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BACKGROUND: Several investigations have implicated cytokines
such as tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1,
IL-6, IL-8 and transforming growth factor-beta in the pathophysi-
ology of cellular dysfunction in ischemia-reperfusion (I/R). Although
an increase in the production of these cytokines has been detected
after myocardial infarction and cardiopulmonary bypass surgery, their
exact role and mechanisms for inducing cardiac dysfunction are poorly
understood.
OBSERVATIONS: TNF-α, transforming growth factor-beta, IL-1,
IL-6 and IL-8 have frequently been studied in different cardiovas-
cular diseases, including I/R injury in the heart. Low concentra-
tions of TNF-α appear to exert cardioprotective effects, whereas

high concentrations have been shown to produce deleterious
actions in the heart. Some efforts have been made to explore the
molecular mechanisms of cytokine actions; however, such informa-
tion is insufficient to develop therapeutic strategies to combat
their deleterious effects during the development of I/R injury in the
heart.
CONCLUSIONS: In addition to a time-dependent response, the
conflicting effects of cytokines seem to depend on their concentra-
tions used in different experimental studies. It is also likely that both
the beneficial and pathophysiological actions of cytokines occur con-
comitantly. On the basis of the existing literature, it is suggested that
different ways need to be found to modify the synthesis as well as
the cardiodepressant actions of cytokines to improve the therapy of
ischemic heart disease.
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Ischemia-reperfusion (I/R) injury is one of the most common
cardiovascular problems and is associated with various clin-

ical conditions such as arteriosclerosis, coronary spasm and
thrombosis (1). Several investigators (2,3) have shown that
accumulation of protons, cessation of oxidative metabolism
and damage of electron transport are the major characteristics
of myocardial ischemic injury on stoppage of blood flow.
Although reinstitution of flow by procedures such as angio-
plasty, thrombolysis or coronary bypass surgery is essential for
salvaging ischemic myocardium, re-establishment of blood
flow beyond a certain period of ischemic insult has been
observed to produce adverse effects commonly known as reper-
fusion injury or I/R injury (1,4). It has been shown that I/R
injury is associated with reperfusion arrhythmias, myocardial
stunning, microvascular damage and accelerated necrosis (4).
Multiple factors that are involved in myocardial cell damage
and cardiac dysfunction due to I/R injury show the occurrence
of intracellular Ca2+ overload, production of oxygen-derived
free radicals and alterations in different enzyme activities (5,6).

Recent studies have shown that myocardial ischemic insult
promotes the formation of cytokines, a group of low molecular
weight polypeptides that are autocrine contributors to cardiac
dysfunction and cardiomyocyte necrosis, as well as apoptosis
in I/R injury. These mediators mainly include tumour necrosis
factor-alpha (TNF-α), transforming growth factor-beta (TGF-β)

and interleukins (ILs) such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6,
IL-8 and IL-12 (7-11). The specific targets of such mediators
appear to be the endothelium and neutrophils (these deleterious
mediators act on neutrophils for adherence to the vascular
endothelium and, thus, induce the obstruction of capillary beds
to cause a no-reflow phenomenon during reperfusion) (12,13).
In fact, the accumulation of these cytokines, especially TNF-α
and IL-1, within the ischemic zone damages the tissue and
releases oxygen free radicals that produce myocardial cell
damage and induce cardiac dysfunction (12,13). In addition, it
has been reported that cytokines have numerous basic func-
tions including activation of leukocytes, promotion of inflam-
mation, control of cell division, induction of certain genes to
produce a multitude of proteins for cellular/humoral immunity
and initiation of other cytokine synthesis (14). In view of the
fact that TNF-α, TGF-β, IL-1, IL-6 and IL-8 have been fre-
quently studied in ischemic heart disease (IHD) (15,16), the
present article is intended to review the role of these cytokines
in I/R injury and to examine whether the modification of their
synthesis is associated with alterations in cellular function.

