of glutathione degradation and utilization consisting of: (a) extensive
catabolism within biliary spaces, as well as within sinusoidal compartments of some species;
(b) direct hepatic reabsorption of some of the breakdown products; and (c) intracellular
utilization of the amino acids, or conversion of cysteine S-conjugates to mercapturic acids, i.e.,
N-acetylcysteine S-conjugates.
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Figure 2. Four possible mechanisms by which GSH interacts with the Mrp proteins
(1) GSH itself is a substrate for the Mrp protein; (2) GSH is co-transport with another substrate;
(3) Transport of some substrates is stimulated by or is dependent on GSH, but GSH itself is
not transported; and (4) GSH transport is stimulated by the presence of drugs that are not
themselves transported by the Mrp protein.
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