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ABSTRACT A computational model for the open state of the short viral Kcv potassium channel was created and tested based
on homology modeling and extensive molecular-dynamics simulation in a membrane environment. Particular attention was paid
to the structure of the highly flexible N-terminal region and to the protonation state of membrane-exposed lysine residues. Data
from various experimental sources, NMR spectroscopy, and electrophysiology, as well as results from three-dimensional refer-
ence interaction site model integral equation theory were taken into account to select the most reasonable model among possible
variants. The final model exhibits spontaneous ion transitions across the complete pore, with and without application of an
external field. The nonequilibrium transport events could be induced reproducibly without abnormally large driving potential
and without the need to place ions artificially at certain key positions along the transition path. The transport mechanism through
the filter region corresponds to the classic view of single-file motion, which in our case is coupled to frequent exchange of ions
between the innermost filter position and the cavity.
INTRODUCTION

Kcv, a viral channel from Paramecium bursaria chlorella
virus (PBCV-1), represents the shortest functional potassium

channel, with only 94 amino acids (aas) per monomer known

to date (1,2). The topology of Kcv comprises two transmem-

brane domains (TM1/TM2), the signature sequence

TXXTXGFGD, the N-terminal ‘‘slide’’ (s-)helix, a short

pore (p-)helix, and two loops linking TM1 with the p-helix

and TM2 with the filter, respectively. Electrophysiological

studies have shown that Kcv shares many functional charac-

teristics with longer channels, such as sensitivity to Kþ

channel blockers and voltage-dependent gating. Kcv is there-

fore an ideal model system for studying structure-function

relationships to understand basic transport mechanisms.

From a microscopic perspective, the availability of an

atomistic Kcv channel model for use in molecular dynamics

(MD) simulation studies would be highly desirable. Most

MD simulations carried out on channels to date have been

based on x-ray structures (3–7), although numerous exam-

ples are documented in the literature, including studies in

which homology models were successfully used for simula-

tion (8–12), and theoretical studies (13–15). Computational

approaches to determine Kcv function suffer from two prob-

lems: 1), the Kcv crystal structure has not yet been deter-

mined; and 2), Kcv has a low sequence identity (~10%

compared to channels with available structure). Therefore,

we recently developed the hypothesis of ‘‘functional

analogy’’ between channels (16). According to this hypoth-

esis, the functional principle of conserved regions, such as
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the filter signature TXXTXGFGD (17), is extended to other

pivotal sequence components, whereas other sequence

regions are poorly conserved (18). In a previous study (16)

we used KirBac1.1 as ‘‘functional analog’’ to Kcv because

a functionally important kink-forming proline is found in

both cases that marks the transition between the TM1

segment and the s-helix. Furthermore, the N-terminal s-helix

contains a comparable pattern of charged residues. Since

successive truncation of the Kcv N-terminus leads to a loss

of function when a positive residue is cut off, we constructed

a KirBac1.1-Kcv chimera model (‘‘KB-Kcv’’), truncated and

mutated in analogy to Kcv, and studied it by using extensive

MD simulations and a number of what we believe are novel

analysis techniques. The consequences of the mutations as

measured by electrophysiology correlate quite well with

the properties of analogous KB-Kcv mutants.

To test the functional analogy hypothesis, we proceeded in

this work to use a complementary approach: the construction

of an appropriate Kcv homology model. Because of the low

sequence identity with other channels, fully automated

procedures are not likely to work well. Since sequence align-

ment has to take into account pivotal positions as discussed

above, we used the KirBac1.1 structure (19) as a template.

We considered all available structural experimental data—

in this case, from an NMR study of the isolated and synthet-

ically generated N-terminus, a 16-residue peptide in aqueous

solution. The corresponding conformation was merged with

the homology model for the rest, and results were compared

with a purely helical model of the N-terminus.

A further complication for model construction concerns

a possibly charged lysine residue at position 29 that is most

likely located in a membrane-exposed helix segment. Charged
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side chains play an important role in Kþ channel function (for

example, see Schulte and Fakler (20)). Although our Lys29

positioning may be a modeling artifact, the presence of

a titratable residue in a membrane environment cannot be ruled

out. For instance, recent studies have shown that varying

protonation states of titratable residues in a membrane environ-

ment have a large impact on the structure of both the membrane

and the protein (21,22). The membrane-spanning S4 helix of

other Kþ channels, which is a suspected voltage sensor,

contains four or more titratable residues carrying possibly posi-

tive charges (23). Furthermore, the free-energy penalty to

include a lysine residue in the center of a hydrophobic segment

is as low as 2.6 kcal mol�1 (24), and simulation studies show

that the hydrogen-bonded network of water and lipid phos-

phates around a charged side-chain has a stabilizing effect

(21). On the other hand, one can rationalize a deprotonated

lysine state by recognizing that the pKa of a lysine residue in

bulk water is 8.95, whereas pKa shifts of up to �7 units in

various environments have been reported (25,26). Although

conceptual problems with pKa calculations are not yet fully

resolved (27,28), recent computational work demonstrated

that the pKa of arginine shifts to ~7 near the center of a lipid

bilayer (29). Thus arginine can remain protonated in highly

hydrophobic environments. In contrast, lysine deprotonation

becomes likely the deeper it penetrates a bilayer (30).

Because of the uncertainty of the lysine state when it is

part of a protein embedded in a membrane, we focused on

functional analysis of a number of possible variants based

on simulations. We tested both the Lys29 protonation state

and the N-terminus conformation (NMR versus helical

homology structure) by extensive MD simulations of four

models, termed Kcv-HOM-K29deprot, Kcv-HOM-K29prot,

Kcv-NMR-K29deprot, and Kcv-NMR-K29prot. As we shall

see, the results and particularly the stability analysis along

the lines of Holyoake et al. (31) suggest that the model

with helical N-terminal and deprotonated Lys29 (Kcv-

HOM-K29deprot) shows all the signatures of a functional,

‘‘open-state’’ channel pore. This choice of the appropriate

model is further supported by sterical and three-dimensional

reference interaction site model (3D-RISM) integral equa-

tion theory (32,33) analyses applied to structures obtained

by a simulated annealing protocol, similar to our previously

described methodology (16). Furthermore, experimental

evidence for the Lys29 protonation state and location in

a helix is found in electrophysiological results for a number

of Lys29 mutants. As a final quality check, it is ultimately
shown that the Kcv-HOM-K29deprot model exhibits

reproducible single-file potassium ion transitions spontane-

ously in an equilibrium simulation, as well as with the

application of external voltage in nonequilibrium situations.

