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Effects on Conformational States of the Rabbit Sodium/Glucose
Cotransporter through Modulation of Polarity and Charge at Glutamine 457

Tiemin Liu, Daniel Krofchick, and Mel Silverman*
Department of Medicine, University of Toronto, Toronto, Ontario, Canada

ABSTRACT The high affinity sodium/glucose cotransporter (SGLT1) couples transport of Naþ and glucose. Previous studies
established that mutant Q457C human SGLT1 retains full activity, and sugar translocation is abolished in mutant Q457R or in
mutant Q457C after reaction with methanethiosulfonate derivatives, but Naþ and sugar binding remain intact. To explore the
mechanism by which modulation of Q457 abolishes transport, Q457C and Q457R of rabbit SGLT1 were studied using chemical
modification and the two-electrode voltage-clamp technique. Compared to wild-type SGLT1, Q457C exhibits ~20-fold reduction
in phloridzin affinity and preferential occupancy of an inward-facing state. Alkylation of Q457C by [(2-trimethylammonium) ethyl]
methanethiosulphonate bromide, (MTSET), reverses these changes while blocking transport. Analysis of pre-steady-state
currents in the absence of sugar yields three decay constants for each of Q457C, Q457C-MTSET and Q457R. Comparison
of Q457C-MTSET and Q457R with Q457C and wild-type, reveals that inhibition of transport is accompanied by a decrease in
magnitude and voltage-independence of the slow decay constant at negative potentials. But fast and medium decays remain
unchanged. Computer simulation of transient currents suggests that introduction of positive charge at position 457 leads to
a predominant outward rather than inward-facing conformational state. Taken together, the results suggest that glutamine
457, in addition to being involved in sugar binding, is a residue that is sensitive to conformational changes of the carrier.
INTRODUCTION

The high affinity sodium/glucose cotransporter (SGLT1),

responsible for intestinal glucose/galactose malabsorption,

belongs to the homologous family of Naþ/solute symporters

SLC5 (1). It is a secondary transporter that utilizes the

sodium electrochemical gradient in a stoichometry of two

Naþ ions: one sugar molecule to transport sugar substrates

against a concentration gradient. SGLT1 is expressed most

abundantly at the mucosal surface of the small intestine

and serves as the principal uptake pathway for glucose

derived from dietary sources (2–4). The transporter is

a monomer with 14 transmembrane domains. Investigation

of the structure and function relationships of the SGLT1 is

crucial to understanding cotransporter mechanism (5–10).

One polar residue at the carboxy-terminal part of trans-

membrane XI (Q457 of human SGLT1 (hSFLT1)) has been

extensively investigated and proposed to be essential for the

binding of sugar through hydrogen bond interactions with

O1 and O5 of the pyranose ring (7,11–14). In addition,

cysteine-scanning mutagenesis reveals that Q457R (a naturally

occurring mutation in patients with glucose/galactose malab-

sorption) or Q457C reacting with thiol-reactive reagents (meth-

anethiosulfonates and maleimides) abolishes sugar transport.

However, under these conditions, it has been noted that the

transporter still binds Naþ and sugar (7, 15).

The objective of this study, therefore, was to better under-

stand the role of glutamine 457 in affecting sugar transport.

Mutants Q457C and Q457R of rabbit SGLT1 (rSGLT1)

were expressed in the Xenopus laevis oocyte system and
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their functions were studied by the two-microelectrode

voltage-clamp technique with a millisecond to second time-

scale. Glutamine to cysteine mutation at residue 457 in

rSGLT1 causes ~20-fold reduction in phloridzin affinity

and decreases the relative charge contribution of the charge

due to depolarizing pulses (Qdep) suggesting a predominant

inward-facing state. However, alkylation of cysteine 457

through chemical modification by [2-(trimethylammonium)

ethyl]methanethiosulfonate bromide;(MTSET) reverses the

changes caused by this mutation at residue 457, while at

the same time, blocking sugar transport. Analysis of pre-

steady- state currents and computer simulation using a four

state model shows that abolishing of sugar translocation

correlates with an altered empty carrier transition state

such that Q457C labeled MTSET (Q457C-MTSET) is

predominant in the outward-facing state. The results of this

study suggest that changes in polarity and charge at position

457 are associated with a minor modification of the orienta-

tion of the free carrier and a complete abolition of the trans-

location of the fully loaded carrier.

MATERIALS AND METHODS

Molecular biology

The mutants Q457C and Q457R were prepared by the site-directed mutagen-

esis using polymerase chain reaction protocol mutagenesis as described

previously and confirmed by sequencing (6).

Oocyte preparation and injection

X. laevis were prepared as described previously (16). The oocytes were in-

jected with 60 ng cDNA. The injected oocytes for the electrophysiology

were stored at 16–18�C for four days or more.
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Electrophysiology

Voltage clamping and recordings were performed using a GeneClamp 500

amplifier, Digidata 1200B interface, and pClamp 9.0 data acquisition soft-

ware (Axon Instruments, Union City, CA) as described previously (17).

The oocytes were constantly superfused with a solution for electrophysio-

logical experiments consisting of 100 mM NaCl, 2 mM KCl, 1 mM

MgCl2, 1 mM CaCl2, and 10 mM HEPES-Tris base (pH 7.4) and held at

a holding potential, Vh, of�50 mV, then was subjected to a series of voltage

test pulses, test potential (Vt). The current responses were recorded with

a sampling interval of 20 ms for pre-steady-state and steady-state experi-

ments. Results were filtered via a 1-kHz, 5-point Gaussian filter. Additional

curve fitting was performed in ORIGIN 7.0 (OriginLab, Northampton, MA)

with the Levenberg-Marquardt algorithm; n is the number of observations.

