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Oxidative stress can generate a mass of oxygen free radicals (OFR) in

the cells, and these OFRs can induce several acute and chronic symp-

toms and diseases. If the amount of the generated OFRs overwhelms

the antioxidant capacity of the cells, the pathophysiological changes

may lead to the death of the cell or the development of chronic

degenerative diseases. 

The phenomenon of ischemic preconditioning has demonstrated the

important role of these aggressive and harmful molecules in the

endogenous adaptation mechanism of the cells to oxidative stress.

After sublethal oxidative stress – mild ischemic insult – the resulting

development of a few OFRs can stimulate the intracellular signal-

transduction cascade of ischemic preconditioning and, through the

induction of severe transcription factors, new antioxidant enzymes

and heat shock proteins will be synthesized. These newly synthesized

proteins will protect the cellagainst another, more serious oxidative

insult in the future.
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PRECONDITIONING AND THE ANTIOXIDANT

DEFENCE SYSTEM OF THE CELL
Ischemic preconditioning (IPC) is a cellular adaptive response
of the heart to stress, whereby one or more brief, sublethal peri-
ods of ischemia enhance the tissue’s tolerance to a later, more
sustained ischemia and reperfusion. The evoked cytoprotec-
tion is biphasic: the classic or early preconditioning (PC)
appears immediately after the PC stimuli and lasts for 2 h to 
3 h, while the ‘second window of protection’ (SWOP) may be
exhibited 24 h to 72 h later. PC as an endogenous adaptation
form of the myocardium was first described by Murry et al (1).
Since then, PC has been most intensively examined in the
myocardium, but recent evidence demonstrates that the same
endogenous adaptation is available in several other tissues
(eg, bowel mucosa, parenchimal tissues, liver, skeletal muscle)
(2-6). The role of oxygen free radicals in ischemia-reperfu-
sion syndrome, chronic degenerative diseases and carcinogene-
sis is unquestionable. Because delayed PC (SWOP) stimulates
the endogenous antioxidant system of the cells, application of
this phenomenon may provide a therapeutic line to treat these
diseases. The goal of this research (the exact definition of the
cellular signalling mechanism of the PC) is to develop the pos-
sibility of pharmacological PC. By using drugs – without
ischemia-reperfusion cycles – the endogenous adaptation of the
cells is accelerated and, therefore, the endogenous antioxidant
defence system is enhanced. Drug-induced PC may provide a
great opportunity in the prevention, in case of serious risk fac-
tors, or therapy of the ‘free radical diseases’.

IPC
The protection conferred by PC with ischemia (now termed
classic PC) appears to be an acute and immediate response
lasting not more than a few hours. The protection has been

evoked by various PC protocols and tested using different end-
points such as limitation in infarct size, reduced susceptibility
to arrhythmia, better recovery from contractile dysfunction
and cardiac enzyme release.

In 1993, two separate studies by Marber et al (7) and
Kuzuya et al (8) observed that, in addition to the initial phase,
a second wave of protection appears 24 h following the PC
protocol. This second wave of protection is now referred to as
SWOP, late PC or delayed PC. SWOP has certain characteris-
tics distinct from classic PC. It appears gradually, yet lasts as
long as 72 h or more. Also, the protection offered is not as
marked as with classic PC. A fundamental difference between
classic and delayed PC may be in the means by which cardio-
protection is conveyed. In the former, ATP-sensitive potassium
channels are suspected to be the end-effectors; in the latter,
newly synthesized cardioprotective proteins may convey pro-
tection. Several such proteins have been identified that seem
to be upregulated 24 h following IPC, which corresponds with
the appearance of SWOP. They include the heat shock protein
(HSP) family (such as HSP72), manganese superoxide dismu-
tase (SOD) and, more recently, nitric oxide synthase (NOS).
HSP72 is a chaperone protein involved in the folding, trans-
port and denaturation of other proteins during the cellular
response to injury. Manganese SOD is a mitochondrial antiox-
idant capable of detoxifying accumulated superoxide anions.

Most early SWOP studies took infarct size reduction as the
end point of cardioprotection, and there were little data
regarding any delayed antiarrhythmic effect in the second win-
dow. In fact, a study conducted by Shiki and Hearse (9) found
no protection against reperfusion-induced arrhythmias if the
period between stimulus and insult was extended to 24 h.
However, in 1994, Vegh et al (10) published a study that posi-
tively confirmed delayed protection against reperfusion
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arrhythmias in the canine heart using ventricular rapid pacing
to globally precondition the heart.

The positive role of oxygen free radicals in the delayed
adaptation
Oxygen free radicals are highly reactive molecules with an
unpaired electron, and are associated widely with ischemic-
reperfusion injury (11-13). Although better known for their tox-
icity, in large quantities they overwhelm the endogenous
antioxidant systems or, if the antioxidant system is insufficient
or damaged, they accelerate the oxidative stress (Figure 1).

