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Although peroxisome proliferator-activated receptor alpha (PPARα)

is closely associated with myocardial fatty acid metabolism, the

pathophysiological role of PPARα in myocardial infarction (MI) is

not yet known. The aim of the present study was to clarify the rela-

tionship between cardiac energy metabolism and PPARα expression

in the remodelling of myocardium after MI. We assayed the expres-

sion of PPARα and several metabolic genes in cultured cardiac cells

(myocytes and nonmyocytes) and in MI hearts. PPARα was strongly

expressed in cardiac myocytes but not in nonmyocytes (mainly

fibroblasts). In MI rats, PPARα and PPARα-regulated genes

(lipoprotein lipase, heart-type fatty acid binding protein, long-chain

acyl-CoA dehydrogenase and uncoupling protein-3) were decreased

concomitantly, whereas uncoupling protein-2 was not decreased in

severely ischemic regions. Immunohistochemical staining for PPARα

was less decreased in borderline myocardium than in sham-operated

hearts. Furthermore, in electron microscopic study, there were no

lipid droplet accumulations in surviving myocardium after MI. Our

results suggest that the reduced expression of PPARα is closely related

to that of fatty acid metabolism genes in infarcted myocardium, and

PPARα may play an important role in cardiac energy metabolism

during remodelling after MI.
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In response to a transmural myocardial infarction (MI), the
left ventricle undergoes significant remodelling (1). Studies

in the rat model of postinfarction remodelling have provided
initial evidence that the expression of several genes may be
altered in noninfarcted myocardium. Glucose oxidation is
increased and fatty acid oxidation (FAO) is decreased in sur-
viving rat myocardium (2). Atrial natriuretic factor (ANF)
messenger RNA (mRNA) and protein levels are elevated in
response to MI as a compensatory response to improve hemo-
dynamics (3). Moreover, using complementary DNA (cDNA)
microarray analysis, many post-MI changes in expression have
been found in genes that encode proteins that have been
implicated in cytoskeletal architecture, contractility and
metabolism (4).

Long-chain fatty acids are important substrates for energy
production in the heart. Intermediary metabolism in the heart
changes markedly from fetal to adult life (5). In the adult
heart, fatty acids are the preferred energy substrates. In con-
trast, the fetal heart appears to use lactate as its primary carbon
substrate. Therefore, understanding long-chain fatty acid
metabolism may help in elucidating the mechanism of various
adult heart diseases. A key regulator of substrate switching in
the heart is postulated to be peroxisome proliferator-activated
receptor alpha (PPARα), a member of the ligand-activated
nuclear receptor superfamily (6). PPARα has been shown to
regulate the expression of several genes involved in FAO.

These include the lipoprotein lipase (LPL), fatty acid translo-
case/CD36, heart-type fatty acid binding protein (H-FABP),
muscle-specific carnitine palmitoyltransferase I, as well as
medium- and long-chain acyl-CoA dehydrogenase (MCAD
and LCAD) (7-11). PPARα binds to peroxisome proliferator
response elements in the promoter region of target genes as a
heterodimeric partner with the retinoid X receptor (RXR) and
is activated by a variety of ligands, including long-chain fatty
acids (12). PPARα knockout mice exhibit low rates of FAO
and abnormal accumulation of neutral lipids in both cardiac
and hepatic tissues (13,14). In diabetes, plasma fatty acids are
elevated and are able to activate PPARα with induction of
PPARα-regulated genes (15). In contrast, pressure overload-
induced left ventricular hypertrophy has decreased the expres-
sion of PPARα and FAO genes (16). Recent studies have
demonstrated that PPARα reactivation in the hypertrophied
heart or cardiac restricted overexpression of PPARα – signa-
tures of diabetic cardiomyopathy – result in ventricular dys-
function (17,18). Moreover, another study in humans has
suggested that PPARα regulates left ventricular growth in
response to exercise and hypertension stimuli, illustrating the
important role of cardiac fatty acid metabolism in cardiac
growth (19). Although such evidence suggests that PPARα is
a critical regulator of cardiac fatty acid uptake and utilization,
the pathophysiological role of PPARα in MI in vivo is not yet
known. Therefore, the aim of the present study was to clarify the
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relationship between cardiac energy metabolism and PPARα

expression in myocardium undergoing remodelling after MI.