Transient current measurements

The rSGLT1 pre-steady-state currents were determined as described previ-

ously (6). The pre-steady-state currents for each Vt were integrated over

the entire course of the trace to calculate the total charge transferred by

the cotransporter. The charge, Q, was plotted as a function of the test pulses,

and these Q (Vt) curves were fitted to the two-state Boltzmann relation,

Q ¼ �N � e � z
�
1 þ expðz � u � ðVt � V0:5ÞÞ

þ Qdep

�
; (1)

where Q is the total charge transferred, Qdep is the charge due to depolarizing

pulses, e is the elementary charge, z is the apparent valence of the movable

charge, V0.5 is the potential at which half of the total charge transfer is

complete, and N is the number of cotransporters expressed at the surface.

In the term u ¼ F/RT; F is Faraday’s constant, R is the gas constant, and

T is absolute temperature.

Steady-state parameters were determined with the difference in the

steady-state currents obtained before and after exposure to the substrate as

described previously (6,18,19). Steady-state currents were acquired with

test pulses of 300 ms duration. The final 100 ms of a test pulse were selected

and the average current value of this range was acquired. The average

current values were plotted versus substrate and the following equation

was fitted to the curve,

I ¼ Imax � ½S�n=
�
½S�nþKn

0:5

�
; (2)

where S is the substrate of investigation (Naþ, a-methyl D-glucopyranoside

(aMG)), Imax is the maximum current induced at saturating [substrate], n is

the Hill coefficient, and K0.5 is the Michaelis constant, which is the [S] at

which the I ¼ Imax/2, which serves as an approximation of substrate affinity.

The calculation of substrate affinity values used the Imax values of�150 mV

test pulses.

Protocols for chemical modification

1 mM of cysteine-specific reagents, MTSEA, Naþ(2-sulfonatoethyl)metha-

nethiosulfonate (MTSES), or MTSET (Toronto Research Chemicals,

Toronto, Ontario, Canada), were dissolved in a voltage-clamping solution

consisting of 100 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1 mM CaCl2, and

10 mM HEPES-Tris base (pH 7.4) immediately before use. The oocytes

expressing mutants were labeled with the bath solution including cysteine-

specific reagents for 5–10 min, with membrane clamped at �50 mV.

Phloridzin affinity measurements

The phloridzin affinity was determined as described previously (20). Tran-

sient current measurements were made for an array of voltage steps ranging

from �150 to 70 mV in 10 mV steps for mutants. The current recordings

acquired in the presence of phloridzin (at the appropriate concentration)

were subtracted from the recordings acquired in the absence of phloridzin
to obtain the phloridzin sensitive charge movement due to SGLT1. Sub-

tracted data were then base line adjusted from 145–150 ms and integrated

to give a Q/V distribution. The standard holding potential was �50 mV.

At each membrane potential, charge versus phloridzin concentration was

plotted and fitted to the Hill equation to find K0.5.

State model simulations

State model simulations were performed as described previously (21). Tran-

sient currents of �130, �90, �10, 30, and 50 mV were simulated and fit

simultaneously from 0 to 150 ms and from 150 to 300 ms. Eyring rate theory

was used to calculate voltage dependence, V, of the rate constants. The over-

all c2 was minimized by optimizing 12 parameters: six rate constants (k) and

six valences (z).

Statistical comparisons of means

Data are presented with mean 5 SE. Comparisons of parameters were tested

with t-test (ORIGIN 7). Statistical significance was accepted at an alpha

level of p < 0.05.

RESULTS

Steady state kinetics of mutant Q457C of rSGLT1

The apparent affinity of mutant Q457C for sugar substrate

aMG, (K0.5
aMG), was determined by measuring aMG

induced steady-state currents at various sugar concentrations

and over a range of holding potentials. The results were then

fitted according to the Michaelis-Menten equation. As shown

in Fig. 1 A, the K0.5
aMG for mutant Q457C exhibits more

voltage-dependence from �150 mV to �30 mV, compared

to wild-type (WT) rSGLT1. The K0.5
aMG of mutant Q457C

is 0.7 5 0.1 mM (V ¼ �150 mV) and 1.5 5 0.2 mM

(V ¼ �50 mV); whereas for WT, K0.5
aMG is ~0.2 mM

(from �150 mV to �50 mV).

To determine the Naþ affinity of mutant Q457C, we

measured aMG induced steady-state currents (obtained at

saturating 20 mM aMG) at various Naþ concentrations

over a range of holding potentials and the resulting curves

were analyzed using the Hill relationship (6). The Naþ

apparent K0.5 of mutant Q457C exhibits relatively voltage-

independent at hyperpolarizing membrane potentials from

�150 mV to �80 mV and voltage-dependent from �70 mV

to �30 mV (Fig. 1 B). The K0.5
Naþ of mutant Q457C is

17.3 5 2.6 mM (V ¼ �150 mV) and 26.2 5 3.2 mM (V ¼
�30 mV). The corresponding values for n, the Hill coeffi-

cient range from 1.0 to 2.0. The K0.5
Naþ of WT as previously

determined is 8.3 5 0.8 mM (V ¼ �150 mV) and 41.9 5

2.0 mM (V¼ �30 mV).

These results show that the glutamine to cysteine mutation

at residue 457 in SGLT1 causes ~4-fold reduction in aMG

affinity (V ¼ �150 mV) and ~2-fold reduction in Naþ

affinity (V ¼ �150 mV).

Pre-steady-state kinetics of mutants Q457C
and Q457R of rSGLT1

Pre-steady-state currents for mutant Q457C were obtained as

a function of voltage and integrated over 300 ms (Vt) to
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calculate total charge (Q) transferred by the cotransporter (Vh

was �50 mV, Vt varied from �150 mV to þ70 mV). The

charge (Q) was then plotted as a function of the test pulses,

and the Q(Vt) curves were fit to the two-state Boltzmann

equation. This protocol was carried out at 100 mM saturating

Naþ concentrations or 40 mM low Naþ concentrations, and

compared to WT rSGLT1.