ROLE OF TNF-αα IN I/R INJURY
In the cytokine family, TNF-α is considered to be the most
important mediator of cardiovascular disease. This substance
was discovered by the surgeon William Coley (17), who
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reported that TNF-α was primarily produced by lymphocytes
and macrophages, and mediates endotoxin-induced tumour
necrosis; other cells such as cardiomyocytes, resident cardiac
macrophages and vascular smooth muscle cells have also been
shown to produce TNF-α (18). TNF-α is synthesized as a 26 kDa
propeptide (pro-TNF-α) in the cytosol, which is then cleaved
to a 17 kDa active form by TNF-α-converting enzyme
(TACE); this cleavage occurs as pro-TNF-α passes through the
cell membrane. The activated form of TNF-α binds to the
receptors on the cell membrane surface and triggers alterations
in cytosolic protein synthesis and activation of different
kinases (18,19). Similar to other protein synthesis pathways,
both transcription and translational processes are involved in
the regulation of TNF-α synthesis. At the transcriptional level,
nuclear factor kappa B (NFκB) is the major redox-sensitive
transcriptional factor associated with TNF-α production. It
has been shown that inhibition of NFκB signalling com-
pletely blocks lipopolysaccharide (LPS)-induced TNF-α
production (20). At the translational level, TACE plays an
important role in converting pro-TNF-α to TNF-α and, thus,
inhibition of TACE activity is effective in controlling the
synthesis of TNF-α (21). Although LPS has been viewed as
an important trigger for the production of TNF-α, several
studies (22-25) have shown that TNF-α is formed and
released from the rat and human myocardium after I/R injury.
The pharmacological inhibition of TNF-α synthesis signifi-
cantly improves the recovery of myocardial dysfunction
induced by I/R (26-33). Although LPS-induced increases in
TNF-α expression have been extensively studied, the mech-
anisms of I/R-induced TNF-α synthesis and myocardial alter-
ations due to TNF-α during I/R in the myocardium are not
fully understood.

It has been previously shown that TNF-α directly decreases
contractile function in hamster, rat, dog and human myocardium
(31,32,34-36). The acute negative inotropic effect of TNF-α
appears to be due to alterations in Ca2+ handling, which are
manifested by attenuated Ca2+-induced Ca2+ release from the
sarcoplasmic reticulum and myofilament Ca2+ sensitivity
(Figure 1). The initial contractile depression induced by TNF-α
is mediated by activation of sphingomyelinase (37), which
hydrolyzes the phospholipid sphingomyelin to ceramide (38).
In the presence of acidic or neutral ceramidase, ceramide is
deacylated to sphingosine, an endogenous second messenger
(39) that causes blockade of ryanodine receptors in the sar-
coplasmic reticulum and, thus, decreases Ca2+-induced Ca2+

release and myocardial contractility (40). Delayed contractile
depression by prolonged TNF-α exposure is mediated by the
induction of inducible nitric oxide synthase (iNOS), with
subsequent production of nitric oxide (NO). NO prevents Ca2+

influx via cyclic GMP-dependent inhibition of the L-type Ca2+

channels in sarcolemma (SL), depresses myofilament sensitivity
to Ca2+ and, subsequently, attenuates myocardial contractility
(34,41) (Figure 1). TNF-α-mediated delayed contractile
depression has also been shown to be associated with desensi-
tization of β-adrenoceptor mechanisms in the SL membrane
(30). Although different investigators have revealed the
involvement of both NO-dependent and NO-independent
functional uncoupling of β-adrenoceptor to adenylyl cyclase
(42), the exact mechanisms are not completely understood.
Similarly, the cellular events in TNF-α-mediated depressed
contractility after binding to the SL membrane receptors
remain to be elucidated.

Different signal transduction pathways include an increase
in phosphatidylcholine (PC)-specific phospholipase C (PLC)
and phospholipase D (PLD) activities subsequent to the
binding of TNF-α to the TNF-α receptors (TNF-Rs) (43,44).
Activated PLC and PLD have been shown to hydrolyze PC to
diacylglycerol (DAG) and phosphatidic acid (PA), respectively
(45). DAG activates protein kinase C, which is involved in
multiple signalling pathways that result in apoptosis, phospho-
rylation of troponin T and troponin I, and an increase in NFκB
activity (46,47). Production of PA has also been associated
with the pathogenesis of TNF-α-induced heart injury (10);
moreover, PA has been shown to cause Ca2+ overload and acti-
vation of extracellular-signal-regulated protein kinase, which
stimulates the activation of NFκB and, thus, plays an impor-
tant role in the development of the positive feedback loop of
TNF-α and NFκB (48). Furthermore, TNF-α bound to TNF-Rs
triggers the activation of phospholipase A2 and generates
arachidonic acid and prostaglandins; this mechanism appears
to explain the proinflammatory activities of TNF-α (49). It is
important to point out that DAG, PA and arachidonic acid
have also been shown to activate sphingomyelinase, the key
enzyme of the sphingomyelin pathway (50), thus further aggra-
vating TNF-α-induced contractile dysfunction.

