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Given a pool of motorists, how do we estimate the total intensity
of those who had a prespecified number of traffic accidents in the
past year? We previously have proposed the u,v method as a
solution to estimation problems of this type. In this paper, we
prove that the u,v method provides asymptotically efficient esti-
mators in an important special case.

1. The u,v Method

G iven a pool of motorists, how do we estimate the total
intensity of those in the pool who had a prespecified number

of traffic accidents in a given time period? We may also consider
patients with a prespecified number of heart attacks, or salesmen
with a prespecified number of disgruntled customers, etc. In
general, let ui be the intensity and Xi the number of occurrences
of certain type of events of the ith individual in a pool of size n.
Suppose that for 1 # i # n conditionally on ui, Xi has the Poisson
distribution with E@Xiuui# 5 ui. We are interested in estimating
the sum

Sn ; O
i 5 1

n

u~Xi!ui, [1.1]

where u(x) is a known ‘‘utility function’’ dictated by practical
considerations. In the examples above, Sn is the sum of the
intensity ui for those individuals with Xi 5 a traffic accidents
(heart attacks, disgruntled customers, etc.) for a prespecified
integer a, if

u~x! 5 ua~x! ; H1, x 5 a
0, x Þ a. [1.2]

Robbins (1) considered estimation of the sum in 1.1 and
certain other related quantities for general, but known, condi-
tional distributions F(xuy) of Xi given ui 5 y. The solution he
proposed, called the u,v method, estimates Sn by

Vn ; O
i 5 1

n

v~Xi!, [1.3]

if there exists a function v(x) such that

E $v~x! 2 u~x!y% F~dxuy! 5 0, ; y. [1.4]

In the Poisson case, Eq. 1.4 has the unique solution

v~x! 5 xu~x 2 1!, [1.5]

provided that ¥x50
` uu(x)uyxyx! , ` for all y . 0.

In this paper, we consider the asymptotic efficiency of the u,v
method. We prove the asymptotic efficiency of 1.3 for the
estimation of 1.1 in the special case of Eq. 1.2 in the Poisson
setting in Section 2. In Section 3, we discuss related problems and
extensions to the estimation of the sums of u(Xi, ui) for general
utility functions u(x, y) and general conditional distributions
F(xuy).

2. The Poisson Case
Let f(xuy) [ e2yyxyx!, x 5 0, 1, 2, . . . , be the Poisson probability
mass function with intensity y . 0 and G be a known family of
probability distributions with support (0, `). Suppose (X, u),
(Xi, ui), are independent identically distributed random vectors
such that

Xuu , f~xuu!, u , G, [2.1]

where G [ G is an unknown distribution. We consider in this
section estimation of

Sn ; O
i 5 1

n

ua~Xi!ui, [2.2]

with the ua in Eq. 1.2 for a given a. By the u,v method, 2.2 should
be estimated by

Vn ; O
i 5 1

n

va~Xi!, va~x! ; Ha 1 1, x 5 a 1 1
0, x Þ a 1 1 [2.3]

as in 1.3 and Eq. 1.5. For example, according to 2.3, the total
intensity of those motorists with no traffic accidents in the past
year is estimated by the total number of motorists with exactly
one accident in the past year.

The estimator 2.3 also can be derived from an empirical Bayes
point of view. If the distribution G in 2.1 is known, then the Bayes
estimator of 2.2 under the squared error loss is the conditional
expectation

EG@SnuX1, . . . , Xn# 5 O
i 5 1

n

ua~Xi!EG@uiuXi#,

which can be written as

Sn,G ; O
i 5 1

n

ua~Xi!ta~G! [2.4]

with

ta~G! ; EG@uiuXi 5 a# 5 ~a 1 1!
fG~a 1 1!

fG~a!
, [2.5]

where fG(x) [ * f(xuy)dG(y) is the marginal probability mass
function of X. An empirical Bayes estimator of 2.2 can be
obtained by substituting the conditional expectation ta(G) with
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a suitable estimator, say t̃a,n, in the Bayes estimator Sn,G in 2.4;
i.e.