In the presence of Naþ and no sugar, the distribution of the

cotransporter in outward-facing conformational states can be

explained by the difference in the relative charge contribution

of Qdep (22). For WT rSGLT1 we have previously shown that

in 40 mM Naþ over the range�150 toþ70 mV, there is ~80%

charge recovery compared to 100 mM Naþ (16), suggesting

that WT SGLT1 exists primarily in outward-facing conforma-

tional states (substrate binding site exposed to the extracel-

lular side) (22,23). In mutant Q457C, however, there is

<50% charge recovery in the presence of 40 mM Naþ

compared that in 100 mM Naþ (Fig. 2 A), suggesting prefer-

ential occupancy of the inward-facing state.

The mutation at residue 457 has altered voltage sensitivity

(Table 1, Fig. 2 B). In 100 mM Naþ, the V0.5 values of

mutants Q457C and Q457R are shifted to negative potentials

compared to WT (�20.0 5 0.9 mV, �6.0 5 5.2 mV, and

�1.5 5 5.1 mV, respectively).

Transporter turnover, k, was calculated using the empirical

values for steady-state Imax and the pre-steady-state

maximum charge transferred as calculated with the two-state

Boltzmann relation (Qmax). The turnover of mutant Q457C

and WT are 7.8 5 0.9 s�1 (n ¼ 3) and 9.8 5 1.2 s�1 (n ¼
4), respectively. Therefore, the turnover rate for the mutant

Q457C is decreased by ~20% compared to WT.

Chemical modification of mutant Q457C of rSGLT1
by methanethiosulfonate reagents

We next investigated the functional consequence of alkyl-

ation of cysteine 457 through chemical modification by

methanethiosulfonate (MTS) reagents. Oocytes expressing

mutant Q457C were exposed separately to positively

charged MTS derivatives MTSET, MTSEA, and negatively

charged MTSES, for 10 min in 100 mM Naþ, with the

membrane clamped at �50 mV.

Effect of MTSET on voltage sensitivity and charge transfer
of mutant Q457C

Fig. 2 shows the functional changes in Q457C after chemical

modification by membrane-impermeant cationic MTSET.

Representative normalized Q versus V curves obtained by

integrating pre-steady-state currents in an oocyte expressing

WT, mutant Q457C, mutant Q457C reacted with MTSET

FIGURE 1 (A) aMG K0.5 of WT rSGLT1 (n ¼ 3) and Q457C rSGLT1

(n¼3) for voltage dependence. The error bars represent SE. Q457C

K0.5
aMG was 0.7 5 0.1 mM (V ¼ �150 mV) and 1.5 5 0.2 mM

(V ¼ �50 mV), representing significantly different values at �150 mV

and �50 mV (p < 0.05). (B) The Naþ K0.5 of WT (n ¼ 3) and Q457C

(n ¼ 5) for voltage dependence. The error bars represent SE. Q457C

K0.5
Naþ was 17.3 5 2.6 mM (V ¼ �150 mV) and 26.2 5 3.2 mM (V ¼

�30 mV), representing significantly different values at �150 mV and

�30 mV (p < 0.05).

TABLE 1 Pre-steady-state parameters for WT rSGLT1, mutant Q457C rSGLT1 before or after reaction with MTSET and mutant Q457R

rSGLT1

WT Q457C Q457C-MTSET Q457R

100 mM Naþ

(n ¼ 5)

100 mM Naþ

(n ¼ 10)

40 mM Naþ

(n ¼ 6)

100 mM Naþ

(n ¼ 11)

40 mM Naþ

(n ¼ 3)

100 mM Naþ

(n ¼ 7)

Qdep/Qmax (%) 86 80 46 86 64 83

V0.5 (mV) �1.5 5 5.1 �20.0 5 0.9 �50.9 5 1.0 �0.9 5 0.5 �33.3 5 0.5 �6.0 5 5.2

dV (mV) 25.7 5 2.5 20.7 5 0.8 17.7 5 0.9 28.0 5 0.4 27.6 5 0.5 27.3 5 3.9

z 1.01 1.22 1.43 0.91 0.94 0.94

Pre-steady-state parameters were calculated by integrating the transient currents, and then fitted to a two-state Boltzmann relation.
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FIGURE 2 (A) Comparison of the effects of 100 mM

Naþ and 40 mM Naþ on charge transfer of mutant rabbit

Q457C before and after exposure to MTSET (n R 3).

The error bars represent SE. (B) Typical results demon-

strating the effects on mutant Q457C charge transfer in

oocytes treated with various 1 mM sulfhydryl-specific

reagents (MTSET) in 100 mM Naþ. The Q(Vt) curves were

adjusted to zero at hyperpolarizing voltages (�150 mV)

and normalized with respect to the extrapolated Qmax. (C)

Comparison of the effects on maximum aMG-induced

Naþ currents measured at �150 mV in oocytes

expressing of WT, or empty pMT4 plasmid before or after

reaction with MTSEA, or mutant Q457C before or after

reaction with MTSET (n R 3). The error bars represent

SE. The ‘‘*’’ shows significant difference compared with

Imax of mutant Q457C before or after reaction with MTSET

at �150 mV (p < 0.05). The ‘‘#’’ shows no significant

difference compared with Imax of empty pMT4 plasmid

after reaction with MTSEA and mutant Q457C after reac-

tion with MTSET at�150 mV (p> 0.05). (D) Comparison

of the Naþ leak currents measured at �150 mV in oocytes

expressing of WT, or mutant Q457C before or after reac-

tion with MTSET or mutant Q457R (n R 3). The error

bars represent SE. (E) The effect of sugar binding to mutant

Q457C-MTSET on Q/V relations. The binding of sugar to

mutant Q457C-MTSET can be studied from the effect of

external sugar on the pre-steady-state charge movement.

