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Abstract
Addiction is a complex disorder because many factors contribute to the development and
maintenance of addiction. One factor is learning. For example, drug–context associations that
develop during drug use could facilitate drug craving upon re-exposure to contexts previously
associated with drugs. Additionally, deficits in cognitive processes associated with withdrawal could
precipitate relapse in attempts to ameliorate those deficits. Because addiction and learning involve
common neural areas and cell signaling cascades, addiction-related changes in processes underlying
plasticity may contribute to addiction. This article examines similarities between addiction and
learning at the behavioral, neural, and cellular levels, with emphasis on the neural substrates
underlying the effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on
hippocampus-dependent contextual learning.
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Introduction
Despite overwhelming evidence for the adverse health effects of smoking, 68.8 million
Americans use tobacco products and 400,000 tobacco-related deaths occur in the United States
each year (1). Animal models have shown that nicotine has strong reinforcing properties, that
abstinence from nicotine after chronic nicotine treatment produces withdrawal symptoms, and
that exposure to environments where drug use occurs result in reinstatement of nicotine-seeking
behavior (for review, see refs. 2–4). Nicotine withdrawal studies with rodents have identified
multiple withdrawal-related changes in somatic and affective responses. In both mice and rats,
nicotine withdrawal resulted in the expression of somatic withdrawal behaviors such as head
shakes and paw tremors (5,6). Additionally, nicotine withdrawal was shown to be anxiogenic
in mice (6,7) and was associated with a marked decrease in brain reward function in rats (8).
Nicotine withdrawal also disrupted cognition-related functioning in rodents, as measured by
the ability to sensory-gate stimuli (9). However, this effect may be dose-dependent (7).

In humans, nicotine withdrawal is associated with anger, anxiety, difficulty concentrating,
increased appetite, and agitation (10). Additionally, smoking cessation is associated with
disruption of sensory gating (11–13) and cognitive function (14–16). The reduction of negative
symptoms associated with nicotine withdrawal may motivate continued tobacco use and
relapse (17). However, the expression and severity of withdrawal symptoms may depend on

Copyright © 2006 Humana Press Inc.
Author to whom correspondence and reprint requests should be addressed. E-mail: E-mail: tgould@temple.edu.

NIH Public Access
Author Manuscript
Mol Neurobiol. Author manuscript; available in PMC 2009 July 27.

Published in final edited form as:
Mol Neurobiol. 2006 October ; 34(2): 93–107. doi:10.1385/MN:34:2:93.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



multiple factors, including age, genetics, environment, and mental health (17–21). Therefore,
there may not be a universal symptom of nicotine withdrawal. Rather, a range of symptoms,
including disrupted cognition, may characterize nicotine withdrawal. Increasing efforts have
focused not only on understanding the effects of withdrawal on cognitive processes (e.g.,
learning) but also on understanding the role of learning in addiction. This article examines the
role of learning and memory in addiction, with emphasis on the neural substrates underlying
the effects of acute nicotine, chronic nicotine, and withdrawal from chronic nicotine on
hippocampus-dependent contextual learning.

Neural and Cellular Correlates of Learning, Memory, and Addiction
In addition to the reinforcing properties of nicotine and the somatic withdrawal symptoms that
help to maintain nicotine addiction, changes in the neural substrates of learning and memory
may also contribute to the development and maintenance of addiction. Tremendous overlap
exists between the neural and cellular substrates of learning and the neural and cellular
substrates of addiction. The ability of drugs of abuse to interact with and alter the neural
substrates of learning may contribute to the strong addictive properties of these drugs.
Furthermore, drugs of abuse may have an especially strong impact on the declarative memory
system. The declarative memory system allows for recollection of facts and events (22); these
types of memories comprise the personal history of individuals. Neural areas involved in
declarative memory include the medial prefrontal cortex, hippocampus, parahippocampal
regions, amygdala, and nucleus accumbens (23–27). These areas are also involved in addiction.
For example, addiction is associated with alterations in cortical function that may lead to
disrupted decision processes and compulsive drug use (28,29). Furthermore, Bechara (30)
proposed that the amygdala may become hypersensitive to reward during addiction, and this
overactivation of the amygdala may lead to altered regulation of ventromedial prefrontal
cortical activity involved in decision making. Additionally, numerous studies have shown
involvement of the amygdala in the formation of drug–cue associations (for review, see ref.
31) and involvement of the nucleus accumbens, which is part of the reward circuitry (32), in
drug-seeking behavior (33–35).