MATERIALS AND METHODS
Cell culture
Cultured neonatal rat cardiac myocytes were prepared as
described previously, with minor modifications (20,21).
Briefly, whole hearts removed from zero- to two-day-old
Sprague-Dawley rats (Clea, Japan) were dispersed via agitation
in balanced salt solution containing 0.03% collagenase type II
and 0.06% pancreatin (SIGMA, USA). Cardiac myocytes
were separated from cardiac nonmyocytes by the discontinuous
Percoll (SIGMA, USA) gradient method. Cardiac myocytes
and nonmyocytes were suspended in Dulbecco’s modified
Eagle’s medium (DMEM; Nissui, Japan) supplemented with
10% fetal bovine serum (FBS; Invitrogen Corporation, USA).
After incubation for 48 h, the cultures were incubated in
serum-free DMEM for 24 h.

Animals and experimental MI
The investigation conformed with the Guide for the Care and
Use of Laboratory Animals published by the US National
Institutes of Health (NIH publication No. 85-23, revised 1996).
Infarcts and sham operations were carried out in male Sprague-

Dawley rats weighing 250 g to 300 g. Left anterior descending
coronary artery (LAD) ligation was performed by a technique
described previously (21,22). Briefly, the rats were anesthetized
with ketamine hydrochloride (70 mg/kg, intramuscularly) and
xylazine (4 mg/kg, intramuscularly). The LAD was ligated at
approximately 2 mm from its origin. To standardize the nutri-
tional state, rats were fasted for 24 h before sacrifice. Six weeks
after the operation, the heart was excised. The heart excluding
scar tissue was divided into the infarcted region (borderline
myocardium, including adjacent noninfarcted myocardium)
and the remote region (remote noninfarcted left ventricular
free wall). Each tissue specimen was quickly frozen in liquid
nitrogen and stored at –80°C.

RNA extraction and Northern blot analysis
Total RNA was isolated by the guanidine thiocyanate-phenol-
chloroform extraction method of Chomczynski and Sacchi
(23). Total RNA (15 µg) was subjected to electrophoresis in
denaturing formaldehyde-agarose gel and transferred to a
nylon membrane filter (Hybond-XL, Amersham Biosciences
Corporation, USA). The filter was hybridized with cDNA
fragments that were labelled with (α-32P) dCTP (Amersham
Biosciences Corporation, USA) by the random priming proce-
dure. The probes were obtained using reverse transcriptase-
polymerase chain reaction (RT-PCR) from cDNAs encoding
rat PPARα, glucose transporters 1 and 4 (GLUT1 and
GLUT4), LPL, H-FABP, LCAD, hormone-sensitive lipase
(HSL), succinate dehydrogenase (SDH), cytochrome oxidase
(COX), uncoupling protein-2 and -3 (UCP-2 and UCP-3),
and ANF. The PCR primers used in the present study (Table 1)
were based on the sequences reported in GenBank. The
sequences of the cDNA fragments were confirmed by the
dideoxy sequence. To exclude the possibility that changes in
gene expression after MI were due to changes in the myocyte-
to-nonmyocyte ratio (eg, myocytes dropout, apoptosis and
fibrosis), we also measured a muscle-specific marker, cardiac
alpha-actin, in the rat hearts.

TaqMan RT-PCR
Real-time quantitative RT-PCR was performed on cDNA gen-
erated from 100 ng of total RNA. For the PCR, we used 200 nM
of both sense and antisense primers, 100 nM of TAMRA-
labelled primer probe and TaqMan Universal PCR Master Mix
(Applied Biosystems, USA) in a final volume of 50 µL with an
ABI PRISM 7000 Sequence Detection System (Applied
Biosystems, USA). Sense, antisense and probe primers were
GCAGAGGTCCGATTCTTCCA, GCAAGGTAACCTG-
GTCATTCAAG and CACGGAATTTGCCAAGGCTATC-
CCA for rat PPARα; TTCCAGTATG- TTGCGGATGCT,
GCCGAGATCTGGTCAAATGTC and TGGGTCCC-
TACGTCTTCCTTCTATTTGCC for rat GLUT4; and
GTGCATGGCCGTTCTTAGTTG, TGAACGCCACTT-
GTCCCTCTA and CGATAACGAACGAGACTCTCG-
GCATGC for 18S. Results were normalized to 18S to correct
for differences in RNA quantity and quality and then
expressed as a ratio of sham-operated hearts.