Sugar shifted the V0.5 of the Q/V relation. Normalized Q/V

curves at 0 and 20 mM aMG. The V0.5 of the Q/V curve

at 20 mM aMG shifted ~44 mV. (F) The effect of sugar

binding to mutant Q457R on Q/V relations. Normalized

Q/V curves at 0 and 10 mM aMG. The V0.5 of the Q/V

curve at 10 mM aMG shifted ~25 mV.
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(Q457C-MTSET), or mutant Q457C reacted first with

MTSET and then MTSEA. As shown in Fig. 2 B, after expo-

sure to MTSET, the V0.5 of Q457C is shifted toward more

positive potentials (V0.5 ¼ �0.9 5 0.5 mV, n ¼ 11), so

that the Q/V curve for Q457C-MTSET nearly superimposes

on that of the WT. These results suggest chemical modifica-

tion of Q457C by MTSET has reversed the changes in pre-

steady-state behavior caused by the glutamine to cysteine

mutation (see Methods and Materials section). These results

are summarized in Table 1 where at 100 mM Naþ, the pre-

steady-state parameters of WT and mutant Q457C-MTSET

are almost equivalent. Furthermore, when mutant Q457C

in the presence of Naþ is sequentially reacted with MTSET,

and then MTSEA, there is no additive effect on pre-steady-

state behavior (data not shown).

We have previously shown that in 40 mM Naþ there is

~80% charge recovery for WT and ~50% charge recovery

for mutant Q457C compared to 100 mM Naþ. Alkylation

of Q457C by MTSET substantially reverses the effect caused

by the glutamine to cysteine mutation. The Q/V of mutant

Q457C-MTSET in 40 mM Naþ represents ~80% of the
charge transferred in 100 mM Naþ (Fig. 2 A), suggesting

an increase in occupancy of the outward-facing state.

Effects of MTSET on sugar transport and sugar binding
of mutant Q457C

As observed previously for mutant Q457C hSGLT1 (7),

alkylation of cysteine 457 in mutant Q457C rSGLT1 after

exposure to MTSET results in inhibition of steady-state

aMG induced Naþ currents (Fig. 2 C).

Fig. 2 D shows that the Naþ leak of Q457C-MTSET is

also reduced (~65% of mutant Q457C). The Naþ leak values

of WT, mutants Q457C, Q457C-MTSET and Q457R for

rSGLT1 are �47.8 5 6.3 nA (n ¼ 17), �57.6 5 4.1 nA

(n ¼ 12), �37.4 5 4.1 nA (n ¼ 8) and �513 5 68 nA (n ¼
7), respectively. Similarly, previous studies have shown that

alkylation of mutant Q457C with MTSEA (Q457C-

MTSEA) for hSGLT also had relatively large Naþ leak

(Q457C and Q457C-MTSEA are ~131 nA and ~314 nA,

respectively) (7).

The effect of the external aMG on pre-steady-state charge

movement can be used to study sugar-binding characteristics
Biophysical Journal 96(2) 748–760
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of mutants Q457C-MTSET and Q457R. As described by

Gagnon et al. (23), transporter specific pre-steady-state

currents were obtained by subtracting currents in the pres-

ence of 200 mM phloridzin from currents measured in the

absence or presence of aMG. Although alkylation of

Q457C by MTSET inhibits sugar transport, Fig. 2 E reveals

that addition of 20 mM aMG causes the V0.5 of mutant

Q457C-MTSET to shift ~44 mV along the voltage axis.

This result indicates that sugar binding of mutant Q457C-

MTSET is still present. Fig. 2 F reveals that an addition of

10 mM aMG causes the V0.5 of mutant Q457R to shift

~25 mV along the voltage axis and also suggests that sugar

binding of mutant Q457R is still present.

These results obtained for mutants Q457C-MTSET and

Q457R rSGLT1 are consistent with those reported for

mutants Q457C-MTSET and Q457R from hSGLT1 (7,15).

Effect of MTSES or MTSEA on mutant Q457C

MTSES altered pre-steady-state currents such that at both

depolarizing (þ70 mV) and hyperpolarizing (�150 mV)

potentials there was no saturation of charge transfer and it

was not possible to obtain a fit of the data to a two-state

Boltzmann relation. MTSEA caused a marked increase in

Naþ leak substantially reducing the observable charge trans-

fer associated with cotransporter activity (data not shown).

As a consequence of these findings, the effects of chemical

modification by MTSES and MTSEA were not further

analyzed.

Phloridzin affinity

The specific inhibitor, phloridzin, binds to SGLT1 and

blocks sugar translocation (24). As described in the Materials

and Methods section, the ability of phloridzin to reduce tran-

sient charge movement of SGLT1 can been used to measure

its apparent affinity for the cotransporter (20,23–25). As

shown in Fig. 3, the phloridzin substrate concentration at

0.5 Imax (K0.5) of Q457C is 30.7 5 0.7 mM, indicating that

the glutamine to cysteine mutation at 457 has reduced phlor-

idzin affinity by ~20-fold, compared to WT (1.4 5 0.2 mM,

data not shown). When a positive charge is introduced at

position 457 by reacting cysteine 457 with MTSET,

however, the phloridzin K0.5 of mutant Q457C is 4.5 5

0.1 mM, indicating that alkylation with MTSET (Q457C-

MTSET) has rescued the phloridzin affinity of mutant

Q457C (which is now reduced by ~3-fold, compared to WT).

Decay constants of Q457C of rSGLT1

A simple six-state model has been used to explain the

kinetics of SGLT1 function in a limited time range (Fig. 4 A)

(7). States C1 and C6, C2 and C5, and C3 and C4 represent the

empty [C], Naþ-bound [CNa2], and Naþ- and sugar-bound

conformations [SCNa2] of the cotransporter at the external

and internal membrane surfaces.

Biophysical Journal 96(2) 748–760
The pre-steady-state currents in an oocyte expressing

SGLT1 consist of a nonspecific component (due to oocyte

membrane capacitance) and an SGLT1 specific component.

To isolate SGLT1 specific currents, the well-known non-

transported sugar inhibitor, phloridzin, is used to block

SGLT1 activity. Then, recorded currents acquired in the

presence of saturating phloridzin (200 mM) are subtracted

from currents acquired in the absence of phloridzin, to

provide the currents due exclusively to SGLT1.