It has been suggested that at low concentrations, oxygen
free radicals can modulate functions within the cell. Soon after
their initial findings (1), Murry et al (14) investigated a role
for oxygen free radicals in classic IPC. They showed that
administration of oxygen free radicals scavengers blocked the
protection afforded by IPC against infarction in dogs. Similar
findings achieved with the use of N-2-mercaptopropionyl
glycine or SOD further substantiated these results (15).
Furthermore, Osada et al (16) could abolish the antiarrhyth-
mic effects of IPC by administration of SOD during the PC
protocol. However, there have also been numerous negative
studies. Iwamoto et al (17) failed to show diminished protec-
tion using either SOD or catalase in a rabbit model of 4×5 min
ischemia with an intermittant 5 min reperfusion. Similarly, our
published results demonstrated that administering N-2-mer-
captopropionyl glycine in an in vivo model could not abolish
the protective effects of three cycles of delayed PC (18-21).
However, as previously mentioned, the induction of IPC seems
to be very much model- and species-dependent.

Redox regulation, adaptation and survival signals
Recurrent episodes of myocardial ischemia are commonly
observed in patients with coronary artery disease who suffer
from frequent angina pectoris or who have had angioplasty of
the left anterior descending coronary artery. Reversibly injured
myocardium (by a short episode of ischemia followed by a short
period of reperfusion) renders the heart more resistant to a
longer ischemic-reperfusion period. Such adaptation (IPC) is
mediated through the upregulation of the heart’s own cellular
defense via the accumulation of intracellular mediators and
reprogramming of gene expression. Recent studies suggest that

nuclear factor-kappa B (NF-κB) and activation protein-1
(AP1) transcription factors have a possible role in the signal
transduction pathways of this cytoprotection, resulting from
ischemic adaptation. A positive role of free radicals in the acti-
vation cascade of these transcription factors has been con-
firmed (Figure 2).

A potential role for NF-κB in the endogenous adaptation of
IPC has recently been suggested (22,23). Myocardial protec-
tion by NF-κB activation may be caused by induction of an
NF-κB-regulated mediator, such as manganese SOD (24),
inducible cyclooxygenase (25) and inducible NOS (26). The
protective effect of NF-κB activation could also be caused by a
downregulation of the inflammatory response during reperfu-
sion. In human umbilical vein endothelial cells precondi-
tioned by hydrogen peroxide, reduced upregulation of
cytokines and leukocyte adhesion molecules after subsequent
stimulation with tumour necrosis factor (TNF)-α was found
(27). HSPs of the 70 kDa family, which are upregulated during
PC by other pathways, have been suggested as mediators of
ischemic adaptation (28). HSPs modulate AP1 and NF-κB
DNA binding activity (29) and may reduce NF-κB activation,
thereby reducing inflammation during reperfusion. A last possi-
ble route of NF-κB-mediated cardioprotection is through the
antiapoptotic effect of PC. Preconditioning reduces apoptosis
during reperfusion, which may be linked to an NF-κB-dependent
increase of cardiac Bcl-2 (30).

The authors’ results under publication show that there is a
biphasic activation of NF-κB in the preconditioned
myocardium, with increased levels at an early time point
(30 min) and again at 3 h reperfusion. There are presumed to
be two different pathways leading to early NF-κB activation
after IPC. Through receptor-dependent triggers (adenosine A1

agonists [31], opioid δ1 agonists [32], bradykinin,
prostaglandins, noradrenaline, angiotensin, endothelin), the
receptor is coupled through G proteins to, among others, phos-
pholipase C (PLC) and phospholipase D. PLC catalyzes the
hydrolysis of membrane inositol-containing phospholipids into
inositol trisphosphate and diacyl glycerol (DAG) (33). DAG

Figure 1) Oxidative balance of the cell: development of oxidative stress.
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– Superoxide anion; OH.. Hydroxyl radical;
UV Ultraviolet
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Figure 2) Intracellular signalling of ischemic preconditioning. DAG
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stimulates the translocation and activation of protein kinase
Cε (PKCε). The onset of the PLC reaction is typically very
rapid, and DAG production is short-lived, peaking at 30 s.
PKCε activation then triggers a complex signalling cascade
that involves Src and/or Lck tyrosine kinases and probably
other kinases, leading to phosphorylation of inhibitor-κB
(IκB)α and to mobilization (nuclear translocation) and activa-
tion of the transcription factor NF-κB (34).

Another possible way of NF-κB activation in IPC is through
the increased production of nitric oxide (NO) (most likely via
endothelial cell [e]NOS) and .O2

– (leading to formation of sec-
ondary reactive oxygen species) after a brief episode of myocar-
dial ischemia/reperfuson (35). Both NO and .O2

– derived
reactive oxygen species could directly activate PKCε via nitrosy-
lation and oxidative modification, respectively; alternatively,
NO and .O2

– are known to react to form peroxynitrite which, in
turn, could activate PKCε. Thus, PKCε is thought to be a critical
component in both pathways (36).