S̃n ; t̃a,n O
i 5 1

n

ua~Xi!. [2.6]

If G is completely unknown, we may estimate fG(x) by its
empirical version and consequently estimate ta(G) by

t̂a,n ; ~a 1 1!
f̂n~a 1 1!

f̂n~a!
, f̂n~a! ; O

i 5 1

n ua~Xi!

n
. [2.7]

This leads to the estimator 2.3 via

O
i 5 1

n

ua~Xi!t̂a,n 5 O
i 5 1

n

ua~Xi!~a 1 1!
Oi 5 1

n ua 1 1~Xi!yn

Oi 5 1
n ua~Xi!yn

5 O
i 5 1

n

va~Xi!.

The relationship 2.6 can be reversed to derive estimates of
ta(G) from those of 2.2, say S̃n [ S̃n(X1, . . . , Xn); i.e.

t̃a,n ;
S̃nOi 5 1

n ua~Xi!
. [2.8]

This provides a vehicle for the investigation of the efficiency of
S̃n via the efficiency of t̃a,n. Let H* [ Hp,G be the tangent space
of the family {fG;G [ G} at G,

H* ; the closure of the linear span of
$rh;h [ CG% in L2~fG!, [2.9]

where CG is the collection of all ‘‘differentiable’’ paths h;[0, 1]
3 G satisfying

lim
t3 0 1

t 2 2 O
x 5 0

` S Îfh~t!~x!yfG~x! 2 1 2 trh~x!y2D 2

fG~x! 5 0,

[2.10]

with the fG in Eq. 2.5, and

rh~x! ; lim
t3 0 1

t 2 1$log fh~t!~x! 2 log fG~x!%, x 5 0, 1, . . .

[2.11]

is the score function for the path h in the parameter space G. See
Bickel et al. (2). Define

c ; c~x; G! ; ta~G!H ua 1 1~x!

fG~a 1 1!
2

ua~x!

fG~a!J [2.12]

with the ua in Eq. 1.2. It will be shown in the proof of THEOREM
2.1 that at each G [ G the efficient influence function for the
estimation of ta[ is

c* ; c*~x; G! ; the projection of c on to H*, [2.13]

where H* is the tangent space given in 2.9.
THEOREM 2.1 (i) A sequence {S̃n [ S̃n(X1, . . . , Xn)} is

asymptotically efficient for the estimation of the {Sn} in 2.2 if and
only if {t̃a,n} in 2.8 is asymptotically efficient for the estimation of
the functional ta(G) in 2.5. In this case,

~S̃n 2 Sn!yÎnO¡
D

N~0, fG
2 ~a!s1

2~G! 1 s2
2~G!!, [2.14]

where s1
2(G) [ EGc*

2(X; G) with the c* in 2.13, s2
2(G) [

EGua(X)VarG(uuX) with the ua in Eq. 1.2, and fG is the marginal
probability mass function of X. (ii) If G is completely unknown, i.e.,
G 5 {all distributions in (0, `)}, then {Vn} in 2.3 is asymptotically
efficient for the estimation of 2.2 and

fG
2 ~a!s1

2~G! 1 s2
2~G! 5 EG$va~X! 2 ua~X!u%2. [2.15]

Proof: The proof has three parts.
Step 1. Decomposition of (S̃n 2 Sn)y=n: By 2.8 and 2.4

$S̃n 2 Sn%yÎn 5 f̂n~a!jn,1 1 jn,2, [2.16]

where f̂n(a) is as in 2.7, jn,1 [ =n{t̃a,n 2 ta(G)} and jn,2 [
{Sn,G 2 Sn}y=n. Conditionally on {Xi, i $ 1}, Sn,G 2 Sn are
sums of independent (not identically distributed) random vari-
ables with mean zero, so that by the Lindeberg central limit
theorem and the law of large numbers

jn,2 5 O
i 5 1

n ua~Xi!~ui 2 EG@uiuXi#!

În

<
D

NS 0, O
i 5 1

n

ua
2~Xi!VarG~uiuXi!ynDO¡D N~0, s2

2~G!!