In the presence of Naþ and absence of sugar, using the

two-electrode voltage clamp technique and the phloridzin

subtraction protocol with sufficient duration of voltage pulse

(150 ms), there is now evidence or an additional intermediate

empty carrier conformational state (C1a) (Fig. 4, B and C)

(21,26). Thus, it is now believed that reorientation of empty

carrier from an inward to outward-facing state occurs via two

transitions, C64C1a, C1a4C1. The cotransporter is in state

C2 at large hyperpolarizing voltages, and at C6 at large depo-

larizing voltages. In the presence of Naþ and absence of

sugar, the four transporter transition states are characterized

by three time constants (21).

Accordingly, the pre-steady-state transient currents of

mutants Q457C and Q457C-MTSET were fitted to obtain

first-, second-, and third-order decays. Fig. 5 shows the fit

to the pre-steady-state currents for mutants Q457C (Fig. 5,

A and B) and Q457C-MTSET (Fig. 5, D and E), using first-

and second- order exponential decays. The nonrandom

regions in the first 25 ms (Fig. 5, B and E) demonstrate inad-

equacy of the fit with second- order exponential decays. The

residuals of the third-order exponential decay (Fig. 5, C and

F) exhibit random oscillations about the zero axis, indicating

best fit of the data with three exponential decay components

for the pre-steady-state currents of mutants Q457C and

Q457C-MTSET. These results suggest that the pre-steady-

state currents of mutants Q457C and Q457C-MTSET can

also be represented by three decay constants (tf, the fast

FIGURE 3 Estimation of the phloridzin K0.5 of rabbit Q457C and Q457C-

MTSET for voltage dependence with the transferred charge (n R 3). Vol-

tage dependent transferred charge in the presence of various concentrations

of phloridzin was fitted to the Hill relationship. The error bars represent SE.



decay constant; tm, the medium decay constant; and ts, the

slow decay constant), consistent with those reported for

WT rSGLT1 (21).

Fig. 6, A–C, show the relationships between decay

constants and voltage. Inspection of Fig. 6 reveals that in

the presence of 100 mM Naþ, the three decay constants for

WT (21) and mutant Q457C are similar both in magnitude

and voltage dependence. The fast decay constant of mutant

Q457C (tf, 0.5–1.1 ms) is relatively voltage-independent

with a range between 0.5 ms and 1.1 ms (Fig. 6 A). The

medium decay constant of mutant Q457C (tm, 1.2–6.5 ms)

has a voltage-dependence and increases from ~1.2 ms at

hyperpolarizing potentials to ~6.5 ms at depolarizing poten-

tials (Fig. 6 B). The slow decay constant of mutant Q457C

(ts, 60–15 ms) has a sigmoid-shaped voltage-dependence

and decreases rapidly from ~60 ms at hyperpolarizing poten-

tials to ~15 ms at depolarizing potentials (Fig. 6 C).

At low Naþ concentrations (40 mM Naþ), both the fast

decay constant (tf, 0.9–1.3 ms) and the medium decay

FIGURE 4 Kinetic models for SGLT1 in the presence of sugar or absence

of sugar. (A) A simple six-state model for SGLT1 with sugar in a certain time

range (7). The shaded region represents the voltage-dependent step: Naþ

binding/dissociation C24C1; orientation of empty carrier between

inward-facing state and outward-facing state C14C6. (B) A four-state

model of SGLT1 for pre-steady-state currents in the absence of sugar

(21,26), which added an intermediate empty carrier conformational state

(C1a) between C1 and C6. (C) In the absence of sugar, a four-state model

of SGLT1 for charge movement, decay constants (t) and rate constants (k).

The Substrate-Translocation Domain
constant (tm, 1.4–5 ms) are only slightly altered (Fig. 6, A
and B). But the slow decay constant (ts, 100–6.5 ms) is

significantly slower at potentials more hyperpolarizing than

�50 mV and faster at potentials more depolarizing than

�50 mV (Fig. 6 C).

The decay constants for mutants Q457C-MTSET and

Q457R are illustrated in Fig. 6, D–F. In the presence of

100 mM Naþ, the fast decay constant (tf, 0.5–1.4 ms) and

the medium decay constant (tm, 1.2–6 ms) for both

Q457C-MTSET and Q457R are similar to that of WT and

mutant Q457C (Fig. 6, D and E). However, the slow decay

constant (ts) of Q457C-MTSET and Q457R are substantially

changed. Both exhibit voltage-independence from �150 mV

to 0 mV, with reduced magnitudes of ~30 ms and ~16 ms,

respectively. At depolarizing voltages (R20 mV), the slow

component exhibits very low amplitude of the transient

currents (small signal/noise ratio), precluding our obtaining

estimates of ts for mutants Q457C-MTSET and Q457R

over this voltage range.

The slow decay constants of mutants Q475C-MTSET and

Q457R are reduced in magnitude (i.e., faster) at potentials

more hyperpolarizing than �50 mV and increased in magni-

tude (i.e., slower), at potentials more depolarizing than

�50 mV, compared to the slow decay constant of mutant

Q475C (compare Fig. 6 C and E). When the Naþ concentration

FIGURE 5 Fit residuals for mutant rabbit Q457C before or after reaction

with MTSET. First- (A) or (D), second- (B) or (E), and third- (C) or (F) order

fit residuals for the �130 mV prestep, 10 mV poststep potential transient.
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is reduced from 100 mM to 40 mM, a condition in which

Q457C exists preferentially in an inward facing conforma-

tional state, we observe a marked slowing of ts compared

to mutants Q475C-MTSET and Q457R (Fig. 6 C). Collec-

tively, these results suggest that addition of positive charge

at position 457 significantly increases return of empty carrier

from inward-facing state to outward-facing state.

