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Instantaneous Normal Modes and the Protein Glass Transition
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ABSTRACT In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of
a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of character-
izing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-
dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of
the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested
as an increase in the gradient with T of the average atomic mean-square displacement at ~220 K. The number of negative eigen-
values shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors
corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen.
However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape
to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of
instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of
negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein
glass transition.
INTRODUCTION

The importance of internal dynamics in the function of

proteins is widely recognized (1–3). Proteins exhibit

a wide spectrum of dynamical processes ranging from

localized femtosecond-timescale harmonic vibrations to

collective diffusive movements with timescales up to the

millisecond range or longer (4).

Among the computational methods used to characterize

protein dynamics are normal mode analysis (NMA) and

molecular dynamics simulation (MD). NMA makes the

harmonic approximation to the potential energy around an

equilibrium configuration. In the realm of validity of this

approximation, the dynamics is determined completely by

the second-derivative (Hessian) matrix of the potential

energy with respect to the mass-weighted atomic coordi-

nates. The vibrational dynamics of the system around the

local minimum is described by the eigenvectors and eigen-

values of the Hessian matrix.

Standard NMA cannot be used to characterize anharmonic

dynamics. Instead, MD simulation, involving stepwise inte-

gration of the equations of motion with the full, anharmonic

potential, can be used. However, the analysis of MD trajec-

tories to extract useful information on anharmonic motion is

nontrivial. Here, we examine the application to proteins of

the Instantaneous Normal Mode (INM) method, which has

proven to be a useful analysis tool for diffusive dynamics

in condensed phase systems (5–8). INM is a statistical

mechanical theory connecting dynamic properties (e.g.,

diffusion constants) to equilibrium averages of the curva-

Submitted August 15, 2008, and accepted for publication October 15, 2008.

*Correspondence: krishnanm@ornl.gov

Editor: Nathan Andrew Baker.

� 2009 by the Biophysical Society

0006-3495/09/01/0476/9 $2.00
tures of the potential energy surface at sample configura-

tions. As in NMA, INM is based on the second derivative

of the potential energy. However, unlike in NMA, the

Hessian matrix is computed for snapshot configurations

generated, for example, during MD or Monte Carlo simula-

tion, instead of at fully energy-minimized configurations.

Negative eigenvalues thus result.

INM theory, which has been developed based on the

concept of inherent structure (9–11) and on a random energy

model (6,12–14), predicts that the self-diffusion constant

and the configurational entropy are proportional to the

average fraction of diffusive instantaneous normal modes

(7,8,15–19). However, although much progress has been

made, present theoretical derivations rely on significant

approximations and still have open questions (6,8,20–28).

It has therefore been necessary to employ computational

techniques to examine the relation between diffusive modes

and dynamical properties of liquids (15,28). Instantaneous

normal modes with negative curvature are called unstable

modes. To relate INM to diffusive properties filtering

methods have been proposed for separating diffusive from

nondiffusive unstable modes (see later) (19).

Computational INM studies have been hitherto performed

mainly on simple, supercooled liquids, with a focus on glass

transition, mode-coupling, and crystallization behavior

(6,15,23,25,27,29). These results have demonstrated that it

is possible to calculate useful temperature-dependent dynam-

ical properties, such as the self-diffusion constant, from INM

on a small number of sampled configurations. For proteins,

an integral equation connecting the fraction of unstable

INM modes with the barrier height distribution has been

derived and shown to aid in exploring the energy landscape
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(30,31). Also, vibrational energy relaxation rates of selected

vibrational modes of proteins have been computed using

INM analysis (32). However, research connecting dynamical

properties to unstable INM modes has not been documented

for proteins. The goal in this work is to investigate this

connection, and we examine which INM properties are

related to diffusive dynamics in proteins.

We concentrate on the dynamical or glass transition in

internal protein dynamics. Many experiments and simula-

tions (33–39) have shown that, for proteins at 180–220 K,

the average mean-square displacement exhibits a change in

gradient with temperature, involving the excitation of anhar-

monic displacements (40,41). The role of hydration in the

dynamical transition is an area of active research (37,42,43).

Calculations are performed here for a small protein as a func-

tion of temperature to determine which INM properties are

related to the physical nature of the transition. As for liquids,

it is essential to accurately compute the subset of unstable

modes from the set of negative modes, and so the filtering

methods proposed for liquids are evaluated here for proteins.