MATERIALS AND METHODS

Sequence alignment and structure prediction

Since automatic multiple alignment with ClustalX (34) of Kcv with sequences

of channels with known x-ray structure and a set of related sequences identi-

fied by PSI-BLAST (35) yielded no reasonable results, we proceeded by

analyzing the structural properties manually. Information about the secondary

structure was obtained from the structural prediction programs PROF (36),

TMPRED/TMBASE (37), and TMHMM (38). Kcv consists of the pore

unit only. Alignment is therefore based on the identification of the s-helix,

TM1, loop 1, p-helix, filter, loop 2, TM2, and a cytosolic domain (CD). There

are only 26 aas downstream from the signaling sequence (the selectivity filter,

residues 63–68), which is just enough to comprise a TM helix and a linker.

Although there is no way to determine the length of a loop ab initio, the

minimal length of a TM helix seems to be as short as 10 aas, e.g., residue

193–203 of a chloride channel (Protein Data Bank (PDB) code 1KPL) or

residue 77–87 of an aquaporin (PDB code 1H6I). We assigned the C-terminal

residues 76–94 to TM2, and residues 69–75 to loop 2. The p-helix on the

opposite side of the filter has to be attached to the filter, hence position 62

marks one end of the p-helix. Its length is ~12 aas, which means that residues

50–62 probably form the p-helix. The N-terminal residues include TM1, and

an additional s-helix may be present. Proline is known to destroy helical

symmetry, and the presence of such a residue within a TM domain is unlikely.

Proline at similar positions in MthK (39) and KirBac1.1 (19) also marks the

start of the cytosolic terminus of TM1. We assigned residues 1–13 to the

s-helix because it is likely that Pro13 in Kcv causes the same effect; residues

14–32 were assigned to TM1 with the typical length of 18 aas. The remaining

residues 33–49 form loop 1, which links TM1 and the p-helix. All of these

assignments were in agreement with the results from prediction programs.

In summary, we made the following assignments: s-helix: 1–13, TM1:

14–32, loop 1: 33–49; p-helix: 50–62, filter: 63–68, loop 2: 69–75; and

TM2: 76–94. The absence of a CD is in agreement with the results from the

structural prediction programs. The alignment of Kcv with KirBac1.1 is

shown in Fig. 1. Regions 1–45 (s-helix/TM1/loop 1), 46–72 (loop

1/p-helix/filter/loop 2), and 73–94 (loop 2/TM2) were aligned with ClustalX

(34) independently, and the filter was aligned manually. On both sides of Kir-

Bac1.1 the termini were truncated by the number of residues that exceeded the

length of the Kcv sequence. The aligned regions were merged and artificial

gaps were removed.

NMR spectroscopy

NMR spectra were recorded at 300 K on a Bruker (Rheinstetten, Germany)

600 MHz spectrometer equipped with a triple resonance probe with xyz
gradients. The data were processed with TopSpin 1.3 (Bruker) and analyzed

using SPARKY 3.1 (40). The peptide NH2-MLVFSKFLTRTEPFMI-

COOH was dissolved in 0.5 mL of H2O-D2O (9:1) to obtain a peptide

concentration of 2 mM. A complete set of homonuclear NMR experiments
FIGURE 1 Alignment of Kcv with

respect to KirBac1.1, used as input for

3D modeling.
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were recorded with 2D correlation spectroscopy (COSY), 2D total correla-

tion spectroscopy (TOCSY), and 2D nuclear Overhauser effect spectroscopy

(NOESY) (41–43). In all homonuclear 2D experiments, the solvent signal

was suppressed using excitation sculpting (44) with a selective 180� pulse

length of 4.6 ms to minimize saturation of Ha-protons. All experiments

were acquired with a sweep width of 7800 Hz, 512 complex points in the

indirect t1 dimension, an acquisition time of 260 ms, a relaxation delay of

2 s, and 16 scans per t1 increment. Sign discrimination in the indirect dimen-

sion was achieved using the States-TPPI method (45). The bandwidth of the

proton pulse was 33 kHz. The mixing time was set to 80 ms for the TOCSY

(bandwidth of 10 kHz) and 300 ms for the NOESY. 1H, 15N-HSQC, and 1H,
13C-HSQC spectra at natural abundance were recorded using 256 and

64 scans per t1 increment, respectively. In the 1H, 15N-HSQC spectra, the

solvent signal was suppressed using the WATERGATE (46) sequence,

whereas in the 1H, 13C-HSQC spectra, gradient coherence selection was

applied. The total measurement time of all experiments was 54 h. Spectra

are shown in Fig. 2 (more details are provided in the Supporting Material).

Structure calculations

Structure calculations based on the NMR NOE data were performed with CNX

2002 (47). The protein allhdg force field 4 (48) was used. In total, 100 structures

were calculated using 102 distance restraints. For the structure calculations,

a two-stage simulated annealing (SA) protocol was applied using torsion angle

dynamics (TAD). The high-temperature stage consisted of 1000 steps at 50,000

K. This was followed by a cooling stage, 1000 steps to 0 K, and a final minimi-

zation of 2000 steps. The force constant for the NOE restraints was set to

150 kcal mol�1Å�2 during the SA protocol and 75 kcal mol�1Å�2 during

the minimization. The final nine lowest-energy structures were further analyzed

with PROCHECK (49). The results are depicted in Fig. 3.

