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A Scaling Law of Vascular Volume
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ABSTRACT Vascular volume is of fundamental significance to the function of the cardiovascular system. An accurate predic-
tion of blood volume in patients is physiologically and clinically significant. This study proposes what we believe is a novel volume
scaling relation of the form: Vc ¼ KvD2=3

s Lc, where Vc and Lc are cumulative vessel volume and length, respectively, in the tree,
and Ds is the diameter of the vessel segment. The scaling relation is validated in vascular trees of various organs including the
heart, lung, mesentery, muscle, and eye of different species. Based on the minimum energy hypothesis and volume scaling rela-
tion, four structure-function scaling relations are predicted, including the diameter-length, volume-length, flow-diameter, and
volume-diameter relations, with exponent values of 3/7, 12/7, 21/3, and 3, respectively. These four relations are validated in the
various vascular trees, which further confirm the volume scaling relation. This scaling relation may serve as a control reference
to estimate the blood volume in various organs and species. The deviation from the scaling relation may indicate hypovolemia or
hypervolemia and aid diagnosis.
INTRODUCTION

Blood pressure and perfusion of an organ depend on

a complex interplay between cardiac output, intravascular

volume, and vasomotor tone among others. The vascular

system provides the basic architecture to transport the fluids

while other physical, physiological, and chemical factors

affect the intravascular volume to regulate the blood pressure

and flow in the body. Although intravascular volume can

adapt to normal physical training (1,2), many diagnostic

and treatment options depend on the estimation of the

volume status of patients (3–10). For example, a recent study

classified the blood volume status as hypovolemic, normo-

volemic, and hypervolemic (3). Heart failure results in an

increase of intravascular volume (hypervolemia) in response

to decreased cardiac output and renal hypoperfusion (4–7).

Conversely, myocardial ischemia (8) and postural tachy-

cardia syndrome lead to hypovolemia (9). Furthermore,

patients of edematous disorders have been found to have

abnormal blood volume (10). Currently, there is no noninva-

sive method to determine the blood volume in suborgans,

organs, organ system, or organism. The objective of this

study is to propose a scaling law that provides the basis for

determination of blood volume throughout the vasculature.

A novel, to our knowledge, volume scaling law is

proposed in a vessel segment and its corresponding distal

tree of normal organs and in various species as:

Vc ¼ KvD
2=3
s Lc, where Vc and Lc are the vascular volume

and length, respectively, Ds is the diameter of the vessel

segment, and Kv is a constant. The scaling relation is vali-

dated with available vascular morphometric tree data (11).

The validated volume scaling law may serve as a control

reference to examine the change of blood volume in various
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organs under different states using conventional imaging

(e.g., CT scan). The scaling law is further validated through

diameter-length, volume-length, flow-diameter, and volume-

diameter scaling relations (11), which were previously

derived based on a minimum energy hypothesis (12). Hence,

the proposed volume scaling law is consistent with an

(minimum energy) efficient state of vascular system.

THEORY

A vessel segment is defined as a stem and the tree distal to

the stem is defined as a crown, as shown in Fig. 1. An entire

tree consists of many stem-crown units down to the capillary

vessels. The capillary network (13) is excluded from the

present analysis because it is not a treelike structure.

It is known that VcfM (M is the mass perfused by the

stem-crown unit) from the 3/4 allometric scaling law

(14,15), where Vc is the crown volume (i.e., the sum of all

vessel volumes in the crown). Therefore, Vc can be repre-

sented as

Vc ¼ CvM
1=4M3=4; (1)

where Cv is a volume-mass constant. There are two scaling

relations: stem diameter-mass relation, DsfM3=8 (Ds is the

diameter of the stem vessel) (14,15), and crown length-

mass relation, LcfM3=4 (Lc is the crown length, defined as

the sum of the lengths of all vessels in the crown) (15).

From Ds ¼ CdM3=8, Lc ¼ ClM
3=4, and Eq. 1, we obtain

Vc ¼ CvM
1=4M3=4 ¼ Cv

�
Ds

Cd

�2=3
Lc

Cl

¼ KvD
2=3
s Lc; (2a)

where Kv ¼ Cv=ðC2=3
d ClÞ is a constant. Since Eq. 2a is appli-

cable to any stem-crown unit, we obtain Vmax ¼ KvD
2=3
maxLmax

such that Kv ¼ Vmax=ðD2=3
maxLmaxÞ, where Dmax, Lmax, and
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Vmax correspond to the most proximal stem diameter, the

cumulative vascular length of the entire tree, and the cumu-

lative vascular volume of the entire tree, respectively. Equa-

tion 2a can be made nondimensional as

�
Vc

Vmax

�
¼
�

Ds

Dmax

�2
3
�

Lc

Lmax

�
: (2b)

An additional validation for volume scaling law in relation to

minimum energy hypothesis is described in the Appendix.