Immunohistochemical staining
Immunohistochemical staining was performed as previously
described (21). Briefly, sections were deparaffinized and treated
with 3% hydrogen peroxidase solution for 20 min. After incu-
bation with normal rabbit serum for 20 min, sections were
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TABLE 1
Polymerase chain reaction primers used for amplification
of metabolic genes

PPARα Sense AAGAGAATCCACGAAGCCTAC

(M88592, 662 bp) Antisense TGAAGGAGTTTTGGGAAGAGA

GLUT1 Sense CCCATCCACCACACTCACCAC

(M13979, 604 bp) Antisense GACCTTCTTCTCCCGCATCAT

GLUT4 Sense GATGACGGTGGCTCTGCTGCT

(D28561, 497 bp) Antisense CTAAAGTGCTGCGAGGAAAGG

LPL Sense ATGAAGAAAACCCCAGCAAG

(L03294, 413 bp) Antisense TGACCAGCGGAAGTAGGAGT

H-FABP Sense CATGACCAAGCCGACCACAAT

(M18034, 420 bp) Nonsense CCAGGAAAAGCCCAACCAAAG

LCAD Sense CTGCTCCTCCGCTCCCTTCGT

(J05029, 486 bp) Nonsense ACACTTGCCCGCCGTCATCTG

HSL Sense CTCGGCATTCTCACACAGCAT

(X51415, 442 bp) Nonsense GAAGAGCACTCCTGGTCGGTT

SDH Sense CCACACCAGCACCGGGGACG

(M60879, 535 bp) Nonsense ATGCACCGAGGCGCAGGCAG

COX Sense TAATAGAAGGCAACCGAAACC

(J01435, 630 bp) Antisense ATGGGAGGGGAAGTAGTAAGG

UCP-2 Sense GTCCGCGCAGCCTCTACAAT

(AB00613, 448 bp) Antisense CCGAAGGCAGAAGTGAAGTG

UCP-3 Sense CGAATTGGCCTCTACGACTCT

(AB00614, 508 bp) Antisense CCACCATCCTCAGCATACAGT

ANF Sense GTGAGCCGAGACAGCAAACAT

(M27498, 451 bp) Antisense TCAATCCTACCCCCGAAGCAG

Cardiac alpha-actin Sense CGCCCAAAGCACGCCTACAGA

(X80130, 483 bp) Antisense AGAAGCGTACAGGGACAGCAC

Accession number and length of amplified fragments are shown in parenthe-
ses. ANF Atrial natriuretic factor; bp Base pairs; COX Cytochrome oxidase;
GLUT Glucose transporter; H-FABP Heart-type fatty acid binding protein; HSL
Hormone-sensitive lipase; LCAD Long-chain acyl-CoA dehydrogenase; LPL
Lipoprotein lipase; PPARα Peroxisome proliferator-activated receptor alpha;
SDH Succinate dehydrogenase; UCP Uncoupling protein
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incubated overnight with goat polyclonal anti-PPARα anti-
body (Santa Cruz Biotechnology Inc, USA) at room tempera-
ture. Next, sections were incubated with biotinylated anti-goat
immunoglobulin G (IgG; Vectastain ABC kit, Vector
Laboratories Inc, USA) according to the manufacturer’s direc-
tions and stained with 3,3'-diaminobenzidine (DAKO,
Denmark). For a negative control, the primary antibody was
replaced by normal goat serum (DAKO, Denmark).

Electron microscopy
Tissues were prepared for histology by dissection in ice-cold
fixative (2.5% glutaraldehyde in 0.1 mol/L of phosphate buffer,
pH 7.4). After 2 h of fixation at 4°C, the tissues were washed
with ice-cold phosphate buffer containing 8% sucrose (weight
by volume) and postfixed in 2% osmium tetroxide at 4°C for
2 h. The tissues were dehydrated in an alcohol series and
embedded in Epon resin. Ultrathin sections (70 nm) were
stained with uranyl acetate and lead citrate, and viewed on a
Hitachi H7500 electron microscope (Hitachi Ltd, Japan).

Statistical analysis
Results were expressed as the mean ± SEM. Differences
between the groups were calculated by Student’s t test and one-
way analysis of variance with Bonferroni adjustment. A value
of P<0.05 was considered statistically significant.