3D modeling

An initial model for Kcv based on the tetrameric form of the KirBac1.1

(PDB-Code: 1P7B) x-ray template structure was created by MODELLER

FIGURE 2 NMR spectra recorded on the 16mer peptide at a temperature of 300 K at 600 MHz. (A) Assigned NH/aliphatic region in the 2D TOCSY with

a mixing time of 80 ms. (B) Sequential resonance assignment walk in 2D NOESY with a mixing time of 300 ms. (C and D) Nitrogen and carbon HSQCs of the

peptide with annotated resonance assignment.
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FIGURE 3 (A and B) Overlay of the nine lowest-energy structures out of 100 calculated structures. (B) Only the backbone is shown. The RMSD value for all

heavy atoms is ~2 Å and 0.8 Å for the backbone atoms. (C) Ramachandran statistics for the nine lowest-energy structures.
(50). Harmonic restraints were applied to the filter region as well as to the

ions to prevent distortion of this sensitive region. To validate the resulting

ensemble of 100 configurations, we calculated the energy, DOPE score,

and the DOPE plot (51) with MODELLER, and pseudo-pair energies for

all Ca-Ca pairs with PROSA II (52). PROCHECK (49) was used to evaluate

the stereochemistry, e.g., by calculating Ramachandran plots (53). We chose

the structure that performed best with respect to its energetic and geometric

features after performing a number of simulated annealing refinement runs

for further processing. The value of the dihedral angle formed by Arg10-Ca,

Arg10-C, Thr11-N, and Thr11-Ca in the model was 179.5�, leading to an

Arg10 side-chain orientation hidden from the solvent. Energetic optimization

using SYBYL (54) with respect to this torsion angle under the constraint of

Arg10 solvent exposure yielded a value of 0� with similar energy. Missing

protons were added using the academic version of CHARMM V31b1 (55)

and optimized with an adopted basis Newton-Raphson minimizer for 2000

steps. The resulting geometry has a helical N-terminus and forms the basis

for the models Kcv-HOM-K29deprot and Kcv-HOM-K29prot. For the models

Kcv-NMR-K29deprot and Kcv-NMR-K29prot the structure of the synthetic

N-terminal peptide MLVFSKFLTRTEPFMI (see Fig. 3) as determined by

NMR spectroscopy was merged with the original homology model by super-

position of corresponding atom coordinates. MODELLER was used as

described above to create and optimize the chimera model composed of

the NMR-derived N-terminus and KirBac1.1-based remaining residues. In

all models, Lys29 was found to be membrane-exposed. This is a direct conse-

quence of choosing Pro13 as the pivotal residue marking the transition

between the TM helix and N-terminus. Any other Lys29 orientation would

have required the introduction of a gap between Pro13 and TM1, which is

highly unlikely.

MD simulations

The simulation procedures closely followed the steps used for KB-Kcv

simulations performed previously by our group (16) and others (56,57).

Briefly, the systems were constructed using CHARMM V31b1 with the

Biophysical Journal 96(2) 485–498
CHARMM22 potential function for proteins (58), CHARMM27 for phos-

pholipids (59), and ion parameters from the Roux lab (60). All titratable resi-

dues (except for Lys29; see discussion above) were kept at their standard

protonation state. This is reasonable for similarly critical Lys72 and Lys77,

which turned out to be buried in the protein, not membrane-exposed. The

total charge was þ8 for the protonated models and þ4 for the deprotonated

models. In the latter potential function, we used CHARMM22’s methyl-

amine parameters for the lysine amino group. Simulation runs were

performed with NAMD2.5/2.6 (61). Kcv-HOM-K29deprot was taken as the

basis, translated with respect to its center of mass (located in the cavity);

all other models were superimposed onto the filter coordinates. The

structures were embedded in dimyristoylphosphatidylcholine (DMPC)

membranes and KCl/TIP3P water phases of ~100 mM as in our previous

work (16). The systems comprised 64 lipid molecules on the intracellular

and 54 on the extracellular side, corresponding to a cross-sectional area of

59 Å2 per DMPC molecule (57). Two Kþ ions on filter binding sites S1

and S3 (in the terminology defined by Berneche and Roux (3)) were kept

while two water molecules on S0 and S2 in the filter were created. The final

ion number was 19 Kþ throughout and 27/23 Cl� for the protonated/depro-

tonated variants, respectively. The total number of atoms was 48707/48571/

48617/48886, including 9559/9511/9529/9616 water molecules for Kcv-

HOM-K29deprot/Kcv-HOM-K29prot/Kcv-NMR-K29deprot/Kcv-NMR-K29prot,

respectively. The initial dimensions of the orthorhombic simulation box were

92 Å along the z axis and 72 Å in the xy plane.

Pressure was kept constant at 1 atm by the Langevin piston algorithm

(62,63) with an oscillation period of 200 fs and damping constant of 100 fs.

A Langevin thermostat that kept the temperature constant at 330 K was

coupled to the system (coupling constant: 5 ps�1). Hydrogen-heavy atom

distances were constrained using the SHAKE algorithm (64), allowing for

an integration time step of 2 fs. A smooth cutoff over a distance of 10–12 Å

was used to truncate the Lennard-Jones interactions. Electrostatic interac-

tions were treated by the particle mesh Ewald algorithm (65) with a grid

resolution of ~1 Å. Initially, simulations with harmonic restraints on the

protein and the membrane were performed to allow smooth relaxation of
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the system. These restraints were gradually lifted. Strong restraints (Force

constant 10 kcal mol�1 Å�2) were applied to the filter residues (TVGFGD),

including the Kþ ions and water molecules in the filter, to preserve the filter

configuration, followed by a very short restraint-free NpT run of 20 ps at

the end of the construction phase to allow the filter region to accommodate.

The filter restraints were again applied for the initial 30 ns simulation

time and removed afterward. The total simulation time was 90.8 ns/74.4

ns/92.64 ns/43.32 ns for the Kcv-HOM-K29deprot/Kcv-HOM-K29prot/

Kcv-NMR-K29deprot/Kcv-NMR-K29prot systems, respectively. Two addi-

tional independent nonequilibrium simulations (Kcv-HOM-K29deprot-E1

and Kcv-HOM-K29deprot-E2) were performed by restarting the Kcv-

HOM-K29deprot trajectory after removing the constraints and applying

a constant external electric field along the z axis corresponding to þ100 mV

over a time of 12 ns. Two further independent nonequilibrium simulations

with þ100 mV external potential over 10 ns were conducted with the

protonated homology model, Kcv-HOM-K29prot-E3 and Kcv-HOM-

K29prot-E4, starting with the last frame of the simulation with a flexible filter.

Structural, thermodynamic, and dynamical
evaluations

Standard techniques for evaluating simulation results, such as computing the

root mean-square (RMS) fluctuations (RMSF)/thermal B factors and RMS

deviations (RMSD) of the structures from the initial state, were used to char-

acterize the stability of the simulations. RMSD time-series calculations were

carried out with the RMSDTT v1.9.2.2 plugin (66) for VMD v1.8.3 (67) for

constrained and unconstrained runs, for all Ca atoms, and further dissected

into contributions from the s-helix only. For a stability analysis to check and

compare the homology model’s quality along the lines of Holyoake et al.