[2.17]

almost surely for all {Xi, i $ 1}. The Lindeberg condition can
be verified by the law of large numbers, but we shall omit the
details. Because the limiting distribution in Eq. 2.17 does not
depend on {Xi, i $ 1} and f̂n(a) 3 fG(a), by Eq. 2.16

L~~S̃n 2 Sn!yÎn; PG! 2 L~fG~a!j1,n; PG! , N~0, s2
2~G!! 3 0,

[2.18]

provided that either (S̃n 2 Sn)y=n or j1,n [ =n{t̃a,n 2 ta(G)}
are stochastically bounded, where L(Z; P) is the distribution of
Z under probability P and , stands for convolution. Thus, {S̃n}
is asymptotically efficient for the estimation of Sn if and only if
{t̃a,n} is asymptotically efficient for the estimation of ta(G).

Step 2. Efficient influence function for the estimation of ta(G):
It follows from the information bound in standard semipara-
metric estimation theory that the limiting distribution of asymp-
totically efficient {t̃a,n} is

În$t̃a,n 2 ta~G!% 3 N~0, EGc*
2~X; G!!, [2.19]

provided that c* is the efficient influence function for the
estimation of ta(G). By 2.13, this is the case if for all h [ CG

lim
t3 0 1

t 2 1 $ta~h~t!! 2 ta~G!% 5 EGc~X; G!rh~X!,

[2.20]

where rh is as in Eq. 2.11. See ref. 2. Thus, it suffices to verify
Eq. 2.20 for the proof of THEOREM 2.1 part i.

Because fG(x) . 0 for all x $ 0, by (2.11) t21{fh(t)(x) 2 fG(x)}
3 fG(x)rh(x), so that by Eq. 2.5 and 2.12
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t 2 1$ta~h~t!! 2 ta~G!% 5
a 1 1

t H fh~t!~a 1 1!

fh~t!~a!
2

fG~a 1 1!

fG~a! J
3 ta~G!$rh~a 1 1! 2 rh~a!%

5 EGc~X, G!rh~X!.

Therefore, Eq. 2.20 holds.
Step 3. Asymptotic efficiency of the u,v method: Let c be as

in 2.12 and t̂a,n be as in 2.7. By the central limit theorem and the
strong law of large numbers, =n(t̂a,n 2 ta(G)) converges in
distribution to N(0, EGc2(X; G)). Because Vn is the estimator of
Sn corresponding to t̂a,n by 2.8, it suffices to show c 5 c* in view
of THEOREM 2.1 part i and its proof.

For y . 0 define h(t) [ (1 2 t)G 1 tdy, where dy puts the
whole mass at y. Set r(y)(x) [ {f(xuy) 2 fG(x)}yfG(x). Then,
EGr(y)

2 (X) , ` by the Poisson assumption, and the left-hand side
of Eq. 2.10 is

O
x 5 0

` F $fh~t!~x!yfG~x! 2 1%yt

Îfh~t!~x!yfG~x! 1 1
2

r~y!~x!

2 G 2

fG~x!

5 O
x 5 0

`
r~y!

2 ~x!

4
fG~x! F Îfh~t!~x!yfG~x! 2 1

Îfh~t!~x!yfG~x! 1 1G
2

3 0.

Thus, r(y) [ f(xuy)yfG(x) 2 1 is in the tangent space H* for all
y . 0 by 2.9. If h is orthogonal to H* in L2(fG), then

0 5 EGh~X!r~y!~X! 5 O
x 5 0

`

h~x!f~xuy! 2 EGh~X!

for all y . 0, so that h(x) 5 EGh(X) for all x $ 0 by the
completeness of the Poisson family. This implies H* 5 L2(fG) ù
{h;EGh(X) 5 0}. Hence, c* 5 c by 2.13 and the proof is
complete.