Another mechanism of cardiac depression induced by TNF-α
is associated with the induction of apoptosis in cardiomyocytes
(Figure 2). It has been reported (21) that apoptosis is mainly
induced via TNF-α binding to either TNF-R1 or Fas. TNF-R1
and Fas are linked with cytoplasmic proteins that are referred
to as the TNF-R1-associated death domain and Fas-associated
death domain, respectively. Binding of TNF-α to TNF-R1 or
Fas causes conformational changes in the TNF-R1-associated
and Fas-associated death domains, triggering their binding
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Figure 1) Effect of tumour necrosis factor-alpha (TNF-α) on myocar-
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with receptor-interacting protein-2, which has a kinase
domain (51). McCarthy et al (52) have shown an association
of initiator caspases 1, 2 and 9 with receptor-interacting
protein-2. Proteolytic cleavage of initiator caspases leads to
the activation of downstream effector caspases 3, 6 and 7.
Activation of effector caspases promotes the activation of
endonucleases, chromatin condensation and DNA fragmenta-
tion leading to apoptosis (53). On the other hand, the binding
of TNF-α to TNF-R2, which is linked with TNF-R-associated
factors, causes activation of NFκB (21). The association of
TNF-R1 to TNF receptor-associated factors with subsequent
activation of NFκB has been previously reported (54).
Activation of NFκB has been implicated in the induction of
genes involved in cell proliferation, growth, survival and
death (55). The proposed mechanism is outlined in Figure 3.
Nonetheless, the regulatory balance between cell survival and
apoptosis by NFκB activation remains to be characterized in
I/R heart.

TNF-α-mediated apoptosis appears to be mediated by
sphingosine and NO (56,57). Additionally, TNF-α has been
indicated to be an initiator of a cytokine cascade, which results
in the production of IL-6, IL-1 and IL-8, and ultimately, a
worsening of the deleterious alterations induced by I/R
(22,58,59). These studies seem to suggest that anti-TNF-α
therapy may be valuable in I/R injury. However, it has been
indicated that high circulating levels of TNF-α could be an
adaptive response, which acts by promoting the shedding of
TNF-Rs and reducing the number of active receptors (60). The
shedding of TNF-Rs causes the formation of soluble forms of
TNF-Rs (sTNF-Rs) (61). Different investigators have impli-
cated the activation of metalloproteinase in the release of
sTNF-Rs (62,63). On one hand, sTNF-Rs have been shown to

exert protective effects such as inhibiting TNF-α bioactivity,
serving as a TNF-α antagonist, blocking the effects of high
concentrations of TNF-α and maintaining the basal TNF-α
level (64). On the other hand, sTNF-Rs exert adverse effects
by acting as carriers that transport TNF-α to other body com-
partments, by slowing the release of TNF-α and by prolonging
the half-life of TNF-α by stabilizing its bioactivity (61,64).
Thus, it appears that both the deleterious and beneficial
effects of TNF-α may be occurring concomitantly.

A large body of evidence has accumulated to provide some
information on interventions for blocking TNF-α synthesis in
the ischemic heart (Table 1). p38 mitogen-activated protein
kinase (MAPK) and NFκB inhibitors appear to depress the
synthesis of this proinflammatory factor (21,65). Adenosine
and noradrenaline, released during transient ischemia, have
also been shown to reduce cardiac TNF-α production in
humans (21,31,66). Maekawa et al (67) have reported reduced
infarct size, decreased occurrence of arrhythmia and improved
cardiac function upon subjecting TNF-α knockout mice to
I/R injury compared with wild-type mice. Furthermore, TNF-α
antibody, IL-1 receptor antagonist (68) and sTNF-R were
also found to attenuate the deleterious effects of TNF-α in
I/R heart injury in rats (33). Other interventions, including ago-
nists of glycoprotein 130 receptor subunits (69-72), an
inhibitor of TACE (73,74), an inhibitor of serine protease,
aprotonin (75) and heat shock proteins (HSPs) such as HSP70
and HSP72 (76-78), have also been used in clinical and exper-
imental trials.