(31), we calculated stability measures between structures at 0 and 28 ns of

the rigid filter runs (the static RMSD between these two snapshots and the

a-helicity loss, as determined by the STRIDE algorithm (68) for the

complete protein, and for TM1 and TM2 separately).

Further analysis is possible with symmetrized average structures. We

previously outlined a procedure for extracting such geometries from very

long trajectories by a simulated annealing approach with CHARMM

V31b1 in the field of average distance restraints (16). We followed this

strategy for the rigid filter runs in this work using the following protocol:

heavy atom pairs within a cutoff of 11 Å, all charged residues (including

the C- and N-termini), and all Ca-Ca pair distances were averaged over

the final 20 ns of the constrained trajectories. Force constants for harmonic

restraints were set to 15/10/10/10 kcal mol�1 Å�2 for Ca-Ca pairs, 1/1/1/3

kcal mol�1 Å�2 for all charged residue pairs, and 0.10/0.15/0.10/0.10 kcal

mol�1 Å�2 for all others in the Kcv-HOM-K29deprot/Kcv-HOM-K29prot/

Kcv-NMR-K29deprot/Kcv-NMR-K29prot systems, respectively, all weighted

by the inverse fluctuations. The values were maximized for each system

separately with respect to stable annealing runs. The initial temperature

was 750 K and the annealing window interval was 200 fs. Symmetrization

was applied after each window as described previously (16).

The pore diameters of the symmetric average structures were calculated

by HOLE (69). Ramachandran plot analysis has been done with PRO-

CHECK (49). We furthermore applied 3D-RISM integral equation theory

to these structures to elucidate potassium and chloride ion distributions

and the influence of the protonation state on these quantities. Again, the

procedure closely followed the one outlined previously (16). The solvent

susceptibility was computed from the dielectrically consistent 1D-RISM

equations (70,71) on a logarithmically spaced grid of 512 points ranging

from 5.98$10�3 Å to 164.02 Å using a variant of the modified inversion

of iterative subspace (MDIIS) method (72). The temperature was set to

298.15 K, a 1 M electrolyte concentration corresponding to number densities

of 0.032367 Å�3 for water and 0.000602 Å�3 for KCl (73) was used. The

dielectric constant of the solvent was set to 68.5. The 3D-RISM equations

were solved within a fourth-order partially expanded closure approximation,

which is a generalization of the (first-order) partially linearized Kovalenko-

Hirata closure (74), on a cubic grid of 1283 points with a 0.6 Å spacing by

the MDIIS technique (72). Long-range electrostatics were treated by Ewald
summation (74), taking into account conducting boundary conditions. Arti-

facts caused by the net charge of the solute were corrected by a renormaliza-

tion technique (75). Density distributions were integrated within the radius

given by HOLE along the central channel axis, yielding a local concentration

profile by dividing the number of particles within a slice of the grid by the

associated slice volume.

Mutagenesis and transfection of mammalian
cell lines

The Kcv gene was cloned into the BgIII and EcoRI sites of the pEGFP-N2

eukaryotic expression vector (Clontech, Palo Alto, CA) in frame with the

downstream enhanced green fluorescent protein (EGFP) gene by deleting

the Kcv stop codon. Point mutations K29A, K29L, K29R, K29S, K29V,

K29W, and K29H were created by the QuickChange method (Stratagene,

La Jolla, CA) and validated by sequencing. HEK293 cells were transfected

with Kcv::EGFP and the Kcv mutants. Control cells were transfected with

the empty plasmid (pEGFP-N2). The liposomal transfection reagent meta-

fectene (Biontex Laboratories, Munich, Germany) was used to transiently

transfect HEK293 cells.

Electrophysiology

After transfection, the cells were incubated at 37�C in 5% CO2 for 1–2 d.

The cells were dispersed by trypsin, plated at a low density on 35 mm culture

dishes, and allowed to settle overnight. Single cells were patch-clamped in

the whole-cell configuration according to standard methods (76) using an

EPC-9 patch-clamp amplifier (HEKA, Lambrecht, Germany). Data were

gathered and analyzed with Pulse software (HEKA). The bathing solution

consisted of 100 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, and 5 mM

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, pH 7.4).

Osmolarity was kept constant at 300 mOsmol with choline-Cl. The pipette

solution contained 130 mM D-potassium-gluconic acid, 10 mM NaCl,

5 mM HEPES, 0.1 mM guanosine triphosphate (Na salt), 0.1 mM CaCl2,

2 mM MgCl2, 5 mM phosphocreatine, and 2 mM adenosine triphosphate

(Na salt, pH 7.4).

RESULTS AND DISCUSSION

General model features

A number of structural and topological features for our

homology models, even before they were relaxed by simula-

tions, are in agreement with x-ray structures published for

other channels: 1), Both the characteristic topology of a Kþ

channel and the filter geometry are preserved. Furthermore,

since there is no bundle crossing of the TM2 helices, these

models satisfy a proposed condition for an open-state model

(77). 2), The TM domains are equipped mainly with hydro-

phobic residues, whereas the solvent-exposed loops and

s-helices are mainly hydrophilic. 3), The cavity is lined

mainly by hydrophobic amino acids originating from TM2

(Phe88, Phe89, Leu92, and Leu94). In particular, the presence

of one (for KcsA (78), KirBac1.1 (19), KvAP (79), and

MthK (39)) or more phenylalanine residues (for NaK (80))

exposed to the cavity are typical features of Kþ channels.

The overall hydrophobic cavity lining maximizes the interac-

tion of potassium ions with water because there is hardly

competition from the protein surface (81).
Biophysical Journal 96(2) 485–498
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Model quality assessment from equilibrium
simulation phenomenology

The total energy, volume, density profiles, etc. all indicate

a stationary state that was reached after a few nanoseconds.

As shown for the RMSD time series in Fig. 4, all simulations

with rigid filter restraints appear to be stable, since the largest

part of the structural drift occurred within 3 ns. Releasing the

filter restraints led, as anticipated (5,16,82), to further struc-

tural drift. Large RMSD drifts, particularly observed for

Kcv-NMR-K29prot, are located mainly in the highly flexible

s-helices, as evidenced in the two lower panels of Fig. 4.

Notice that the protonated models (blue and green curves)

show significantly less stability, particularly after release of

filter restraints, as compared to deprotonated systems (red
and cyan curves). This is the first indication that deproto-

nated Lys29 appears to be associated with a more stable

protein structure and a functional pore state.