METHODS

Morphometry of vascular trees

The volume scaling law is validated in the asymmetric entire coronary arte-

rial tree reconstructed in pig hearts through a growth algorithm (16) based on

measured morphometric data (17). Furthermore, the asymmetric epicardial

coronary arterial trees with vessel diameter >1 mm were used to validate

the scaling laws in partial vascular trees to mimic the resolution of medical

imaging.

Symmetric vascular trees of many organs down to the smallest arterioles,

constructed in the Strahler system, based on available literature, were used to

verify the proposed structure-function scaling law. The pulmonary arterial

tree of rats was obtained from the study of Jiang et al. (18), the pulmonary

arterial/venous trees of cats from Yen et al. (19,20), the pulmonary arterial

trees of humans from Singhal et al. (21,22) and Huang et al. (23), the pulmo-

nary venous trees of humans from Horsfield et al. (24) and Huang et al. (23),

the skin muscle arterial tree of hamsters from Bertuglia et al. (25), the

retractor muscle arterial tree of hamsters from Ellsworth et al (26), the

FIGURE 1 Schematic illustration of the definition of the stem-crown unit.

Three stem-crown units are shown successively (1, 2, and n), with the

smallest unit corresponding to an arteriole-capillary or venule-capillary unit.
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mesentery arterial tree of rats from Ley et al. (27), the sartorius muscle arte-

rial tree of cats from Koller et al. (28), and the bulbular conjunctiva arterial/

venous trees of humans and the omentum arterial tree of rabbits from Fenton

et al. (29).

Data analysis

All scaling relations (i.e., Eqs. 2b and A8–A11) can be represented by a form

of the type

Y ¼ A�XB; (3)

where X and Y are defined such that A and B should have theoretical values

of unity (Eq. 2b). X and Y are defined as ðDs=DmaxÞ2=3ðLc=LmaxÞ and

ðVc=VmaxÞ, respectively. For Eqs. A8–A11, X and Y are defined as

ðLc=LmaxÞ and ðDs=DmaxÞ, ðLc=LmaxÞ and ðVc=VmaxÞ, ðDs=DmaxÞ and

ðQs=QmaxÞ, and ðDs=DmaxÞ and ðVc=VmaxÞ, respectively. A nonlinear regres-

sion was used to calculate A, with B constrained to 3=7, 12/7, 21/3, and 3 for

Eqs. A8–A11, respectively. The nonlinear regression uses the Marquardt-

Levenberg algorithm to find the parameter A for the variables

X and Y to provide the ‘‘best fit’’ between the equation and the data. In

Eqs. 2b and A8–A11, the parameter A should have a theoretical value of 1.

RESULTS

Asymmetric tree model

This study proposes what we believe is a novel volume

scaling law that relates the crown volume to the stem diam-

eter and crown length (Eq. 2). The validity of Eq. 2 was

examined in the entire asymmetric (down to the precapillary

vessel segments) and epicardial (vessel diameter R1 mm)

left anterior descending artery (LAD), left circumflex artery

(LCx), and right coronary artery (RCA) trees of pig, as

shown in Figs. 2 and 3, respectively. In Table 1, exponent

B is determined from a least-square fit and parameter A is

calculated by nonlinear regression with the exponent B con-

strained to 1. For the entire asymmetric and partial trees, both

B and A show agreement with the theoretical value of 1.

Symmetric tree model

Equation 2b is also validated in symmetric trees for various

organs and species, as shown in Fig. 4. Parameters B and A,

listed in Table 2, have mean 5 SD values of 1.02 5 0.02

and 1.00 5 0.01, respectively, by averaging over various

organs and species. These parameters are in agreement

with the theoretical value of 1. Furthermore, Eq. 2a implies

that Kv ¼ Vmax=D
2=3
maxLmax, which can be compared with the

regression-derived value. Fig. 5 shows a comparison of

ðKvÞML obtained from the nonlinear regression of anatomical

data and ðKvÞEQ calculated from Eq. 2a. A least-square fit

results in a relation of the form ðKvÞEQ ¼ 0:998ðKvÞML

(R2 ¼ 0.999).