In contrast to reports showing adverse effects of TNF-α,
different investigators have observed that TNF-α may have
protective effects during I/R (65,67,69,79-81). Lecour et al (81)
have shown that TNF-α-evoked preconditioning is an effective
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intervention for the protection of I/R injury. Nelson et al (69)
have indicated that pretreatment with TNF-α 24 h before the
I/R period results in improved cardiac contractile function in
rabbits. Several studies (79,80) have also suggested that TNF-α
knockout mice may display larger infarct size after undergoing
coronary ligation compared with normal mice. Such results
indicate that the beneficial effects of TNF-α may be due to
varying time periods, during which the heart is exposed to dif-
ferent concentrations of TNF-α. Although it has been indicated
that the adverse and beneficial effects of TNF-α are probably
dependent on the absolute levels of TNF-α during the I/R period
(18), the effects of TNF-α and the mechanism of the benefi-
cial effects remain a matter of debate. It appears that low con-
centrations of TNF-α exert beneficial effects, whereas high
concentrations produce deleterious actions in the isolated
heart (35). Similarly, in isolated cardiomyocytes, low concen-
trations of TNF-α cause an increase in the intracellular Ca2+

concentration and cardiac contraction, whereas high concen-
trations attenuate the electrically stimulated Ca2+ transient
and cardiac contraction (82). Hence, to understand the patho-
genesis of different heart diseases, further research is needed to
elucidate the role of TNF-α in both cardioprotection and
cardiodepression.

ROLE OF NFκκB IN CYTOKINE PRODUCTION
NFκB is a redox-sensitive transcription factor that plays a key
role in the production of most cytokines. It has been shown that
NFκB exists in an inactive state in the cytoplasm of unstimulated
cells because it is bound to inhibitory kappa B (IκB). The NFκB
family is comprised of different subunits such as p50, p52, p65
(Rel), c-Rel, p52 and Rel B. Multiple subfamilies of IκB have
also been shown to exist, including IκB-α, -β, -gamma (p105),
-delta (p100), -epsilon and Bcl-3 (83). The most common active
form of NFκB is the p50/p65 dimer, which is associated with the
inhibitory protein IκB-α. The crucial step in the activation of
NFκB is the phosphorylation of IκB by a multimeric complex
referred to as IκB kinase. Anoxia, reactive oxygen species,
LPS, IL-1 and TNF-α are considered to be the major stimuli

that activate IκB kinase, leading to the dissociation of IκB from
NFκB subunits (84). It has been reported (83,84) that multiple
regulatory steps are involved in the activation of NFκB, which
include nuclear translocation, phosphorylation of Rel family
protein, interaction with the basal transcription complex and
redox regulation. Blocking of any of the phases is likely to
prevent the activation of NFκB, resulting in changes in NFκB-
regulated gene expression for a broad range of physiological
and pathophysiological processes. Various genes regulated by
NFκB activation include cyclooxygenase-2, inhibitors of apop-
totic factors, manganese superoxide dismutase, ILs (IL-1, IL-6
and IL-8), TNF-α, Fas ligands and cell adhesion molecules
(83-85). In addition, the action of TNF-α on its receptors
causes the activation of NFκB, which further stimulates pro-
duction of TNF-α and, thus, develops a positive feedback loop
(51) (Figure 4).

Recent evidence has indicated that NFκB is activated in
the ischemic myocardium upon the initiation of reperfusion
(86-88). Intracellular adhesion molecule-1 protein expression
and iNOS are increased due to NFκB activation following
I/R injury in canine heart (89). Additionally, locally produced
cytokines in the myocardium have been reported to stimulate
NFκB activation via PC-specific PLC and PLD pathways
(48); this positive feedback loop further augments the local
pathogenesis responses. Another important deleterious effect
of NFκB is the promotion of apoptosis, which possibly induces
irreversible myocardial damage or amplifies infarct size in
myocardial infarction (90). Although Ca2+ is an important
second messenger in the activation of NFκB in the kidneys
and lymphocytes (91-93), oxidative stress is still considered
an essential trigger for the activation of NFκB following I/R
injury (83). An I/R-induced increase in oxidative stress causes
the activation of p38 MAPK, which appears to be involved in
NFκB activation followed by TNF-α production (21) (Figure 4).
Several antioxidants such as N-acetylcysteine, α-lipoic acid and
vitamin E inhibit the activation of NFκB (94-96). Cargnoni et al
(94) have shown that N-acetylcysteine prevents the activation
of NFκB by obstructing alterations in intracellular thiol,
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TABLE 1
Modification of tumour necrosis factor-alpha (TNF-αα) synthesis by different pharmacological interventions in ischemic-
reperfused heart
Target Agent Effect References