More evidence for the functional deprotonated state is

found by visualization of Kþ ion transition events, shown

in Fig. 5. Apparently, only the Kcv-HOM-K29deprot model

(top panel) is capable of continuous ion transport; even in

an equilibrium situation, spontaneous single-file ion motion

is observed after 38–39 ns (we will come back to this point

later). The trajectory shows that a Kþ ion is rapidly shifted to

a position near the filter as soon as it passes the intracellular

mouth, as expected from the hydrophobic cavity lining. The

cavity is populated on average by 2–3 ions, in line with

results found for KB-Kcv wild-type in our earlier work

(16). The other models, including all NMR variants, appear

to rest in an inactive state. Not a single ion passage through

the inner mouth is observed, even after very long simulation

times.

Kcv-HOM-K29deprot also appears to be a reasonable

model from an analysis of specific residue locations. It has

been proposed that amphipathic aromatic side chains (such

as tryptophane and tyrosine) that are associated with the

membrane-water interface should be located at the end of

a TM domain (see Nyholm et al. (83)). Indeed, Trp50 is

located at the extracellular side, and the polar hydroxyl group

of Tyr28 is in permanent contact with the lipid heads even

though it is buried in the bilayer, as shown in Fig. 6 for

Kcv-HOM-K29deprot. The absence of tryptophane and tyro-

sine at the intracellular site is consistent with the structure

of MthK (39). Furthermore, a typical salt bridge pattern is

observed that resembles the situation found for our KB-Kcv

model (16) and also for NaK (80): Lys6 and Arg10 both

form salt bridges with the C-terminus (taking the role of

Lys9 in KB-Kcv).

The effect of protonation of Lys29 becomes clearer from

snapshots of the Kcv-HOM simulations, depicted in Fig. 7.

In the deprotonated state the Lys29 side chain is oriented

toward the center of the lipid bilayer. Lipid headgroups are

barely affected; water hardly penetrates the membrane. The

presence of deprotonated lysine near the bilayer center is

Biophysical Journal 96(2) 485–498
FIGURE 4 Ca RMSD time series of the four variants (red: Kcv-HOM-

K29deprot; green: Kcv-HOM-K29prot; cyan: Kcv-NMR-K29deprot; blue:

Kcv-NMR-K29prot). From top to bottom: computed for all residues from

rigid filter runs, subsequent fully flexible runs (time was reset to zero),

computed for non-s-helix residues from rigid filter, and from fully flexible

runs.



FIGURE 5 z coordinates (measured along the channel axis, intracellular

mouth is located around z ¼ 10 Å) of potassium ions over simulation

time, from top to bottom: Kcv-HOM-K29deprot, Kcv-HOM-K29prot,

Kcv-NMR-K29deprot, Kcv-NMR-K29prot. Only Kþ ions that rested for

more than 200 ps near the protein atoms are shown. Different shades of

gray are used to distinguish ions.
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compatible with recent computational results (30). The

situation changes dramatically upon protonation: Lys29

‘‘snorkels’’ (84,85) toward the extracellular side, and the

membrane thins out due to lipid heads getting dragged into

the bilayer. This allows a significant number of water mole-

cules to solvate the polar Lys29 residue. Additionally, the

helical structure of the TM helix gets distorted. These obser-

vations, consistent with recent simulations (22), explain the

lower stability of protonated versus deprotonated models.

There seems to be a delicate cooperation between Lys29 and

its neighbors, as is also seen in Fig. 6. Hydrophobic residues

Phe30 and Phe31 are located behind Lys29, and tend to interact

with the hydrophobic part of the bilayer. On the other hand,

Tyr28 and Lys29 penetrate similarly deep into the membrane.

Tyrosine as an amphipathic aromatic residue is proposed to be

located at the end of a TM (83). Although this is not the case in

our model, the polar group of Tyr28 always stays in contact

with the polar environment: an H-bond between the hydroxyl

group of Tyr28 and an acceptor site either from water or from

lipid headgroups was continuously observed. The position

and orientation of Tyr28 are not likely to be modeling artifacts,

since tyrosine is observed at equivalent positions in the x-ray

structures of KvAP (79) and MthK (39).

Table 1 summarizes the stability issues in terms of

a-helicity loss and static RMSD between certain snapshot

structures. Both quantities are lower for deprotonated as

compared to protonated models. Kcv-HOM-K29deprot is the

only model with no helicity loss in both TM segments.

NMR models are inferior to pure homology models, as

FIGURE 6 Snapshot from the Kcv-HOM-K29deprot simulation showing

the conformation of residues 28–31 (YKFF) in a single TM1. Only water

and lipid atoms (N: blue; P: magenta; O: red) within a radius of 10 Å of

the residues are shown. Blue sticks: Tyr28; cyan sticks: Lys29; magenta

sticks: Phe30 and Phe31; gray ribbons: Kcv backbone; black lines: water.
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evidenced by the substantial total and TM-specific a-helicity

losses. In summary, the analyses described so far all indicate

that only Kcv-HOM-K29deprot represents a functional and

reasonable Kcv model.

Analysis of symmetrized average structures

Fig. 8 shows the structures of the four models as obtained

from the symmetrizing annealing procedure, along with

the accessible volume from HOLE analysis and color-

coded local B factors averaged over the final 4.5 ns of the

rigid filter simulations. The intracellular mouth is formed

by the s-helix, rather than by TM2, which is too short to

exhibit bundle crossing of these segments (cf. Jiang et al.

FIGURE 7 Snapshots at t ¼ 39 ns (i.e., 9 ns after filter constraints were

removed), Kcv-HOM-K29deprot (top) and Kcv-HOM-K29prot (bottom). For

lipids only P atoms are shown (magenta); Lys29: cyan; water: gray tubes;

cylinders: a-helices as recognized by STRIDE (yellow tubes in bottom figure

denote regions with the largest helix loss).
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(77)), in line with our earlier results (16). However, caution

is advised because the limited homology between Kcv and

the template (KirBac1.1) in this region could lead to a very

different orientation of the s-helix without the bundle

crossing present in KirBac1.1. Furthermore, we cannot

immediately expect an isolated 13-mer peptide studied by

NMR in solution to represent its structure in the tetramer,

where clearly additional interactions (including forces

from the membrane) are involved. It is therefore not

surprising that the s-helices of full homology and NMR

models are markedly different: helical structure is

conserved in the former class, whereas in the latter the

‘‘untangled’’ character of the isolated peptide (cf. Fig. 3)

is still observed, despite the inherently large flexibility

measured via thermal B factors. Another difference

concerns the intracellular mouth: the mouths of the NMR

models are narrower than those of the homology models.