Scaling relations

To further validate the volume scaling law, a number of

scaling relations between morphological and hemodynamic

parameters are proposed in the Appendix. For these
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relations, parameter A has the theoretical value of 1 as expo-

nent 3/7, 12/7, 21/3, and 3 for the diameter-length relation,

volume-length relation, flow-diameter relation, and

FIGURE 2 Relation between ðDs=DmaxÞ2=3ðLc=LmaxÞ and normalized crown

volume in the entire asymmetric LAD (a), LCx (b), and RCA (c) trees of pig,

which include 946,937; 571,383; and 836,712 vessel segments, respectively.

The entire tree data are presented as log-log density plots showing the frequency

of data because of the enormity of data points, i.e., the darkest shade reflects the

highest frequency or density and the lightest shade the lowest frequency (45).

Scaling of Vascular Volume
volume-diameter relation represented in Eqs. A8–A11,

respectively. The values for A, as determined from nonlinear

regression, are listed in Table 3. These values, averaged over

various organs and species, have mean 5 SD values of 1.01

5 0.07, 1.00 5 0.02, 0.99 5 0.05, and 0.99 5 0.03 for Eqs.

A8–A11, respectively. The agreement of data with theoret-

ical predictions is excellent.

DISCUSSION

The major finding of this study is what we believe is a novel

scaling law that relates the vascular blood volume of an

organ to the segment diameter and crown length. The scaling

law was validated based on morphometric data of several

FIGURE 3 Relation between ðDs=DmaxÞ
2
3ðLc=LmaxÞ and normalized

crown volume in the asymmetric LAD, LCx, and RCA epicardial trees of

pig with vessel diameter >1 mm, which include 66, 42, and 71 vessel

segments, respectively.

TABLE 1 Parameters B and A in the asymmetric entire

coronary trees and in the corresponding epicardial trees

with vessel diameter >1 mm

Entire trees

Least-square fit Marquardt-Levenberg method

B R2 A SE R2

Pig LAD 1.07 1 1.02 0.006 0.998

Pig LCx0 1.08 1 0.99 0.008 0.997

Pig RCA 1.08 1 0.99 0.014 0.989

Least-square fit Marquardt-Levenberg method

Epicardial trees B R2 A SE R2

Pig LAD 1.07 0.995 0.95 0.008 0.996

Pig LCx 1.03 0.994 0.97 0.013 0.994

Pig RCA 1.08 0.990 1.02 0.019 0.986

Parameter B was obtained from least-square fits and parameter A from

nonlinear regression with B constrained to 1 when Eq. 2b is represented

by Eq. 3, where independent variables X ¼ ðDs=DmaxÞ2=3ðLc=LmaxÞ and

Y ¼ ðVc=VmaxÞ, as shown in Figs. 2 and 3. SE, standard error; R2, correlation

coefficient.
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organs and species. Further validation was made through

several structure-structure and structure-function relations.

Volume scaling law

Many structural and functional features are found to have

a power-law (scaling) relation to body size, metabolic rates,

etc. (30–34). Previous studies from our group (11) showed

several scaling relations connecting structure and function.

FIGURE 4 Relation betweenðDs=DmaxÞ
2
3ðLc=LmaxÞ and normalized

crown volume in the symmetric vascular tree for various organs and species

(18–29), corresponding to Table 2.

TABLE 2 Parameters B and A in various organs

Species (N)