Neutralization of TNF-α Soluble TNF-α receptor ↓ TNF-α bioactivity 33
IL-receptor antagonist ↓ TNF-α synthesis 68,70

NFκB antagonism Antioxidant (vitamin E, N-acetylcysteine) ↓ NFκB activation 94-96
Pentoxifylline/heparin ↓ NFκB translocation 98-100
20S proteasome inhibitor (PS519) ↓ NFκB activation 97
HSP70 ↓ NFκB translocation 78

p38 MAPK inhibition SB 203580 ↓ TNF-α transcription 65

Metalloproteinase inhibition GI 129471 ↓ pro-TNF-α conversion to TNF-α 73-75
(TACE inhibitor) Aprotonin

Ischemic preconditioning Adenosine ↓ TNF-α production, ↓ iNOS expression, 31,66
Noradrenaline ↓ TNF-α bioactivity

Induction of HSPs HSP70, HSP72 Binding of HSPs to cytosolic TNF-α 76-78

gp130 subunit-linked agonism IL-6 (IL-11, CT-1, leukemia inhibitory factor, ↓ TNF-α production 51,71,72
oncostatin M receptor)

↓ Decrease; CT Cardiotropin; gp130 Glycoprotein 130; HSP Heat shock protein; IL Interleukin; iNOS Inducible nitric oxide synthase; MAPK Mitogen-activated
protein kinase; NFκB Nuclear factor kappa B; pro-TNF-α TNF-α propeptide; TACE TNF-α-converting enzyme



reduced glutathione and oxidized glutathione levels. In addi-
tion, the 20S proteasome inhibitor PS-519 was found to
depress the activation of NFκB due to I/R injury in the
myocardium (97). In cultured vascular smooth muscle cells,
HSP70, pentoxifylline, a known phosphodiesterase inhibitor,
and nonanticoagulant heparin were reported to inhibit NFκB
activation (77,98-100). It is important to point out that the
adverse effects of NFκB during I/R injury have been deter-
mined indirectly by functional studies of NFκB-regulated
genes. Therefore, further details of this pathway are needed to
understand the relationship between the activation of NFκB
and I/R injury.

In contrast to the negative effect of NFκB in I/R injury,
some studies have reported a protective effect of NFκB activa-
tion in hearts undergoing I/R. It has been suggested that NFκB
may be a key mediator of the beneficial effect of precondi-
tioning against I/R injury (101,102), ie, ischemic precondi-
tioning protects the heart by activating NFκB (102). It has
also been suggested that NFκB stimulates the production of
cytoprotective genes (eg, HSPs) (103) and NO (104). These
cytoprotective genes may inhibit NFκB activation induced by
the overwhelming oxidative stress during I/R and, in turn, can
lead to an inhibitory effect on the production of inflammatory
genes (105). Furthermore, Bach et al (106) have also suggested
that NFκB mediates numerous gene expressions of proteins
that inhibit cell death; in particular, these proteins include the
Bcl family, zinc finger protein, endogenous antioxidants, man-
ganese superoxide dismutase and hemeoxygenase-1. In fact,
Bcl-2 has been shown to cause activation of NFκB, with a sub-
sequent reduction in apoptosis (107). Additionally, functional
NFκB signalling seems to be crucial for suppressing TNF-α-
mediated apoptosis in ventricular cardiomyocytes (108).
Furthermore, recent studies (109) have shown that NFκB acti-
vation prevents hypoxia-induced cell death by preserving
mitochondrial function. Thus, the role of NFκB in I/R injury is
controversial and the pathways mediating protective and detri-
mental effects still need to be elucidated. It is also important to
point out that the adverse effects of NFκB during I/R injury
have been indirectly suggested by functional studies of NFκB-
regulated genes. Therefore, further details of this pathway are
needed to understand the relationship between the activation
of NFκB and I/R injury.