Particularly in the case of Kcv-NMR-K29deprot, this static

view suggests that the mouth presents a substantial sterical

barrier for ions. In contrast, the intracellular mouths of both

pure homology models are wide open. On the other hand,

we find confirmation for our previous finding that an

open mouth does not necessarily imply permeability (16).

The open/closed character of the inner mouth can be veri-

fied directly by monitoring the trajectory, and does not repre-

sent an artifact from the averaging procedure. The helicity

loss in the NMR model cases, summarized in Table 1, can

also be determined visually for the symmetrized structures.

It therefore appears likely that the NMR model structures

should be discarded as long as functional pore states must

be maintained. This does not rule out the possibility that

the NMR geometry of the N-terminus plays another role in

Kcv transport mechanisms.

The purely sterical picture, however, is not entirely satis-

factory. More insight is gained by analyzing the density

distributions as obtained from 3D-RISM theory. Results

for concentration profiles are depicted in Fig. 9. The filter

is found around z ¼ �15 Å, and the mouth at approximately

z¼ 10–12 Å. The concentration profiles clearly show almost

TABLE 1 Validation of various Kcv models*

Favored (%) RMSD/Å a-Helicity loss (%)

Total TM1 TM2

Kcv-HOM-K29deprot 100.0 4.48 �3.81 �5.00 �13.84

Kcv-HOM-K29prot 98.8 5.50 �1.90 8.33 �12.31

Kcv-NMR-K29deprot 97.6 5.42 7.59 6.56 1.21

Kcv-NMR-K29prot 98.8 6.28 9.96 8.19 13.25

Kcv-HOM-K29deprot-E1 — 4.92 �7.14 �5.00 �16.93

Kcv-HOM-K29deprot-E2 — 4.32 0.00 �5.00 �13.84

*Percentage of residues in favored regions as obtained from Ramachandran

analysis of the symmetrized average structures; Ca RMSD values and rela-

tive a-helicity loss between snapshot structures as obtained from homology

modeling and after 18/10 ns of the fully flexible equilibrium/nonequilibrium

simulations. Negative values for a-helicity loss indicate an actual gain in

helix stability.
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complete depletion of Kþ ions for the NMR models near the

mouth. This corresponds to high barriers for ion transport,

whereas the homology models do not show significant

barriers in this region. Despite the sterical possibility of al-

lowing ion transport in the case of Kcv-NMR-K29prot, the

mouth lining is unfavorable for Kþ, in line with the dynam-

ical results shown in Fig. 5. The NMR models can therefore

consistently be characterized as closed/nonconductive or

dysfunctional. The situation with Kcv-HOM-K29prot,

however, is less clear since the integral equation results

would allow ion passage. This contradicts the helix insta-

bility arising upon protonation (Fig. 7) and the dynamic

data shown in Fig. 5. Remarkably, the 3D-RISM profiles

show a substantial stabilization of the Kþ ions residing in

the filter upon protonation of Lys29, which is counterintui-

tive. The dynamical behavior of the ions in the filter region

shown in Fig. 5 supports this result (protonated species are

depicted in the second and fourth panels).

It is possible that we did not observe ions entering the

cavity in simulations of Kcv-HOM-K29prot (although they

come close; see Fig. 5) simply because more equilibration

time would have been necessary. Given the large simulation

time for Kcv-HOM-K29prot, however, there must be other

reasons for the apparent mouth barrier that cannot be

deduced from static averages alone. Fig. 8 (top) shows that

the s-helices are considerably more flexible for the proton-

ated as compared to the deprotonated model. This means

that transient fluctuations could lead to temporary constric-

tions with greater probability for Kcv-HOM-K29prot than

for Kcv-HOM-K29deprot. Restricted flexibility in the mouth

region could therefore be an important feature of a conduct-

ing channel state. Furthermore, Fig. 5 suggests that rapid ion

exchange between cavity and bulk is coupled with filter flex-

ibility and cation translocation through that region. Experi-

mental evidence for such long-distance interactions was

previously found for Kcv (86), but more work is required

to clarify the situation. Static and dynamical considerations

support the choice of Kcv-HOM-K29deprot as the most prom-

ising model for a functional, conducting channel.

Electrophysiology

Fig. 10 shows results from electrophysiological studies on

various Lys29 mutants to provide more insight into the

FIGURE 8 HOLE analysis and back-

bone atomic B factors (blue: <10 Å2;

red: >20 Å2) mapped onto symme-

trized average structures. Kcv-HOM-

K29deprot (top left), Kcv-HOM-K29prot

(top right), Kcv-NMR-K29deprot

(bottom left), Kcv-NMR-K29prot

(bottom right).
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protonation state of the active system. The current responses

and the corresponding I/V relations obtained in nontrans-

fected HEK293 cells and cells transfected with Kcv-wt are

in agreement with previous measurements (2). It is character-

istic of Kcv currents in HEK293 cells that the ratio of slope

conductance at negative voltages (�20 mV to �60 mV)

versus conductance at positive voltages (0 to þ60 mV)

was always greater than one; in control, nontransfected cells

this ratio was significantly smaller than one (2). With this

criterion we find that ~65% of all cells expressing the

Kcv-wt gene reveal a visible Kcv-type current. Also, more

than 50% of cells expressing Kcv-K29A and Kcv-K29R

are found to exhibit the same kind of Kcv-type current

(Fig. 10, D–F). With a lower frequency, we also observe

the same type of current in cells expressing either the mutant

K29S or K29W (Fig. 10, F). As far as the other mutants

(K29L, K29V, and K29H) are concerned, no current

response with the aforementioned criterion is observed.

Thus, the channels are either inactive or too small, or they

were not sorted properly to the plasma membrane. The

results of these experiments show that the channel does not

tolerate every amino acid in this position. But the fact that

the mutation of Lys29 into the nonpolar residue alanine

(and other nonpolar amino acids) does not affect the pheno-

type of the Kcv conductance suggests that Lys29 in the wild-

type and Arg29 in the K29R mutant are not charged, or that

protonation has no apparent influence. The fact that arginine

can replace lysine at position 29 may be an indication that the

amino group indeed plays a genuine role, but it is still very

FIGURE 9 Kþ concentration profiles along the pore axis from 3D-RISM

theory for symmetrized average structures in c0 ¼ 1 M KCl solution: Kcv-

HOM-K29deprot (red), Kcv-HOM-K29prot (green), Kcv-NMR-K29deprot

(blue), Kcv-NMR-K29prot (cyan). Top: View along the entire system.