Table 2 summarizes the decay constants (t) for WT in

100 mM Naþ, mutants Q457C in 100 and 40 mM Naþ,

Q457C-MTSET in 100 mM Naþ and Q457R in 100 mM Naþ.

Model simulations

Computer model simulations were carried out based on

a four-state model (Fig. 4 B) proposed by Chen et al. (26)

and Krofchick et al. (21), to help evaluate the functional

differences between WT and mutant Q457C before and after

reaction with MTSET. The top panels of Fig. 7, A and B
show the simulated pre-steady-state currents and charge

transfer using the best-fit parameters in Table 3. The bottom

panels of Fig. 7, A and B show the three decay constants

plotted as a function of voltage and compared to the experi-

mentally derived t values in Fig. 6. As shown in the middle

panels of Fig. 7, A and B, the ON and OFF charges in the

experiments are not equal. Although the reason for this

phenomenon is unknown, similar results have been shown

by Loo et al. (27). One possibility is that these currents do

not represent pure displacement currents (i.e., currents due

to the displacement of charged residues attached to the trans-

porter). Fig. 7 reveals good agreement between model

FIGURE 6 Voltage- and Naþ-dependence of the three

decay constants (n R 3). For WT in 100 mM Naþ (-)

and mutant Q457C in 100mM (C) and 40 mM Naþ (:)

(A) tf, fast decay. (B) tm, medium decay. (C) ts, slow

decay. For mutants Q457C-MTSET in 100 mM Naþ

(A) and Q457R in 100 mM Naþ (;), (D) tf, fast decay.

(E) tm, medium decay. (F) ts, slow decay.

TABLE 2 Summary of the time constants for WT and mutants

[Naþ] (mM)

The fast decay

constant (tf)

The medium decay

constant (tm)

The slow decay

constant (ts)

rWT 100 0.5–1 ms 0.5–4 ms 50–8 ms

rQ457C 100 0.5–1 ms 1.2–6.5 ms 60–15 ms

40 0.9–1.3 ms 1.4–5 ms 100–6.5 ms

rQ457C-MTSET 100 0.5–1.1 ms 1.2–6 ms ~30 ms

rQ457R 100 0.5–1.4 ms 1.2–6 ms ~16 ms
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simulations and experimental data for mutants Q457C and

Q457C-MTSET for pre-steady-state ON currents, the

medium decay constant, and the slow decay constants. In

contrast, Fig. 7 reveals a difference between model simula-

tions and experimental data for pre-steady-state OFF currents

and the fast decay constants. The model proposed with the

FIGURE 7 Simulated transient currents,

charge transfer and decay constants in 100 mM

Naþ were predicted by the model solution in

Table 3. Predictions of the kinetic model super-

imposed on the experimental data for mutant

Q457C rSGLT1 (A) and mutant Q457C

exposed to MTSET rSGLT1 (B). The top panel

shows simulated currents (gray line) at the

potentials of �130 mV and þ50 mV superim-

posed on the experimental current (black line).

The middle panel illustrates the Q/V curves.

The bottom panel shows three decay constants

(tf, the fast decay constant; tm, the medium

decay constant; and ts, the slow decay constant)

as a function of voltage.
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TABLE 3 Rate constants of a four-state kinetic model used for the pre-steady-state current simulations of WT rSGLT1 and mutants in

100 mM Naþ

(s�1)

k21/k12 k1 1a/k1a 1 k1a 6/ k6 1ak21 k12 k1 1a k1a 1 k1a 6 k6 1a Z21 Z12 Z1 1a Z1a 1 Z1a 6 Z6 1a

WT (21) 66 180 100 24 330 380 0.44 0.69 0 0 0.31 0.2 0.37 4.2 0.87

Q457C 150 160 80 24 750 850 0.3 0.7 0.8 0 0.17 0.07 0.94 3.3 0.88

Q457C-MTSET 90 120 80 36 750 850 0.3 0.5 0.8 0 0.25 0.2 0.75 2.2 0.88
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parameters shown in Table 3 represents fairly well the

ON data for mutants Q457C and Q457C-MTSET. The

reason for the poor fit to the OFF data is unknown but it

clearly indicates that the real mechanism responsible for

the transient current recorded is more complex than the

proposed model.

A summary of representative model parameters for

mutants Q475C and Q475C-MTSET derived from model

simulations is shown in Table 3. Comparing the parameter

values for WT and mutant Q457C (Table 3), the ratio for

transitions C1a 4C6 are similar. But the ratio for transition

C2 4C1, the Naþ dissociation rate k21 / k12, is altered

(0.37 for WT versus 0.94 for mutant Q457C), which corre-

lates with the observed decrease in K0.5
Naþ of Q457C. React-

ing mutant Q457C with positively charged MTSET, partly

restores the Naþ dissociation rate k21 / k12 (0.75 for

Q457C-MTSET versus 0.94 for Q457C). Computer simula-

tion also reveals that the rate observed for empty carrier tran-

sition from outside to inside, k1 1a/k1a 1, decreases from 4.2

for WT to 2.2 for mutant Q457C-MTSET. This suggests

that there is a faster rate for reorientation of empty carrier

back to the outside facing state and correlates with the

increase in Qdep/Qmax for the inward/outward-facing distri-

bution and abolishing of sugar translocation.

DISCUSSION

In hSGLT1, mutant Q457R or mutant Q457C exposed to

thiol-reactive reagents (methanethiosulfonates and malei-

mides), abolishes sugar translocation. However, under these

conditions, the transporter still binds Naþ and sugar (7). The

sugar (aMG) affinities of mutants Q457E (polar to negative)

(13), Q457C (polar to neutral) (13) and Q457R (polar to

positive) (1,15) are reduced by ~4, ~7, and ~10-fold respec-

tively, compared to WT, suggesting that the position 457 is

quite tolerant to charge. Diez-Sampedro et al. (13) compared

the kinetics of transport of glucose analogs (each modified at

one position of the pyranose ring) for hSGLT1, Q457C and

Q457E and then proposed that Q457 was essential for

binding of sugar through hydrogen bond interactions with

O1 and O5 of the pyranose ring.