Finally, the hippocampus may process contextual drug associations that contribute to context-
evoked craving and drug-seeking behavior. Inactivation of the hippocampus with tetrodotoxin
prevented context-stimulated reinstatement of cocaine-seeking behavior (36), and θ-wave
stimulation of the hippocampus produced cocaine-seeking behavior (37). Although this is not
a complete list of brain areas involved in addiction, multiple groups have proposed that these
areas form an interconnected system involved in drug addiction (31,38–41). Therefore, because
the declarative memory system is critically involved in processing and storing the memories
that provide individuals with a personal history, the ability of drugs of abuse to co-opt the
declarative memory system may partially explain the strong addictive nature of these drugs.

Just as learning and addiction share similar neural substrates, learning and addiction also share
similar cellular and molecular substrates. Tremendous headway has been made in identifying
the cell signaling cascades involved in learning and synaptic plasticity. Briefly, numerous
studies have demonstrated that protein kinase A (PKA), mitogen-activated protein kinase/
extracellular-regulated kinase (MAPK/ERK), calcium/calmodulin protein kinase II (CaMKII),
and the gene transcription factor cyclic adenosine monophosphate (cAMP)-response-element-
binding protein (CREB) are critically involved in learning and synaptic plasticity (42–47).
These same substrates are involved in addiction. Infusion of a PKA inhibitor into the nucleus
accumbens decreased cocaine self-administration, and infusion of a PKA activator increased
self-administration of cocaine in rats (48,49). In Drosophila, sensitization after repeated
nicotine exposure was associated with increased levels of cAMP, implicating the cAMP/PKA
pathway in this behavioral effect (50). Furthermore, infusion of either a CaMKII inhibitor into
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the nucleus accumbens or an ERK inhibitor into the ventral tegmental area disrupted the
development of behavioral sensitization to cocaine (51,52), and inhibition of ERK
phosphorylation in the central amygdala decreased cocaine-seeking behavior (53). Changes in
ERK activation may also contribute to alcoholism; withdrawal from ethanol was associated
with increased ERK activation in multiple brain regions, including the amygdala and
hippocampus (54).

Changes in kinase levels can lead to changes in gene expression. The gene transcription factor
CREB is activated by multiple kinases, including PKA and MAPK (for review, see refs. 55
and 56). Therefore, the involvement of PKA and MAPK in addiction suggests a role for CREB
as well. Evidence for the involvement of CREB in addiction comes from studies demonstrating
that withdrawal from nicotine is associated with altered levels of phosphorylated and total
CREB in the nucleus accumbens (57), inhibition of CREB in the nucleus accumbens increased
the rewarding properties of cocaine (58), and chronic morphine administration decreased levels
of CREB in the nucleus accumbens (59). Therefore, learning and addiction activate similar
cell signaling cascades and neural areas, and the ability of drugs of abuse to alter cell-signaling
cascades involved in synaptic plasticity may lead to long-lasting behavioral changes. It is
important to determine how activation of cell signaling cascades changes as drug
administration changes from acute to chronic to withdrawal as well as to determine if activation
and expression patterns vary across brain regions.

Learning and Memory and Nicotine Addiction
Similarly to other drugs of abuse, learning contributes to development and maintenance of
nicotine addiction. Multiple studies have demonstrated that conditioned place preference can
be established for a context associated with nicotine administration (60–65). Whereas factors
such as genetics and age may influence the development of conditioned place preference to
nicotine, these studies clearly show that associations between the effects of nicotine and an
environment can be conditioned. The ability to form strong but maladaptive associations
between drug use and contextual stimuli may contribute to addiction and relapse by triggering
context-specific drug craving and drug seeking. Specifically, researchers have proposed that
nicotine reinforcement involves enhancement of associations with non-nicotine stimuli that
eventually become reinforcers (66). These non-nicotine stimuli could contribute to continued
nicotine use. Smoking can be maintained by environmental stimuli (67,68), and acquisition of
nicotine self-administration in animal models is enhanced by pairing nicotine delivery with
non-nicotine stimuli (69–72). Additionally, during extinction of nicotine self-administration,
the presence of a non-nicotine stimulus previously paired with nicotine sustains pressing of a
lever previously associated with nicotine (67,72). These data suggest that these learned
associations may contribute to resistance to extinction of nicotine self-administration.
Furthermore, these studies together provide strong evidence for the role of learning in nicotine
addiction.