Bottom: Enlarged cavity and mouth region.
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likely that arginine is deprotonated as well. Since alanine

is a helix-forming residue, positioning of Lys29 in a TM

segment of our model is now experimentally well founded.

Thus, there is still no conclusive evidence as to the choice

of the protonation state in the Kcv model. In light of the

experimental data, however, it is obviously not important

to give a definitive answer, and we are therefore allowed to

choose a model based on pragmatic arguments. Taken

together, the computational and experimental quantities

analyzed up to this point strongly favor the full homology

model with deprotonated Lys29, Kcv-HOM-K29deprot, as

the most promising candidate for an active Kcv pore state.

Single-file event analysis

We find that Kþ ions translocate in single-file fashion for

both equilibrium and nonequilibrium trajectories of Kcv-

HOM-K29deprot, as illustrated in Fig. 11. Such a classical

single-file motion is in agreement with earlier work

(3,6,12,87). This behavior serves as the ultimate quality

check for the model, since it is, to the best of our knowledge,

the first time that such a mechanism has been found for

a homology model of a potassium channel. Even more inter-

esting is the observation that ion transport through the filter is

accompanied by concerted transitions from the bulk solution

into the cavity. Therefore, this represents the first docu-

mented case of spontaneous ion transport through the entire

pore without artificially large external fields and specific ion

placements to induce the transport mechanism (6). In the

nonequilibrium cases, the bulk/mouth-to-cavity and filter

transitions even appear to occur in a concerted fashion.

In the equilibrium case (top panel of Fig. 5), a Kþ ion

enters the cavity after ~19 ns of rigid-filter simulation time.

A second Kþ ion gets trapped near the intracellular mouth

after ~23 ns. Immediately after the filter restraints are lifted,

the ion at position S3 moves to position S2. Simultaneously,

a third Kþ ion stays near the intracellular mouth; <1 ns later,

the second ion enters the cavity. For another 9 ns, these three

ions randomly exchange their positions. A coordinated three-

Kþ transition occurs at 38.4 ns (top panel of Fig. 11),

comprising the first Kþ ion that has entered the cavity as

well as both ions in the filter. The transition event starts

with one cavity ion moving to S4, and, at the same time,

the ion at S1 moving to S0. For a short period (~200 ps),

the S0/S2/S4 configuration is formed, which has been

proposed to be an energetically favored (87–89) though rapid

intermediate state (6,12). Then the ion at S4 moves to S3, the

ion at S0 leaves the filter, and the ion at S2 is shifted to S1

simultaneously, restoring the initial S1/S3 configuration.

A similar mechanism is observed for the two nonequilil-

brium trajectories, Kcv-HOM-K29deprot-E1/E2, although

filter transitions occur much sooner (after ~2 ns) and with

different ion configurations as compared to the equilibrium

case. Furthermore, the S0/S2/S4 configuration is longer-

lived; these binding sites are always occupied right before

Tayefeh et al.



FIGURE 10 Current responses of HEK293 cells trans-

fected with GFP: control (A), Kcv-wt (B), Kcv-K29L (C),

and Kcv-K29A (D) to standard voltage protocol from

holding voltage (0 mV) to test voltages between þ60 mV

and �160 mV. (E) Steady-state I/V relations of currents

in A–D; symbols cross-reference with symbols in A–D.

(F) Percentage of transfected HEK293 cells with Kcv

conductance, for Kcv-wt and mutants; the number of

recordings is indicated in brackets.
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conductance occurs (bottom panels of Fig. 11). This is in

agreement with filter-restrained simulations of Kv1.2 (6).

In detail, in the first run (E1) the same S0/S2/S4 configura-

tion as observed in the equilibrium trajectory is formed

before the transition event; ~1 ns after the S0 ion dissolves

into the bulk, the S2 ion moves to S1. Another 0.5 ns later,

it moves to S0 while the S4 ion jumps to S2 and an ion

from the cavity occupies S4. Again, the S0/S2/S4 configura-

tion is restored. In the second run (E2), the S0/S2/S4 posi-

tions are also occupied immediately after the restraints are

removed. During the next 2 ns, two different cavity ions

occupy S4 by exchanging their position twice. In contrast

to the other runs, the following four events occur almost

simultaneously: the S0 ion dissolves into the bulk, S2 ion

moves to S1, S4 ion jumps to S2, and another ion from the

cavity occupies S4. The single-file event in the second

nonequilibrium trajectory is provided as Movie S1.

The ion dynamics in the other two nonequilibrium simula-

tions of the protonated homology model (Kcv-HOM-K29prot-

E3/E4) are markedly different (Fig. S1). In both cases, the

outermost ion is pulled out of the filter after quite some

time. Nothing else happens in one of the simulations, and no

ion enters the cavity. In the other simulation, the second filter

ion moves to the first ion’s former position. After that event,

a Kþ ion moves from the bulk directly to a filter position,

and later the outermost ion again leaves the filter. There is

no indication of a concerted single-file motion involving three

ions for these protonated models. The translocations appear to

be enforced and entirely controlled by the external field.
CONCLUDING REMARKS

All our computational and experimental analyses of the

initial model and the simulation results point to the pure

homology model with deprotonated Lys29, Kcv-HOM-

K29deprot, as the most reasonable choice for a simulation

system with an open, functional Kcv pore state. It is reason-

able because it combines superior stability with the ability to

conduct Kþ ions. We have shown that Kcv-HOM-K29deprot

reproduces all discussed features in agreement with experi-

mental (2,81,83,88) and theoretical (3,5,6,22,89) data. For

designing an appropriate model, static structural analysis

alone would not be sufficient, and substantial simulation

effort is essential. In our case, the ultimate model validation

step was the simulation under mild nonequilibrium condi-

tions. Single-file ion transport events that were also observed

in the absence of an external field could be reproducibly

induced by application of a field. In the presence of the field,

single-file events appeared to be coupled in a concerted

manner to ion transitions near the inner mouth.