Least-square fit Marquardt-Levenberg method

B R2 A SE R2

Pig RCA (11) 1.09 0.999 1 0.003 1

Pig LAD (11) 1.10 0.999 1 0 1

Pig LCx (10) 1.13 0.999 1 0.001 1

Rat PA (11) 1.06 0.999 0.99 0.017 0.997

Cat PA (10) 1.11 0.996 1.01 0.013 0.999

Cat PV (10) 1.09 1 0.99 0.018 0.997

Human PA (17) 0.88 1 1 0.004 1

Human PA (15) 0.95 0.998 1.02 0.025 0.991

Human PA (17) 0.92 1 0.997 0.006 0.999

Human PV (15) 1.05 0.995 1.02 0.019 0.996

Human PV (15) 0.94 1 1.01 0.014 0.997

Hamster SKMA (4) 1.02 0.995 1.01 0.031 0.997

Rat MA (4) 1 1 1 0.007 1

Rabbit OV (4) 0.98 0.994 0.96 0.073 0.981

Human BCA (5) 0.98 1 1.01 0.015 0.999

Human BCV (4) 1.02 1 1 0.004 1

Hamster RMA (4) 1.03 0.977 1 0.014 0.999

Cat SMA (4) 0.95 1 1 0.012 1

Parameter B was obtained from least-square fits and parameter A from

nonlinear regression with B constrained to 1 when Eq. 2b is represented

by Eq. 3, where independent variables X ¼ ðDs=DmaxÞ2=3ðLc=LmaxÞ and

Y ¼ ðVc=VmaxÞ, as shown in Fig. 4. SE, standard error; R2, correlation coef-

ficient.
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Here, we add what we believe is a novel volume scaling rela-

tion (Eq. 2) to the list.

Clinical techniques (e.g., indicator and dye-dilution

method) have been used to predict blood volume for decades

(35). The blood volume varies significantly with body size

such that it is difficult to evaluate the change of blood

volume in patients because of lack of reference. Although

Feldschuh and Enson (36) used the metropolitan life height

and weight tables to determine an ideal weight as an approx-

imate reference, this approach lacks a physical or physiolog-

ical basis for calculating normal blood volume. The

proposed volume scaling law may establish the ‘‘normality’’

of blood volume, and deviation thereof may be indicative of

pathology.

The remodeling of intravascular volume may be physio-

logic during normal growth, exercise, or pregnancy. It may

also be pathological, however, in hypertension, tumor, or

diffuse vascular diseases (37–39). Diffuse vascular disease

is difficult to quantify because the normal reference does

not exist. This study shows that the volume scaling law holds

in the coronary epicardial trees (vessel diameter >1 mm), as

shown in Fig. 3 and Table 1. Such data on coronaries or other

vascular tree are available by angiography, CT, or MRI.

Hence, the proposed volume scaling law can serve to quan-

tify diffuse vascular disease in various organs clinically.

Future studies will focus on the clinical utility of the

proposed scaling model.

Comparison with the ZKM model

Vascular trees provide the channels to transport fluid to

different organs. An optimal design of vascular tree is

required to minimize energy losses. Although many theoret-

ical approaches (40,41) are proposed to explain the design of

vascular tree, the minimum energy hypothesis (42) may be

FIGURE 5 Comparison of ðKvÞML from the nonlinear regression of

anatomical data and ðKvÞEQ based on the equation Kv ¼ Vmax=D
2=3
maxLmax.

Through a least-square fit, the comparison can be represented as

ðKvÞEQ ¼ 0:998ðKvÞML (R2 ¼ 0.999).
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TABLE 3 Parameter A obtained from nonlinear regression in various organs