Because Q457 hSGLT1 is tolerant to charge and still binds

to sugar in the absence of transport, it seemed to us that Q457

is more important for translocation of sugar. To further

investigate this issue, mutants Q457C and Q457R in rSGLT1

were characterized using the two-electrode voltage-clamp
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technique. Our experimental findings indicate similar func-

tions of rabbit and human isoforms after a glutamine to

cysteine mutation (Q457C) with regard to decreased

apparent affinity for aMG and Naþ. Also in both instances

of Q457R or Q457C reaction with MTSET abolishes sugar

transport, leaving binding of Naþ and sugar intact.

But the results of our study also provide what we believe

are new insights into the functional significance of glutamine

457 in rSGLT1. Specifically our findings support the

hypothesis that loss of sugar transport in the mutants

Q457C-MTSET and Q457R of rSGLT1, can be explained

by changes in the conformational equilibrium of the trans-

port cycle with accumulation of transporter in an outward-

facing state. The evidence supporting this hypothesis is

discussed below.

Our data shows that most of the transporters remain in

a nontransporting outward-facing state as a consequence

of reacting Q457C rSGLT1 with MTSET. Therefore, the

cotransporter under these conditions is more available for

binding of phloridzin, and the substantial alteration in

phloridzin affinities of mutants Q457C and Q457C-

MTSET (Fig. 3) can be explained on the basis of a changed

equilibrium between inward- and outward-facing confor-

mational states. Changes in the equilibrium between

inward- and outward-facing conformational states and

altered substrate/inhibitor affinity have been observed for

other transporters. For example, mutant D176A rSGLT1

exhibits an increased rate of empty carrier transition from

outside to inside, which is accompanied by a decreased

apparent affinity for phloridzin (28). Mutants K264A,

Y335A and D345A alter the conformation of the dopamine

transporter and result in changed apparent affinities for

inhibitors (29). Mutant M345H in the g-aminobutyric acid

transporter-1 (that belongs to a large family of Naþ/Cl�-

coupled neurotransmitter transporters) shifts the transporter

toward the outward-facing Naþ-bound conformation, re-

sulting in an increased apparent affinity for Naþ (30). Finally,

mutant T349H in the g-aminobutyric acid transporter-1 shifts

the transporter toward the inward-facing empty conformation

causing a decrease in the apparent affinity for Naþ (30).

A common behavior observed for ion-coupled cotrans-

porters is that the empty carrier will orientate from internal

to external membrane surface during the initial transport

step and is associated with charge movement (11,31,32).

For example, Loo et al. (7,11,12) studied the fluorescence

changes of tetramethylrhodamine-6-maleimide-labeled



FIGURE 8 Occupancy probability (Ci) in 100 mM Naþ

as a function of time as calculated by the four-state kinetic

model for WT r SGLT1 and mutant Q457C before or after

exposed to MTSET. (A) Time course of WT occupancy

probabilities for a Vm pulse from þ70 mV to �150 mV.

(B) Time course of mutant Q457C occupancy probabilities

for a Vm pulse fromþ70 mV to�150 mV. (C) Time course

of mutant Q457C exposed to MTSET occupancy probabil-

ities for a Vm pulse from þ70 mV to �150 mV. (D) Time

course of WT (solid line), Q457C (dotted line), and

Q457C-MTSET (dashed line) C2 occupancy probability

for a Vm pulse fromþ70 mV to�150 mV. (E) Time course

of WT (solid line), Q457C (dotted line), and Q457C-

MTSET (dashed line) C1a occupancy probability for

a Vm pulse from þ70 mV to �150 mV.
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human Q457C (Q457C- tetramethylrhodamine-6-rhodami-

nemaleimide (TMR6M)) under voltage clamp, and

suggested the major voltage-dependent step in the SGLT1

transport cycle was the return of the empty carrier from

inward-facing to outward-facing states. Also, based on

a four-state model for SGLT1, charge movements were asso-

ciated with conformational transitions of sodium binding/de-

binding (C14C2) and reorientation of the unloaded protein

across the membrane (C14C1a4C6) (Fig. 4, B and C) (21).

Thus, SGLT1 pre-steady-state currents provide direct

insight into the conformational changes that accompany rear-

rangements of charges within the protein. In particular, the

slow decay constant reflects the rate limiting transition of

the empty carrier (9). However there is some discrepancy

in the results for Q457C reacted with MTS and maleimides

from earlier investigations. Previous studies recording

charge movement reported that the slow decays (ts) of

mutant Q457C-TMR6M hSGLT1 (11) is voltage-dependent

and Naþ-dependent, whereas the results from recording fluo-

rescence changes seems to indicate that the slow decay (ts)

of mutant Q457C-TMR6M hSGLT1 is voltage-dependent
and Naþ- independent. These differences may be due to

the different experimental protocols used and the very low

amplitude of the transient currents exhibited by the slow

component (small signal/noise ratio). The pre-steady- state

currents for slow component of mutant Q457C-TMR6M

hSGLT1 was <20 nA between �150 mV and þ50 mV,

compared to ~200 nA for total components of mutant

Q457C-TMR6M hSGLT1 (11). The fluorescence level for

the controls, TMR6M-labeled hSGLT1 Q457C expressing

oocytes was 187 5 15 au and 229 5 25 au, respectively

(12). The DF for slow component of mutant Q457C-

TMR6M hSGLT1 was 0.36 au at �190 mV and 0.38 au at

þ90 mV (11).

In this study, to resolve the experimental difficulty of

dealing with small signals for the slow component, we

took advantage of the modified OFF protocol (21) that yields

adequate currents at large voltage jumps, to obtain estimates

of ts for mutants Q457C-MTSET and Q457R of rSGLT1.