Research demonstrating that environmental stimuli impact addiction (36) and the potential
involvement of declarative memory processes in addiction (73) has led our lab to examine the
effects of nicotine on contextual fear conditioning, a form of hippocampus-dependent learning
(74,75) that may model declarative memory processes. Nicotine has multiple effects on
learning that may contribute to the development and maintenance of addiction to nicotine.
Acute nicotine, which may model the initial effects of smoking, enhances learning (76–81).
This positive effect of nicotine could facilitate continued drug use. Additionally, cognitive
enhancing properties of nicotine could facilitate the formation of maladaptive drug–context
associations that can lead to context-evoked cravings. Furthermore, if tolerance to the cognitive
enhancing effects of nicotine develops, then greater amounts of nicotine may be consumed to
compensate. This increased consumption could increase the addictive liability of nicotine.
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Finally, because withdrawal is associated with deficits in cognition, relapse may occur to
ameliorate these deficits. Our work has focused on understanding the effects of acute nicotine
treatment, chronic nicotine treatment, and withdrawal from chronic nicotine treatment on
contextual conditioning and on the underlying nicotinic acetylcholinergic receptor (nAChR)
subtypes and cell signaling cascades mediating the effects of nicotine on contextual fear
conditioning. Because nAChR subtypes have different functional properties, a brief review of
nAChRs follows to preface the discussion of behavioral effects of nicotine and the underlying
neural substrates that may be involved.

Nicotinic Acetylcholinergic Receptor
nAChRs are a class of ligand-gated ion channels assembled from five subunits. Seventeen
identified subunits that are differentially expressed in the central nervous system and peripheral
nervous system have been identified (82–85). Whereas the α4β2 and α7 nAChRs are similar
because they are the predominant nAChR subtypes in the central nervous system, they differ
in their functional properties (86–88). α4β2 nAChR subtypes show high affinity for nicotine,
desensitize slowly, and show long-lasting inhibition by mecamylamine, a broad spectrum
nAChR antagonist (85,89,90). Conversely, α7 nAChR subtypes show lower affinity for
nicotine and a high affinity for α-bungarotoxin, desensitize rapidly, and show shortlasting
inhibition by mecamylamine (85,89,91–94). Because nAChRs have different functional
properties, nAChR subtypes may differentially contribute to the effects of nicotine on learning
and addiction.

Both the α7 and α4β2 nAChR subtypes have properties that could contribute to cellular changes
associated with learning and addiction. Both subtypes are located in the hippocampus, and
α4β2 and α7 nAChRs are expressed pre and postsynaptically, suggesting that these receptor
subtypes could modulate both pre- and postsynaptic processes involved in synaptic plasticity.
Furthmore, α4β2 and α7 nAChRs are calcium-permeable, which could enhance activation of
second messengers involved in synaptic plasticity (86–88,94–103). Some studies have
suggested that the α7 and α4β2 nAChR subtypes may mediate different behavioral processes
(104,105). For example, activation of non-α7 nAChRs enhanced long-term potentiation, and
inhibition of α7 nAChR subtypes enhanced long-term potentiation (106). These data suggest
that nicotine binding at these nAChR subtypes may differentially affect learning processes.
Understanding the role of nAChR subtypes in the effects of acute, chronic, and withdrawal
from chronic nicotine aids in understanding the behavioral effects of nicotine from receptor
activation to molecular changes.