ROLE OF TGF-ββ IN I/R INJURY
TGF is a family of peptides that exists in many mammalian
tissues. Recently, TGF-β has received considerable attention
for its multiple functions in controlling cell growth and
responding to extracellular environmental changes (110). The
most common form of TGF is TGF-β1, which modulates various
biological functions and has been identified as a powerful car-
dioprotective agent (111-113). Lefer et al (114) have shown
that the administration of TGF-β1 reduces infarct size in a
feline model of myocardial I/R, and the protective effect seems
to be due to inhibition of endothelial cell-neutrophil interac-
tions, as well as anti-inflammatory actions that result from
decreased TNF-α production. Baxter et al (115) have also
observed a significant limitation of infarct size in rat heart
and a reduction in apoptosis in ventricular myocytes due to
TGF-β1 administration during the early reperfusion period. It
has been noted that the p42/p44 MAPK (extracellular-signal-
regulated protein kinase) signalling pathway may be involved
in this cardioprotective effect; its involvement is suspected

because PD98059, an inhibitor of p42/p44 MAPK, abolishes
the attenuated infarct size and cardiomyocyte apoptosis after
TGF-β1 treatment. In addition, the induction of the anti-
apoptotic protein Bcl-2 has been implicated in the protective
effect of TGF-β1 during I/R injury in rat cardiac allografts (116).
Furthermore, Mehta et al (117) have shown the participation of
NO in TGF-β1 signalling; the hypoxia-reoxygenation-induced
decrease in active TGF-β1 release was shown to be augmented
by 3-morpholino-sydnonimine and nitroglycerine, known NO
donors. Chen et al (118) have shown that the hypoxia-
reoxygenation-mediated upregulation of iNOS expression,
decrease in endothelial NOS and increase in Akt/PKB phos-
phorylation were attenuated by TGF-β1 treatment, indicating
the involvement of these mediators in TGF-β1-mediated
cardioprotection. Moreover, the expression of matrix metallo-
proteinases was also inhibited by TGF-β1, resulting in a signif-
icant improvement in cardiac function in I/R hearts (11).
Therefore, TGF-β1 appears to promote a cardioprotective
effect through a wide variety of intracellular signal pathways
and, indeed, is a promising new approach to attenuate I/R
injury.

ROLE OF IL-1 IN I/R INJURY
IL-1 is as an important mediator of inflammatory reactions.
There are two forms of IL-1, namely, IL-α and IL-β. Because
IL-β is easily detected in the blood, it has been the main focus
in experimental research. Several studies (8,119,120) have
shown the negative inotropic effect of IL-1 in both intact
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heart and isolated cardiomyocytes. IL-1 has been found to
induce the expression of iNOS at both the messenger RNA
(mRNA) and protein levels, and is considered to be involved
in the p38 and p42/p44 MAPK signalling pathways (7). It has
been observed that IL-β and TNF-α have similar pathways,
causing negative inotropic effects in the myocardium (121).
Furthermore, a decrease in the expression of Ca2+ regulatory
genes has been shown to be involved in the deleterious effect
of IL-1; this mechanism may be implicated in arrhythmogenesis
after I/R injury (122-126). In addition, it has been observed
that IL-1, like other cytokines, has the effect of inducing apop-
tosis in neonatal cardiac myocytes (127). Although most of the
data suggest IL-1 has a primarily deleterious role in the heart,
some investigations (125,128,129) have indicated a cardiopro-
tective effect of IL-1.