Species

Diameter-length Volume-length Flow-diameter Volume-diameter

A SE R2 A SE R2 A SE R2 A SE R2

Pig RCA 1.01 0.010 0.999 1 0.002 1 1 0.007 1 1 0.007 0.999

Pig LAD 1.02 0.019 0.996 1 0.003 1 0.99 0.017 0.997 1 0.01 0.999

Pig LCx 1 0.007 1 1 0.001 1 1 0.001 1 1 0.001 1

Rat PA 1.02 0.021 0.995 0.99 0.014 0.998 0.98 0.021 0.995 0.98 0.032 0.99

Cat PA 1 0.014 0.998 1.01 0.011 0.999 1.01 0.006 1 1.01 0.017 0.998

Cat PV 0.99 0.017 0.997 0.99 0.020 0.996 1.01 0.012 0.999 0.99 0.01 0.999

Human PA 0.92 0.037 0.977 1 0.006 0.999 1.02 0.034 0.982 1.01 0.022 0.993

Human PA 0.97 0.025 0.991 1.01 0.020 0.995 1.02 0.025 0.992 1.02 0.041 0.977

Human PA 0.90 0.041 0.973 0.99 0.014 0.997 1.03 0.041 0.974 1.01 0.021 0.993

Human PV 0.96 0.016 0.996 1.02 0.013 0.998 1.04 0.029 0.990 1.04 0.041 0.979

Human PV 0.88 0.054 0.955 1 0.001 1 1.02 0.053 0.963 1.01 0.041 0.976

Hamster SKMA 0.96 0.096 0.942 1 0.015 0.999 1.03 0.087 0.974 1.02 0.079 0.98

Rat MA 1.13 0.203 0.592 1.01 0.034 0.996 0.89 0.156 0.914 0.92 0.132 0.944

Rabbit OV 1.02 0.107 0.849 0.95 0.081 0.977 1.06 0.107 0.954 0.97 0.062 0.987

Human BCA 1.14 0.190 0.447 1.02 0.038 0.994 0.88 0.133 0.912 0.92 0.099 0.955

Human BCV 1.06 0.068 0.964 1 0.009 1 0.96 0.061 0.983 0.97 0.056 0.987

Hamster RMA 1.03 0.078 0.965 1 0.017 0.999 1.01 0.029 0.997 1 0.006 1

Cat SMA 1.11 0.193 0.633 1.01 0.034 0.996 0.92 0.133 0.938 0.95 0.103 0.966

Values from regression when Eqs. A8–A11 (diameter-length, volume-length, flow-diameter, and volume-diameter relations, respectively) are represented by

Eq. 3. Exponent B is constrained to 3
7
, 12

7
, 21

3
, and 3 for Eqs. A8–A11, respectively. SE, standard error; R2, correlation coefficient.
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the most validated hypothesis. The ZKM model (11,12),

based on the minimum energy hypothesis, predicted the

exponents c ¼ 3ð30 � 2Þ=4ð30 þ 1Þ, b ¼ 5=ð30 þ 1Þ, and

d ¼ 4ð30 þ 1Þ=3ð30 � 2Þ for diameter-length, volume-length,

and flow-diameter relations, respectively, where the param-

eter 3
0

in the exponents is the ratio of maximum metabolic

to viscous power dissipation for a given tree. Based on the

newly proposed Eq. 2, this study shows the corresponding

exponents c¼ 3/7, b¼ 12/7, and d¼ 21/3. With the respective

30 (see Table 1 of Kassab (11)), the mean values over all

organs and species are 0.43 5 0.02, 1.28 5 0.09, and

2.33 5 0.11 for exponents c, b, and d, respectively, which

agrees well with the predictions presented here, i.e., 3/7 z
0.43, 12/7 z 1.29, and 21/3 z 2.33. Furthermore, the ZKM

model shows the mean 5 SD value of 2.98 5 0.34 for

the volume-diameter relation with the respective 30, which

is consistent with the exponent value of 3 in Eq. A11. This

provides further validation for the proposed volume scaling

law, as demonstrated in the Appendix.

Optimal cost function

From Eqs. A5 and A7, the nondimensional cost function can

be written as

fc ¼
1

6

ðLc=LmaxÞ3

ðDs=DmaxÞ4
þ
�

Ds

Dmax

�2=3�
Lc

Lmax

�
: (7)

This is the minimum cost of maintaining an optimal design of

a vascular tree under homeostasis. From the structure-function

scaling relations (Eq. A8), ðLc=LmaxÞ3=ðDs=DmaxÞ4 ¼
ðLc=LmaxÞ1

2
7 and ðDs=DmaxÞ2=3ðLc=LmaxÞ ¼ ðLc=LmaxÞ1

2
7, we
obtain ðLc=LmaxÞ3=ðDs=DmaxÞ4 ¼ ðDs=DmaxÞ2=3ðLc=LmaxÞ.
The power required to overcome the viscous drag of blood

flow (second term in Eq. 7) is one-sixth of the power required

to maintain the volume of blood (third term in Eq. 7). This

expression implies that most of the energy dissipated is for

maintaining the metabolic cost of blood, which is proportional

to the metabolic dissipation (43).

Critique of the volume scaling law

Although our scaling law is based on measured anatomical

data of vascular vessels, there are still a number of assump-

tions made. For example, 1), all vessels in this model are

assumed to be in a vasodilated state in the absence of

vascular tone; 2), a vessel is assumed to be a cylindrical

tube, with no consideration of more complex geometry;

3), pulsatility and compliance are neglected. In future

studies, to mimic the in vivo state, this scaling law should

be extended to include the dynamic changes of crown length

and volume and vessel diameter. This analysis provides

a theoretical basis for considering thesis higher-order

effects.

Significance of the volume scaling law

The novel, to our knowledge, volume scaling law (Eq. 2)

predicts the relation between crown volume, stem diameter,

and crown length in normal vessels. Furthermore, the

volume-diameter relation (Eq. A11) is proposed based on

the volume scaling law. From the volume-diameter relation,

the crown volume distal to a stem vessel can be estimated

when the total intravascular volume and inlet diameter

(e.g., aorta) are known. At this time, a new use of computed
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tomography, whole-body CT scanning, is promoted, which

is effective in measuring the whole-body blood volume. A

comparison of theoretically predicted and experimentally

measured blood volume can assess hypovolemia and hyper-

volemia in the organ of a patient. This may improve the

benefit of whole-body CT scanning.