Acute Nicotine
We have used fear conditioning to examine the behavioral and neural effects of acute nicotine
administration on contextual and noncontextual learning. In fear conditioning, animals form
an association between a discrete auditory conditioned stimulus (CS) and a foot-shock
unconditioned stimulus (US; i.e., cued fear conditioning) and between the training context and
the US (i.e., contextual fear conditioning). Learning to associate the context with the US is
hippocampus- and amygdala-dependent (74,75). On the other hand, learning to associate the
auditory CS with the foot-shock US involves many of the same brain regions as contextual
fear conditioning but not the hippocampus (75). Therefore, fear conditioning allows for the
assessment of both hippocampus-dependent and hippocampus-independent learning in the
same animal after a single training session.

A large body of work has examined both the neurocircuitry (reviewed in ref. 107) and the
associated mechanisms of plasticity (e.g., ref. 55) that supports contextual fear conditioning,
making contextual fear conditioning an excellent behavioral paradigm for examining the
effects of nicotine on hippocampus-dependent learning. We have shown that acute nicotine
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enhances contextual fear conditioning (76–79). This enhancement is long-lasting and
expressed in the absence of nicotine (79). Conversely, acute nicotine does not enhance the
hippocampus-independent association between the auditory CS and the foot-shock US (76,
79), even when the difficulty of the task is increased (108). Because nicotine enhances
hippocampus-dependent contextual fear conditioning but not hippocampus-independent cued
fear conditioning, nicotine may alter hippocampal function or the function of areas that project
to the hippocampus during contextual fear conditioning. The neural, cellular, and molecular
mechanisms involved in the long-lasting enhancement of contextual conditioning by nicotine
are unknown.

Nicotine enhances contextual fear conditioning, and this enhancement is blocked by nAChR
antagonists. However, nAChR antagonists administered alone do not disrupt contextual fear
conditioning (76–78,109), suggesting that nAChRs mediate the facilitation of contextual fear
conditioning but are not essential for this form of learning. Studies with nAChR knockout mice
have also suggested that activation of specific nAChR subtypes is not necessary for fear
conditioning. Mice lacking either the α7 or the β2 nAChR subunit did not show deficits in
conditioned fear (110,111). Neither study examined whether nicotine could enhance fear
conditioning in the knockout mice. However, it has since been demonstrated that β2-null
mutant mice do not show enhancement of contextual fear conditioning by nicotine. Conversely,
α7- and β4-null mutant mice that received nicotine demonstrated enhanced contextual fear
conditioning (112). We reported similar results using the α4β2 nAChR antagonist dihydro-β-
erythroidine and α7 nAChR antagonist methyllycaconitine; dihydro-β-erythroidine blocked
the nicotine enhancement of contextual fear conditioning, but methyllycaconitine did not;
neither antagonist disrupted contextual fear conditioning when administered alone (113).
Together, these studies indicate that the α4β2 nAChR subtype is involved in the enhancement
of contextual conditioning by nicotine.

The neural and molecular mechanisms recruited by nicotine to enhance contextual conditioning
are not well known. Long-term memory is believed to be mediated by changes in gene
expression that are induced by the activation of intracellular signaling pathways (reviewed in
ref. 55). Many of these signaling pathways are activated by calcium. One way in which acute
nicotine binding at nAChRs may enhance learning is through interacting with glutamatergic
processes to enhance calcium-mediated cell signaling. Nicotine could facilitate glutamate
processes thorough presynaptic-mediated glutamate release (114–116). It is also possible that
nAChR activation facilitates postsynaptic-mediated glutamate processes involved in learning.