RESULTS
Expression of PPARα mRNA in cardiac myocytes
To confirm the types of cells expressing PPARα mRNA,
PPARα and other metabolic genes mRNA in total RNA
obtained from cultured neonatal rat cardiac myocytes and non-
myocytes (mainly fibroblasts) were measured by Northern blot
analysis (Figure 1). PPARα mRNA, as well as mRNA of FAO
genes (LPL, H-FABP and LCAD), was strongly expressed in
cultured myocytes and was negligible in fibroblasts. The other
metabolic gene mRNAs (HSL, SDH and COX) were mainly
expressed in cardiac myocytes. GLUT1 and UCP-2 mRNA

were expressed in both cultured cardiac myocytes and fibro-
blasts. In contrast, the expressions of GLUT4 and UCP-3
mRNA were not found in either cells.

General characteristics of animals and hearts
Rats with infarction sacrificed after six weeks did not exhibit
symptoms of heart failure (lethargy, pericardial effusion and
pleural effusion). Six weeks after surgery, systolic blood pres-
sure was significantly lower and heart weight to body weight
ratio was significantly increased in the infarcted rats (Table 2).
There were no significant changes in the concentration of
plasma cholesterol, triglycerides, free fatty acids, lactic acid or
glucose between the two groups (data not shown).

Myocardial mRNA expressions of PPARα and other 
metabolic genes
To determine whether PPARα regulates the metabolism of
myocardial fatty acids during remodelling after MI, the levels
of PPARα mRNA were examined in the infarcted region,
remote region and sham-operated rat hearts at six weeks after
MI-induction. In Northern blot analysis, the expression of
PPARα mRNA and GLUT4 mRNA was decreased in the
infarcted region and only slightly increased in the remote
region compared with in sham-operated hearts (Figure 2A). In
contrast, ANF (a marker of hypertrophy) mRNA expression
was increased in the remote region; this increase was much
more pronounced in the infarcted region compared with in
sham-operated hearts. The mRNA expression of GLUT1 in
adult rat hearts was lower than that of GLUT4, and there were
no significant changes of GLUT1 mRNA expression between
the groups (data not shown).

Moreover, to quantify the differences in PPARα and
GLUT4 mRNA expression, TaqMan quantitative RT-PCR
analysis was performed (Figure 2B). At six weeks after the
operation, the mRNA level of PPARα was significantly
decreased (–54±5%; P<0.05) and the mRNA level of GLUT4
was significantly decreased concomitantly (–57±12%; P<0.05)
in the infarcted region, compared with in sham-operated
hearts. Likely the result of Northern blot analysis, PPARα and
GLUT4 mRNA tended to be slightly, although not signifi-
cantly, higher in the remote region (25±16% and 38±21%,
respectively).

Figure 3 depicts the myocardial mRNA expressions of FAO
genes (LPL, H-FABP and LCAD), a lipolytic enzyme gene
(HSL), oxidative phosphorylation enzyme genes (SDH and
COX) and uncoupling proteins (UCP-2 and UCP-3) by
Northern blot analysis. The mRNA expressions of these genes,

PPARαα expression after myocardial infarction
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Figure 1) Northern blot analysis of messenger RNA expressions of
peroxisome proliferator-activated receptor alpha (PPARα), glucose
transporters 1 and 4 (GLUT1 and 4), lipoprotein lipase (LPL), heart-
type fatty acid binding protein (H-FABP), long-chain acyl-CoA dehy-
drogenase (LCAD), hormone-sensitive lipase (HSL), succinate
dehydrogenase (SDH), cytochrome oxidase (COX), and uncoupling
protein-2 and -3 (UCP-2 and UCP-3) in cultured rat cardiac cells.
F Neonatal rat cardiac nonmyocytes; M Neonatal rat cardiac
myocytes; V Adult rat heart tissues

TABLE 2
Body weight, heart weight and hemodynamic parameters
of sham-operated rats (Sham) and rats with coronary
ligation (Infarcted)

Experimental group Sham (n=6) Infarcted (n=6)

Heart rate (beats/min) 343±11 336±6

Systolic BP (mmHg) 137±1.5 123±3.4*

Diastolic BP (mmHg) 83±4.3 89±4.3

Body weight (g) 504±9 515±4

Heart weight (mg) 1151±36 1390±50*

Heart weight/body weight (mg/g) 2.28±0.06 2.70±0.10*

Results were expressed as the mean ± SEM. *P<0.05 compared with sham-
operated rats. BP Blood pressure
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except for UCP-2, were markedly decreased in the infarcted
region compared with in the other groups. However, UCP-2
mRNA expression was only slightly increased in the remote
and infarcted regions.