The volume scaling law can be used to determine appro-

priate boundary conditions for the computational software

that have both basic and clinical significance. The computa-

tional software, coupled with the noninvasive imaging

techniques, can provide quantitative information (e.g., 3-D

visualization of pressure and velocity fields at any points

inside the lumen), which may help clinicians select appro-

priate treatment.

APPENDIX: ADDITIONAL VALIDATION
OF VOLUME SCALING LAW

From Eq. 2, we propose the cost function for a crown, Fc, consistent with

a previous formulation (11,12):

Fc ¼ Qs�DPc þ KmVc ¼ Q2
s �Rc þ KmKvD

2=3
s Lc;

(A1)

where Qs and DPc ¼ Qs�Rc are the flow rate through the stem and the pres-

sure drop in the distal crown, respectively, and Km is a metabolic constant of

blood in a crown. We have recently shown the resistance of a crown as

Rc ¼ Kc
Lc

D4
s
, where Kc is a constant (44). The cost function of a crown tree

in Eq. A1 can be written as

Fc ¼ Q2
s �Rc þ KmKvD

2=3
s Lc ¼ KcQ

2
s

Lc

D4
s

þ KmKvD
2=3
s Lc:

(A2)

Equation A2 can be normalized by the metabolic power requirements of the

entire tree of interest, KmVmax ¼ KmKvD
2=3
maxLmax, to obtain

fc ¼ Fc

KmKvD
2=3
maxLmax

¼ Q2
maxRmax

KmKvD
2=3
maxLmax

�
Qs

Qmax

�2

� ðLc=LmaxÞ
ðDs=DmaxÞ4

þ
�

Ds

Dmax

�2=3�
Lc

Lmax

�
; ðA3Þ

where fc is the nondimensional cost function. A previous analysis (11) shows

Qs ¼ KQLc0
Qs

Qmax

¼ Lc

Lmax;
(A4)

where KQ is a flow-crown length constant. When Eq. A4 is applied to

Eq. A3, the dimensionless cost function can be written as

fc ¼
Q2

maxRmax

KmKvD
2=3
maxLmax

� ðLc=LmaxÞ3

ðDs=DmaxÞ4
þ
�

Ds

Dmax

�2=3�
Lc

Lmax

�
:

(A5)

Similar to Murray’s law (42), we minimize the cost function with respect to

diameter at a fixed Lc=Lmax to obtain
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vfc

v
�

Ds

Dmax

� ¼ 00

�
� 4
�
Q2

maxRmax

KmKvD
2=3
maxLmax

� ðLc=LmaxÞ3

ðDs=DmaxÞ5

¼ �
�

2
3

��
Ds

Dmax

�2
3�1�

Lc

Lmax

�

0 6Q2
maxRmax

KmKvD
2=3
maxLmax

�
�

Lc

Lmax

�2

¼
�

Ds

Dmax

�4þ 2
3

: ðA6Þ

Equation A6 applies to any stem-crown unit. When Lc ¼ Lmax and

Ds ¼ Dmax in Eq. A6, we obtain

6Q2
maxRmax

KmKvD
2=3
maxLmax

¼ 10
Q2

maxRmax

KmKvD
2=3
maxLmax

¼ 1

6
: (A7)

Therefore, Eq. A6 can be written as

�
Ds

Dmax

�
¼
�

Lc

Lmax

�3
7

: (A8)

From Eqs. 2b and A8, we obtain

�
Vc

Vmax

�
¼
�

Lc

Lmax

�12
7

: (A9)

From Eqs. A4 and A8, we find that

�
Qs

Qmax

�
¼
�

Ds

Dmax

�21
3

; (A10)

where Qmax is the flow rate through the most proximal stem. From Eqs. A8

and A9, we obtain

�
Vc

Vmax

�
¼
�

Ds

Dmax

�3

: (A11)

Equations A8–A11 are the structure-function scaling relations in the

vascular tree, based on the minimum energy hypothesis. Equations A8,

A9, and A11 represent the diameter-length, volume-length, and volume-

diameter relations, respectively, and Eq. A10 represents the general

Murray’s law in the entire tree.
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