We recently found that co-antagonism of either nAChRs and AMPA glutamate receptors or
nAChRs and N-methyl-D-aspartate (NMDA) glutamate receptors with subthreshold doses of
antagonists disrupted contextual fear conditioning (117). These findings suggest that nAChRs
may mediate processes that are similar or parallel to processes mediated by AMPARs and
NMDARs. NMDARs, which are involved in contextual fear conditioning (118–122), require
cell depolarization to be activated. It is possible that nicotine enhances contextual fear
conditioning by activating nAChRs that contribute to the membrane depolarization necessary
for activating NMDAR-mediated processes. For example, nicotine can mediate changes in
synaptic current independent of glutamate receptors and can mediate postsynaptic events
(93,115,123–131). Additionally, nAChRs have been localized on postsynaptic densities
(132,133). These findings suggest that nAChRs can support some fast excitatory synaptic
transmission in the absence of glutamate and could play a significant role in NMDAR-
dependent synaptic plasticity by contributing to the concurrent membrane depolarization
necessary for NMDAR function. Additionally, increased calcium influx mediated by nAChRs
(98,99,134–136) could also facilitate learning by directly activating calcium-mediated cell
signaling cascades involved in learning that are also activated by NMDARs.
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Multiple studies have shown that nicotine can activate cellular and molecular processes that
are involved in the chain of events linking synaptic activity to long-lasting changes associated
with gene expression (106,137–141). For example, the MAPK family has been implicated in
synaptic plasticity and learning tasks, including contextual conditioning (45,142–147).
Nicotine-stimulated changes in calcium influx and in the release of calcium internal stores can
activate kinases such as MAPK and CaMKII/IV as well as transcription factors such as CREB
(94,103,148,149). In mice, 0.4 mg/kg of acute nicotine increased ERK phosphorylation in area
CA2 of the hippocampus (150). Additionally, micro-array studies found nicotine
administration was also associated with altered gene expression of several members of the
MAPK family (151,152). It remains to be determined whether acute nicotine enhances
contextual fear conditioning through enhancement of cell signaling cascades involved in
synaptic plasticity.

Chronic Nicotine
As reviewed previously, studies have shown that acute nicotine dose-dependently enhances
hippocampus-dependent contextual fear conditioning (76,77,112,153). Because withdrawal
effects are commonly the opposite of acute drug action (154), we investigated whether chronic
nicotine results in tolerance for the effects of nicotine on contextual fear conditioning and
whether withdrawal from chronic nicotine disrupts contextual fear conditioning. We found that
an acute dose of nicotine and a chronic dose of nicotine that produced the same plasma nicotine
levels did not produce the same behavioral effects; acute nicotine treatment enhanced
contextual fear conditioning, whereas chronic nicotine treatment failed to enhance contextual
fear conditioning (153). Notably, plasma nicotine levels in mice treated acutely and chronically
with nicotine were within the range of plasma nicotine levels (10–50 ng/mL) demonstrated by
smokers (155,156). These results suggest that with chronic administration of nicotine, neural
adaptation occurs, resulting in tolerance for the effects of nicotine on contextual conditioning;
however, the underlying neural changes are unknown.

Although the changes that may contribute to the tolerance observed for effects of nicotine
treatment on contextual fear conditioning have not been examined, studies have examined the
effects of chronic nicotine on intracellular signaling in multiple brain regions. Chronic nicotine
was associated with increased levels of phosphorylated ERK in the prefrontal frontal cortex
and decreased ERK levels in the amygdala (157). This study also found that chronic nicotine
treatment decreased levels of phosphorylated CREB (pCREB) in the nucleus accumbens and
decreased total CREB in the prefrontal cortex. Similarly, another study found that chronic
nicotine was associated with increased MAPK activity in the prefrontal cortex (152). It remains
to be determined whether chronic nicotine treatment and contextual fear conditioning interact
to alter cell-signaling cascades in a manner different than when chronic nicotine is administered
without conditioning.

Nicotine Withdrawal
Neural adaptation that occurs during chronic nicotine administration may result in deficits
when nicotine is withdrawn. This has been demonstrated for contextual conditioning; mice
withdrawn from chronic nicotine treatment demonstrated deficits in contextual fear
conditioning compared to their saline-treated counterparts when conditioned 24 h after removal
of nicotine (153). It is possible that relapse occurs in smokers after withdrawal from nicotine
as an attempt to ameliorate learning-related deficits. For example, an acute challenge dose of
nicotine reversed the deficit in contextual conditioning observed in mice withdrawn from
chronic nicotine (153).

The neural mechanisms altered during nicotine withdrawal that are responsible for the
disruption of contextual fear conditioning are unknown. Changes may occur at both the receptor
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level and at the level of cell signaling cascades. In support of the former, chronic nicotine
exposure was accompanied by an increase in nAChR binding sites (90,158–160) and by nAChR
desensitization (90,91,161–163). The increases in nAChR binding sites may be a compensatory
mechanism induced by nAChR desensitization (158,162). Evidence from pharmacokinetic
studies of nicotine has suggested that periods of nicotine abstinence may result in recovery of
function for some of the desensitized nAChRs (for review, see refs. 4,155, and 156). For
example, Gentry and colleagues (164) demonstrated in vitro that desensitized nAChRs
recovered function after nicotine removal. Therefore, receptor level changes may account for
the behavioral tolerance demonstrated by mice treated chronically with nicotine and for deficits
in contextual fear conditioning associated with withdrawal from chronic nicotine.