ROLE OF IL-6 IN I/R INJURY
IL-6 was originally identified as a T cell-derived cytokine,
but it has now been documented as a multifunctional cytokine
produced by different cells types. The IL-6 family is com-
prised of IL-11, leukemia inhibitory factor, oncostatin M and
cardiotropin-1 (CT-1). All cytokines of this family regulate
intracellular signalling upon binding to receptors with a glyco-
protein 130 subunit (121,130). Elevated levels of IL-6 have
been detected in patients with myocardial infarction, especially
during the period of reperfusion, indicating a role for IL-6 in
the pathogenesis of IHD (131). Other experimental studies
(132-134) have also reported an elevation of IL-6 mRNA and
protein content in canine myocardium subjected to I/R injury.
An increasing number of investigations (34) have shown that
IL-6 serves as a direct cardiodepressant; it has been reported to
inhibit myocardial contractility in hamster myocardium. It has
also been shown that IL-6 reduces the peak systolic Ca2+ tran-
sient and contractility by increasing the production of NO
and a subsequent cyclic GMP-mediated decrease in L-type
Ca2+ channel current (135,136). Furthermore, it has been

suggested that IL-6 induces the expression of iNOS in isolated
cardiomyocytes, which subsequently causes a sustained depres-
sion of myocardial contractility (34,135,136). The induction
of IL-6 has also been involved in the expression of intracellular
adhesion molecule-1, which leads to inflammatory injury in
canine ischemic heart (133,137). Conversely, pretreatment with
CT-1, a member of the IL-6 family, has been shown to protect
cultured cardiomyocytes against simulated ischemia/hypoxia,
which may be mediated by enhancing the protein levels of
HSP70 and HSP90 (138). In addition, Latchman (139) has
reported that CT-1 protects the cultured cardiac cells and/or
isolated rat heart from I/R injury by regulating the p42/p44
MAPK pathway. Furthermore, Craig et al (140) have shown
the antiapoptotic effect of IL-6 in isolated cardiomyocytes.
Therefore, further studies are needed to differentiate IL-6-
mediated cell survival and cell death pathways that may be
stimulated concomitantly by this cytokine.

ROLE OF IL-8 IN I/R INJURY
Like other cytokines, IL-8 is also expressed at the mRNA level
in myocardium subjected to I/R injury (141). In addition,
various reports (142-144) have suggested that IL-8 is impor-
tant in the development of myocardial injury in human
myocardial infarction. Cells such as neutrophils, monocytes,
T lymphocytes and endothelial cells have also been shown to
produce IL-8 (145). IL-8 is considered to be a potent partici-
pant in granule enzymatic release and oxidative burst in neu-
trophils, which in turn lead to further damage in the ischemic
heart (121). Boyle et al (146) have shown that a depression
in IL-8 level protects the heart from I/R injury in rabbits;
however, the role of IL-8 in the interaction of neutrophils and
endothelial cells has been controversial. Some results have
shown inhibitory effects (9,147,148), whereas others have shown
stimulatory effects on the migration of neutrophils through the
swollen endothelium, tyrosine kinases Src and focal adhesion
kinase activity (145,149-152). Although the effect of IL-8
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TABLE 2
Effects of cytokines on ischemia-reperfusion-induced cardiac injury

Second messengers/
Cytokine Receptors pathways Effect References

TNF-α TNF-α receptors NO, sphingosine, MAPK, Apoptosis, negative inotropic effect, 27,32,34,39,
PKC, NFκB initiator of synthesis of other cytokines, 41-44,56,64

and inflammatory effect

TGF-β TGF-β1 receptors PKC, Bcl-2, ↓ Apoptosis, ↓ infarct size, 111,114-118
p42/p44 MAPK ↓ endothelial cell/neutrophil interaction,

anti-inflammatory, ↑ endothelium-
dependent relaxation,
↓ TNF-α production

IL-1 IL-1β receptors NO, MAPK, NFκB Apoptosis, negative inotropic effect, 121-127
↓ Ca2+-regulated gene expression,
↑ arrhythmogenesis

IL-6 gp130 receptors MAPK, NO Apoptosis, ↓ contractility, 121,130-134
↑ ICAM-1 production

IL-8 IL-8 receptors Tyrosine kinases (Src, Inflammatory effect, 142,145,149-152
focal adhesion kinase) neutrophil migration,

↑ granule enzymatic release,
↑ oxidative burst in neutrophil

↓ Decrease; ↑ Increase; gp130 Glycoprotein 130; ICAM-1 Intracellular adhesion molecule-1; IL Interleukin; MAPK Mitogen-activated protein kinase; NFκB Nuclear
factor kappa B; NO Nitric oxide; PKC Protein kinase C; TGF-β Transforming growth factor-beta; TNF-α Tumour necrosis factor-alpha
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