Our experimental data and the computer simulations based

on a four-state model lend further support to the conclusion

that addition of a positive charge at position 457 significantly
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slows the return of the empty carrier from an outward-facing

to inward-facing state. It is interesting that similar results

have been found for three other SGLT1 mutants:Q170E

rSGLT1 (22), C255A hSGLT1 (23) and C511A hSGLT1

(23). In each case, the major changes identified in the

computer simulations are that the rate of the empty carrier

from outside to inside (k1 1a / k1a 1) is decreased, resulting

in a greater number of transporters in the outward-facing

state (22,23,33).

The occupancy probability (Ci) as a function of time as

calculated by kinetic model for SGLT1 has been used to

evaluate the functional differences between WT and mutants

(23,24,34) of rSGLT1. Based on a four-state model

(Fig. 4 B), the computer model simulations for occupancy

probability (Ci) as a function of time as calculated by the

four-state kinetic model for WT rSGLT1 and mutant

Q457C before or after exposure to MTSET in the presence

of 100 mM Naþ and absence of aMG, could help us to eval-

uate the functional differences between WT and mutant

Q457C before and after exposure to MTSET. Fig. 8 shows

the occupancy probabilities for a voltage step from the

most depolarizing potential (þ70 mV; most of the trans-

porters will stay in the inward-facing states) to the most hy-

perpolarizing potential (�150 mV; most of the transporters

will stay in the outward-facing states). The transition,

C1a/C1 is clearly related to the slow component of the

experimental transient currents. At depolarizing potential

(þ70 mV), the starting probabilities for WT and Q457C-

MTSET are similar (C6 is ~80% and C1a is ~20%; Fig. 8,

A and C) and different with the starting probabilities for

Q457C (C6 is ~70% and C1a is ~30%; Fig. 8 B). At hyperpo-

larizing potential (�150 mV), the rate of Q457C-MTSET to

pass through the slow transition (C1a; Fig. 8 E) and reach the

outward-facing state (C2; Fig. 8 D), is faster than those of
WT and Q457C. The occupancy probability for WT,

Q457C and Q457C-MTSET is consistent with the experi-

mental slow decay constants.

Fig. 9 shows the variability of the occupancy probabilities

(Ci) in 100 mM Naþ with voltage. The occupancy probabil-

ities of predominant state (C2) at the extreme negative

voltage (�150 mV) are 97%, 97% and 94% for WT,

Q457C and Q457C-MTSET of rSGLT1, respectively. The

occupancy probabilities of predominant state (C6) at the

extreme positive voltage (þ70 mV) are 76%, 68% and

79% for WT, Q457C and Q457C-MTSET of rSGLT1,

respectively. For WT rSGLT1, the occupancy probabilities

of C2, C1, C1a, and C6 at �50 mV based on the decay

constants in Table 3 are 26%, 10%, 43% and 21%, suggest-

ing that 36% of transporters are in an outward-facing free or

Naþ-bound state. However, based on a five-state kinetic

model, the occupancy probabilities of WT hSGLT1 in

a free or Naþ-bound state at �50 mV are 73% (23,26,33).

The discrepancy between these two sets of observations is

due to the different values of V1/2 for WT hSGLT1 (�46 5

3 mV) (33) and WT rSGLT1 (�2.5 5 0.7 mV) (6). For

mutant Q457C rSGLT1, the occupancy probabilities of C2,

C1, C1a, and C6 at �50 mV are 26%, 34%, 23% and 17%,

suggesting that 60% of transporters are in a free or Naþ-

bound state. For mutant Q457C rSGLT1 exposed to

MTSET, the occupancy probabilities of C2, C1, C1a, and

C6 at �50 mV are 28%, 43%, 20% and 9%, suggesting

that 71% of transporters are in a free or Naþ-bound state.

The occupancy probability for WT, Q457C, and Q457C-

MTSET is consistent with the hypothesis that Q457C-

MTSET is preferentially occupies an outward–facing state.

Gagnon et al. (33) found a disulfide bridge between C255

and C511 of hSGLT1, and were first to quantitatively study

the dose-dependent effect of aMG on the pre-steady-state
FIGURE 9 Simulation predictions on occupancy proba-

bilities (Ci) in 100 mM Naþ as a function of voltage as

calculated by the four-state kinetic model for WT rSGLT1

(A), mutant Q457C (B), and Q457C exposed to MTSET

(C).
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currents of these mutants as well as for WT hSGLT1 (23).

They also proposed a five-state kinetic model to quantita-

tively explain the effect of aMG on the pre-steady-state

currents. They found that the reorientation of free transporter

was the slowest step for WT hSGLT1 either in the presence

or in the absence of aMG.

In this study, we suggest that modulation of charge and

polarity of glutamine 457 in rSGLT1 likely influences sugar

translocation by affecting reorientation of the empty carrier

from one side of the membrane to the other side. Because

no steady- state currents could be measured for mutants

Q457C-MTSET and Q457R of rSGLT1, we could not study

the mutants’ effect on reorientation of the fully loaded carrier

from one side of the membrane to the other side.

Since our results show an outward-facing preference of the

empty carrier, together with the findings from Gagnon et al.

(23), it seems reasonable to speculate that modulation of

charge and polarity of glutamine 457 likely influences sugar

translocation by affecting reorientation of the fully loaded

carrier from one side of the membrane to the other side.

In summary, the experimental and computer simulation

data may provide a better understanding of the relationships

for charge/conformational change and translocation at the

position 457 in rSGLT1. As an explanation for the altered

conformational equilibrium, it is possible that mutants

Q457C-MTSET and Q457R may disrupt the intramolecular

interactions involved in stabilizing the transporter in the

inward facing conformation and that this results in an

impaired ability of the transporter to return to this conforma-

tion. Therefore, the transporter may accumulate in the

outward facing conformation. Taken together, in addition

to its involvement in sugar binding (13,14), our results

suggest that modulation of charge and polarity of glutamine

457 in rSGLT1 is likely associated with a minor modification

of the orientation of the free carrier and a complete abolition

of the translocation of the fully loaded carrier.
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