3. Discussion
3.1. Related Problems. Let Yi be random variables such that
E[Yiuui, Xi] 5 lui. Suppose Yi are unobservable and l is known.
Consider the prediction of

O
i 5 1

n

u~Xi!Yi [3.1]

based on observations X1, . . . , Xn. For example, we may want
to predict the total number of accidents in the coming year for
the group of motorists with no accidents in the past year, with
l 5 1.02 due to 2% growth of drivers in the region of concern.
By the u,v method, 3.1 can be predicted by lVn if Eq. 1.4 holds,
with the Vn in 1.3. The argument in Section 2 still applies here
in the Poisson case with u(x) 5 ua(x) in Eq. 1.2: {lVn}, with
the Vn in 2.3, is asymptotically efficient for the prediction of 3.1
with

n 2 1/2S lVn 2 O
i 5 1

n

u~Xi!YiD
O¡
D

N~0, l2fG
2 ~a!s1

2~G! 1 EGua~X!VarG~YuX!!, [3.2]

where s1
2(G) is as in THEOREM 2.1.

In many applications, Yi are observable and the problem is to
estimate l. In this case, the u,v methodology provides the
estimator

l̂n ; Vn
2 1 O

i 5 1

n

u~Xi!Yi. [3.3]

The u,v method also produces estimates of variances. For
example, if Eq. 1.4 holds, the variance EG(Vn 2 Sn)2 5
nEG{v(X) 2 u(X)u}2 can be estimated by

O
i 5 1

n

$v2~Xi! 1 v2~Xi!%, [3.4]

with two applications of the u,v method, first to u1 [ u2 and then
to u2 [ v1 2 2uv, where vj satisfy * (vj(x) 2 uj(x)y)F(dxuy) 5
0, @y.

The u,v method can further be extended to obtain unbiased
estimation of

Sn ; O
i 5 1

n

uiui~X1, . . . , Xn!. [3.5]

If there exist functions vi(x1, . . . , xn) satisfying

y E ui~x1, . . . , xn!F~dxiuy! 5 E vi~x1, . . . , xn!F~dxiuy!

for all y, i # n and {xj, j Þ i}, then we may estimate 3.5 by

Vn ; O
i 5 1

n

vi~X1, . . . , Xn!. [3.6]

For example, in the exponential case f(xuy) [ y21e2x/y1{x . 0},
the ui associated with the largest observation can be written
as 3.5,

uRn
5 Sn ; O

i 5 1

n

uiui~X1, . . . , Xn!,

ui~x1, . . . , xn! 5 1H xi 5 max
1 # j # n

xjJ ,

and its unbiased estimation 3.6 is Vn 5 XRn
2 XRn21

with

vi~x1, . . . , xn! 5 E
0

xi

ui~x1, . . . , xi 2 1, t , xi 1 1, . . . , xn!dt ,

where Ri are the antiranks of the observations defined by
XR1

, z z z , XRn
.

The related problems mentioned here and their applications
were considered in refs. 1 and 3–5.

3.2. Extensions. The applicability of our methodology is not
limited to the sum of u(Xi)ui in 1.1. In general, 1.3 can be used
to estimate
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Sn ; O
i 5 1

n

u~Xi, ui! [3.7]

for any integrable functions u(x, y), as long as

E $v~x! 2 u~x, y!% F~dxuy! 5 0, ; y. [3.8]

In fact, for the estimation of variance in 3.4, Eq. 3.8 holds for the
pair ũ(x, y) and ṽ(x), with ũ(x, y) [ {v(x) 2 u(x)y}2 and ṽ(x) [
v2(x) 1 v2(x).

The asymptotic theory for the estimation of 3.7 is more
complicated and will be studied elsewhere. Define

Sn,G ; O
i 5 1

n

uG~Xi!, uG~Xi! ; EG@u~Xi, ui!uXi#. [3.9]

The asymptotic independence of (S̃n 2 Sn,G)y=n and (Sn,G 2
Sn)y=n can still be derived from the Lindeberg central limit
theorem and the strong law of large numbers as in Section 2, but
the rest of the argument there does not directly apply without the
one-to-one linear mappings between estimates of Sn and ta(G)
in 2.6 and 2.8.
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