As reviewed previously, numerous nAChR subtypes exist (for further review, see ref. 165),
and alterations in the function and number of any receptor subtype may account for behavioral
changes. Research has shown that the acute effects of nicotine on contextual fear conditioning
are mediated by α4β2 nAChRs (112,113); however, it is unknown whether the effect of chronic
nicotine and withdrawal from chronic nicotine on contextual fear conditioning are also
mediated by α4β2 nAChRs. Marks and colleagues (153) reported that chronic nicotine, at a
dose that produces comparable plasma nicotine levels as those associated with nicotine
withdrawal-related deficits in contextual fear conditioning, results in half-maximal
upregulation of α4β2 nAChRs (159). Furthermore, β2-null mutant mice did not show
upregulation of nAChRs after chronic nicotine treatment (166). These findings suggest that
alterations in α4β2 nAChR function and/or number that occur with chronic nicotine treatment
may contribute to the nicotine withdrawal-associated changes in contextual fear conditioning
(153). This is an important topic for further study.

In addition to identifying the nAChRs involved in the effects of nicotine withdrawal on
contextual fear conditioning, identifying changes in cell signaling cascades that could
potentially underlie the effects of nicotine withdrawal on contextual fear conditioning is also
important for understanding the effects of nicotine withdrawal on cognition and developing
possible therapeutic agents. Studies that have examined the effects of nicotine withdrawal on
cell signaling provide potential targets for changes that may cause the nicotine withdrawal-
associated deficits in contextual fear conditioning. For example, mecamylamine-precipitated
withdrawal from chronic nicotine treatment increased basal and stimulated adenylyl cyclase
activity in the amygdala (167). Withdrawal from nicotine may also be associated with changes
in activation of gene transcription factors. Twenty-four hours after nicotine withdrawal,
increased levels of pCREB were found in the ventral tegmental area and increased levels of
total CREB were found in the nucleus accumbens (157). Another series of studies found that
18 h after chronic intermittent nicotine exposure, pCREB was reduced in the cingulated cortex,
piriform cortex, parietal cortex, and amygdala (168). Additionally, pCREB levels were also
reduced in the shell but not the core area of the nucleus accumbens (57). The difference between
this result and that of Brunzell and colleagues (157) may reflect methodological differences in
nicotine administration. It remains to be determined whether withdrawal from nicotine
differentially alters cell signaling when contextual learning occurs during the withdrawal. We
have started experiments to test for possible interactions between nicotine withdrawal and
contextual conditioning on cell signaling.

Conclusion
The effects of nicotine on cognition may support the development and maintenance of nicotine
addiction through multiple mechanisms. We have demonstrated that acute nicotine enhances
contextual learning. Therefore, the initial use of nicotine could facilitate cognitive processes,
which may lead to repeated use and to the development of drug–context associations that could
precipitate cravings. With repeated use, tolerance for the cognitive enhancing effects of
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nicotine may also lead to increased use and, therefore, to increased dependence. Finally,
withdrawal from chronic nicotine disrupted contextual conditioning in mice. This deficit could
be reversed with the administration of acute nicotine (153). In humans, nicotine withdrawal
deficits in cognitive function may contribute to relapse in an attempt to ameliorate the deficits.
Whereas the α4β2 nAChRs have been identified as the nAChR mediating the acute effects of
nicotine on contextual fear conditioning (112,113), the nAChRs involved in the chronic and
withdrawal effects of nicotine on contextual fear conditioning are unknown, as are the potential
underlying cellular and molecular processes. Identifying the cellular adaptations responsible
for behavioral changes in learning that occur with chronic nicotine and withdrawal from
chronic nicotine treatment will increase understanding of learning and addiction and may lead
to the development of more effective treatments to aid in smoking cessation.
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