Immunohistochemical staining for PPARα in MI hearts
To elucidate changes in the levels of PPARα, we immunohis-
tochemically assayed rat heart tissue sections with antibody to
the proteins (Figure 4A). Immunohistochemical staining for
PPARα was less decreased in the borderline myocardium

(fibroblast proliferation region) and slightly more increased in
the remote region than in sham-operated hearts.

Electron microscopic analysis on lipid droplet 
accumulations in MI hearts
To explore the effect of ischemic status on lipid droplet accu-
mulations in the rat heart, heart sections were studied using
electron microscopy (Figure 4B). At six weeks after LAD liga-
tion, infarcted myocardia exhibited coagulation necrosis and
the ultrastructural alterations became even more marked, as
characterized by a decrease in glycogen, swelling and fragmen-
tation of mitochondria, and the presence of numerous amor-
phous electron-dense bodies. Comparing cross-sections of left
ventricular heart tissues, surviving myocardium in the border-
line region after MI exhibited no lipid droplet accumulations
compared with sham-operated hearts after 24 h of fasting.

DISCUSSION
Myocardial hypertrophy after MI is accompanied by a shift
from fatty acid to glucose metabolism and altered expression of
regulatory proteins of energy metabolism (2,4,24). However,
there are no previous studies on the role of PPARα in MI
hearts. In the present study, we investigated the hypothesis
that during postinfarction remodelling of the heart, PPARα

plays an important role in myocardial fatty acid metabolism.
Our findings provide further insight into the gene regulatory
pathways involved in the energy substrate switch during car-
diac remodelling after MI.

Because cardiac myocytes contract unremittingly, it is
necessary to have a large energy production capacity. Cardiac
myocytes prefer the oxidation of fatty acids, which provide
more ATP than glucose per mole of substrate. In the present
study, PPARα and FAO genes were mainly expressed in 
cultured myocytes. These results suggest that cardiac ATP 
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Figure 4) A Immunohistochemical localizations of peroxisome 
proliferator-activated receptor alpha (PPARα) in rat hearts six weeks
after myocardial infarct induction. a PPARα immunoreactivity in
sham-operated rat heart. b PPARα immunoreactivity in the remote
noninfarcted left ventricular free wall. c PPARα immunoreactivity in
borderline myocardium. d The reaction with normal goat serum.
(Original magnification ×200) B Representative electron microscopic
views of the left ventricular tissue from rats fasted for 24 h at six weeks
after myocardial infarct induction. All experiments were carried out
three times. a Tissue from the sham-operated rat heart. b Tissue from
surviving myocardium in the borderline region. (Original magnification
×9200)

Figure 3) Northern blot analysis of messenger RNA expressions of
lipoprotein lipase (LPL), heart-type fatty acid binding protein 
(H-FABP), long-chain acyl-CoA dehydrogenase (LCAD), hormone-
sensitive lipase (HSL), succinate dehydrogenase (SDH), cytochrome
oxidase (COX), and uncoupling protein-2 and -3 (UCP-2 and UCP-3)
in rat hearts six weeks after myocardial infarct induction. MI Infarcted
myocardium including borderline region; NM Remote noninfarcted left
ventricular free wall; S Sham-operated rat hearts

Figure 2) A Northern blot analysis of messenger RNA (mRNA)
expressions of peroxisome proliferator-activated receptor alpha
(PPARα), glucose transporter 4 (GLUT4), atrial natriuretic factor
(ANF) and cardiac alpha-actin in rat hearts six weeks after myocardial
infarct induction. B TaqMan reverse transcriptase-polymerase chain
reaction analysis of mRNA expressions of PPARα and GLUT4 in rat
hearts six weeks after myocardial infarct induction (n=4). Results were
compared with values measured in sham-operated rat hearts and
expressed as the mean ± SEM. All values are normalized against the
expressions of 18S. *P<0.05 compared with sham-operated rat hearts.
MI Infarcted myocardium including borderline region; NM Remote
noninfarcted left ventricular free wall; S Sham-operated rat hearts
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and PPARα-regulated genes in the MI heart. However, we
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to that of fatty acid metabolic genes in infarcted myocardium,
and PPARα may play an important role in cardiac energy
metabolism during remodelling after MI.
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