IPC has recently been found to activate Janus-activated
kinase 1 and 2  with a subsequent tyrosine phosphorylation and
activation of signal transducers and activators of transcription
(STAT) 1 and STAT3, which are essential for inducible (i)NOS
upregulation. Binding of NF-κB and STAT1 and STAT3 to the
iNOS promoter results in transcriptional activation of the iNOS
gene and leads to synthesis of new iNOS proteins (eNOS-
dependent iNOS induction). iNOS-derived NO is supposed to
produce a second wave of PKCε activation, leading to the late
phase of NF-κB activation and translocation (37).

The other possible explanation of the late increase in
NF-κB activation may be the feedback mechanism of NF-κB-
induced proinflammatory cytokines (TNFα, interleukin
[IL]-1β). After ischemia-reperfusion, even in the case of IPC,
NF-κB can induce TNFα and IL-1β gene expression.
Through a currently unknown mechanism, these cytokines
generate a mass of reactive oxygen intermediates in the
myocardium, which can, via the above mentioned pathway,
newly activate NF-κB in the cytoplasm and lead to a delayed
wave of nuclear translocation of this transcription factor.
TNFα and IL-1β can also start up a signaling pathway leading
to IκB phosphorylation and, thus, NF-κB activation, through
cell membrane receptors (38). A number of signal transduc-
tion proteins have been identified as associated with these
receptors, including TNF receptor-associated factors 2 and 6
death domain-containing proteins (TNF receptor associated
death domain and Fas-associated death domain), kinases asso-
ciated with IL-1 receptor (IL-1 receptor-associated kinase 1
and 2, and myeloid differentiation primary response gene 88).
These kinases phosphorylate members of the IκB family at spe-
cific serines within their N-termini, leading to site-specific
ubiquitination and degradation of NF-κB by the 26S proteo-
some. This circle cascade (NF-κB→TNFα, IL-1β→NF-κB
feedback) might also be an explanation of the biphase activa-
tion of NF-κB after IPC (39).

Clinical aspects of endogenous adaptation
This detailed signalling description demonstrates that free rad-
icals have a positive role in the activation of transcription fac-
tors, which leads to clinically applicable cardioprotection.
However, a number of free radicals can cause well-known free
radical diseases,  a small amount of which can start  an adapta-
tion response without causing free radical damage. The thera-
peutic goals are to induce the endogenous adaptation with a

mild oxidative stress and increase the tissue tolerance against
serious oxidative damage.

The first study to assess adaptation to ischemia during coro-
nary angioplasty was reported by Deutsch et al (40), and
involved 12 patients with an isolated stenosis undergoing two
sequential 90 s balloon inflations. In comparison with the ini-
tial balloon occlusion, the second occlusion was characterized
by less subjective anginal pain, smaller ST segment shift and
lower mean pulmonary artery pressure. Collateral recruitment
was excluded as a cause. Other investigators have observed
similar findings in percutaneous transluminal coronary 
angioplasty models (41-43), thus confirming an adaptive
response to repeated ischemic episodes, akin to IPC.

Intermittent ischemia achieved by aortic cross-clamping in a
fibrillating heart during coronary artery bypass grafting has been
used as a clinical model of IPC. In such a model, the confound-
ing effects due to collateral flow are overcome by using global
instead of regional ischemia. Yellon et al (44) examined the
effect of two 3-min ischemic episodes on high energy phosphate
metabolism during 10-min cross-clamping. Myocardial biopsies
exhibited a significantly higher ATP content than in controls
not previously exposed to brief ischemic episodes, demon-
strating typical biochemical features of IPC. However, this
finding was contradicted by a more recent study (45) that
used warm-blood cardioplegic arrest during bypass surgery.
Nevertheless, more positive evidence has been uncovered in
similar investigations (46-48). Taken together, these findings
suggest that IPC occurs in this human model with potentially
relevant beneficial clinical effects. This is particularly attractive
in the management of high-risk patients with poor left ventricu-
lar function.

Further examinations demonstrated that PC not only
increases the ischemia tolerance of the cells, but it also turns
up the intracellular antioxidant armament of the cells and
ensures efficient protection against a further oxidative stress
insult. Therefore, in normal conditions, a low level of cellular
stress is useful because it activates and maintains the cellular
antioxidant defence. In healthy organisms, preventive applied
exogenous antioxidants (uncontrolled treatment with
vitamin C and E) can be even more harmful, because they may
suppress this defence mechanism. This ability of the cells to
adapte to oxidative stress changes with aging; in senior popu-
lations, this adaptive response is less efficient. Furthermore, it
has been demonstrated that in some chronic diseases (diabetes
mellitus, asthma, essential hypertension, chronic arthritis,
malignant tumours) the capacity of this endogenous protective
mechanism is depleted, or the intracellular signalling pathway
of the adaptation is injured. Thus, in these critical conditions,
the cells can lose their own defence mechanism. With a more
exact understanding of this signalling cascade, drug-induced
PC and endogenous adaptation may be achieved.

Free radicals, endogenous adaptation and intracellular signals
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