Regardless of the structure of the N-terminus, taken from

NMR spectroscopy or from homology modeling, proton-

ation of Lys29 has a negative impact on stability and func-

tionality, although it cannot be ruled out that the protonated

full homology model might be functional after a much longer

equilibration time. The data suggest, however, that the

protonation state of specific amino acids can apparently

contribute to the probability of ion transition events and

therefore may be important for channel function. On the
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other hand, the NMR-based model with deprotonated Lys29 is

similarly stable, though inactive or closed. It is therefore

tempting to speculate that one or both features—the proton-

ation state and the N-terminal structure—may be involved

in channel gating. The dynamic coupling between ion transi-

tions from the bulk into the cavity and from the filter into the

bulk, which could be facilitated by restricting flexibility in the

mouth region upon deprotonation of Lys29, is particularly

interesting. This point requires further scrutiny. In our simu-

lation systems, all four lysine residues were treated equiva-

lently, although in reality all possible permutations of local

protonation states could exist in a dynamic equilibrium and

modulate the pore function gradually. Analogously, from

our earlier simulations of KirBac1.1-Kcv chimeras, we have

inferred a possible role of the N-terminus for gating.

From a practical perspective and regardless of persisting

uncertainties, Kcv-HOM-K29deprot appears to be an ideal

FIGURE 11 z coordinates (measured along the channel axis) of potassium

ions over 6 ns simulation time for flexible filter runs of Kcv-HOM-K29deprot,

from top to bottom: without external field (enlarged view of top panel of

Fig. 5), simulations E1 and E2 with constant external field corresponding

toþ100 mV voltage. Dashed/dotted lines show the positions of binding sites

S0–S4 (from top to bottom). The positions were defined as the geometric

center of the oxygen rings of two adjacent filter residues (62–67). Different

shades of gray are used to distinguish ions.
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model case for studying ion transitions in Kþ channels under

conditions that are close to physiological ones or are directly

accessible in an experimental setup. This model will there-

fore serve as a suitable basis for future in silico structure-

function studies.
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1997. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25:3389–3402.

36. Rost, B. 2001. Protein secondary structure prediction continues to rise.
J. Struct. Biol. 134:204–218.

Model for the Kcv Potassium Channel
37. Hofmann, K., and W. Stoffel. 1993. TMbase—a database of membrane
spanning proteins segments. Biol. Chem. Hoppe Seyler. 374:166–170.

38. Sonnhammer, E. L. L., G. von Heijne, and A. Krogh. 1998. A hidden
Markov model for predicting transmembrane helices in protein
sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol., 6th. 175–182.

39. Jiang, Y., A. Lee, J. Chen, M. Cadene, B. T. Chait, et al. 2002. Crystal
structure and mechanism of a calcium-gated potassium channel. Nature.
417:515–522.

40. SPARKY 3, University of California, San Francisco.

41. Rance, M., O. W. Sørensen, G. Bodenhausen, G. Wagner, R. R. Ernst,
et al. 1983. Improved spectral resolution in COSY 1H NMR spectra of
proteins via double quantum filtering. Biochem. Biophys. Res. Commun.
117:479–481.

42. Braunschweiler, L., and R. R. Ernst. 1983. Coherence transfer by
isotropic mixing: application to proton correlation spectroscopy.
J. Magn. Reson. 53:521–528.

43. Jeener, J., B. H. Meier, P. Bachmann, and R. R. Ernst. 1979. Investiga-
tion of exchange processes by two-dimensional NMR spectroscopy.
J. Chem. Phys. 71:4546–4553.

44. Hwang, T. -L., and A. J. Shaka. 1995. Water suppression that worksex-
citation sculpting using arbitrary wave-forms and pulsed-field gradients.
J. Magn. Reson. A. 112:275–279.

45. Marion, D., M. Ikura, R. Tschudin, and A. Bax. 1989. Rapid recording
of 2D NMR spectra without phase cycling: application to the study of
hydrogen exchange in proteins. J. Magn. Reson. 85:393–399.

46. Piotto, M., V. Saudek, and V. Sklenar. 1992. Gradient-tailored excita-
tion for single-quantum NMR spectroscopy of aqueous solutions.
J. Biomol. NMR. 2:661–665.

47. CNX 2002. Accelrys Inc., San Diego, CA.

48. Linge, J. P., and M. Nilges. 1999. Influence of non-bonded parameters
on the quality of NMR structures: a new force field for NMR structure
calculation. J. Biomol. NMR. 13:51–59.

49. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton.
1993. PROCHECK: a program to check the stereochemical quality of
protein structures. J. Appl. Cryst. 26:283–291.

50. Marti-Renom, M. A., A. Stuart, A. Fiser, R. Sánchez, F. Melo, et al.
2000. Comparative protein structure modeling of genes and genomes.
Annu. Rev. Biophys. Biomol. Struct. 29:291–325.

51. Eramian, D., S. Min-yi, D. Devos, F. Melo, A. Sali, et al. 2006. A
composite score for predicting errors in protein structure models.
Protein Sci. 15:1653–1666.

52. Sippl, M. J. 1993. Recognition of errors in three-dimensional structures
of proteins. Proteins. 17:355–362.

53. Law, R. J., C. Capener, M. Baaden, P. J. Bond, J. Campbell, et al. 2005.
Membrane protein structure quality in molecular dynamics simulation.
J. Mol. Graph. Model. 24:157–165.

54. SYBYL (Tripos Inc., St. Louis, MO).

55. Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-
nathan, et al. 1983. CHARMM: a program for macromolecular energy,
minimization, and dynamics calculations. J. Comput. Chem. 4:187–217.

56. Berneche, S., M. Nina, and B. Roux. 1998. Molecular dynamics simu-
lation of melittin in a dimyristoylphosphatidylcholine bilayer
membrane. Biophys. J. 75:1603–1618.

57. Woolf, T. B., and B. Roux. 1994. Molecular dynamics simulation of the
gramicidin channel in a phospholipid bilayer. Proc. Natl. Acad. Sci.
USA. 91:11631–11635.

58. MacKerell, A. D., Jr., D. Bashford, M. Bellott, R. L. Dunbrack, J. D.
Evanseck, et al. 1998. All-atom empirical potential for molecular
modelling and dynamics Studies of proteins. J. Phys. Chem. B.
102:3586–3616.

59. Schlenkrich, M., J. Brickmann, A. D. MacKerell, Jr., and M. Karplus.
1996. An empirical potential energy function for phospholipids: criteria
for parameter optimization and applications. In Biological Membranes:
A Molecular Perspective from Computation and Experiment. K.
M. Merz and B. Roux, editors. Birkkäuser, Boston, pp. 31–81.
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