It is found that the number of unfiltered negative-eigenvalue

modes does not correlate with dynamical transition behavior.

However, selection of double-well modes that escape to dis-

tinct regions of configurational space does mirror the behavior

of the temperature-dependent mean-square displacement.

METHODS

We first provide a brief overview of INM filtering methods. INM studies on

simple liquids have shown that some negative modes are not connected to

diffusion (26). Therefore, the nondiffusive negative modes should be filtered

out. In an early study on a Lennard-Jones liquid (6), the filtering was per-

formed by subtracting the number of negative modes observed for a crystal

(none of which are diffusive) from the number of negative modes for the

liquid. After this work, a cutoff-based filtering method was proposed in

which those unstable modes with frequency juj above a cutoff value were

considered to be diffusive (19). However, it was found that both of the above

filtering methods are material-specific. Subsequently, improved filtering

methods were developed, based on the topology of the potential energy land-

scape (16,22), and these will now be outlined.

In the double-well filtering method, one-dimensional potential energy

profiles along the negative modes are calculated and used to classify them

into double-well or shoulder modes (22,44). For the double-well modes,

the one-dimensional potential energy profiles consist of two minima sepa-

rated by a barrier, while the shoulder modes exhibit single wells with shoul-

ders. It has been suggested that double-well modes are diffusive whereas

shoulder modes are not, and therefore the diffusive dynamics should be

associated only with the former (27). The filtering was further refined by

classifying the double-well modes as extended or localized depending on

the fraction of atoms that participate in these modes (22), the extended

double-well modes being assumed to make the primary contribution to the

diffusive dynamics. However, it was later demonstrated that the double-

well filtering method failed to provide a satisfactory description of the diffu-

sive dynamics of various materials, particularly ionic melts (45). Moreover,

it was shown that, for some double-well modes, quenching from either side

of the barrier converged to the same inherent structure, thus suggesting that

these double-well modes do not play any special role in diffusion (26).

A further problem arises when the one-dimensional potential energy

profile is computed along a straight-line in the direction of the eigenvector

computed at the instantaneous configuration. Because of the anharmonicity
of the energy landscape, the frequency, and thus curvature, changes quickly

along this line, due to a fast increase of the potential energy arising from van

der Waals repulsion between neighboring atoms (16). This fast increase

prohibits finding more distant saddles, and hence the evaluated number of

double-well modes corresponds to only those double wells with close-by

saddles.

The finding that double-well modes do not always minimize to different

inherent structure basins led to the definition of escape modes (16,46). In

escape filtering, the configurations corresponding to the two one-

dimensional minima along the mode on either side of the saddle are mini-

mized. An inherent structure basin is defined as the region of the potential

energy surface that minimizes to the same point. By quenching the config-

urations corresponding to one-dimensional minima, it is possible to deter-

mine whether or not these minima belong to the same inherent structure

basin. Those modes for which the minima do not belong to the same basin

are escape or true double-well modes, the others being false double-well

modes. In an analysis of liquid water, the temperature dependence of the

number of escape modes was found to exhibit a behavior similar to that

of the self-diffusion constant (15,21).

As well as the energy landscape-based methods discussed above, two

minimization-based methods have been suggested: the saddle-order (SO)

and the partial quenching (PQ) methods. The SO method suggests that by

minimizing the squared gradient of the potential energy (jVUj2) the system

can be driven to the nearest stationary point (which can be a minimum or

a saddle). The number of imaginary frequency modes calculated at the

stationary point gives an estimate of the saddle order and thus the number

of diffusive modes (47).

In the PQ approach the instantaneous configuration is partially quenched

and the INM analysis performed at the partially quenched configuration so

as to remove spurious, nondiffusive, negative modes. It has been found

that the negative nondiffusive modes in a Lennard-Jones crystal vanish after

the first minimization steps, while only the diffusive modes persist in the

liquid state (47).

For all the filtering methods described above, linear proportionality to the

self-diffusion constant was found for at least some materials. The computa-

tional methods used here to examine the relation between the self-diffusion

constant and the number of diffusive modes for proteins will be discussed in

the next section.

Simulation details

MD simulations were performed on Toxin II from the Scorpion Androctonus

australis Hector (PDB (48) id: 1PTX), solved at 1.3 Å resolution (49), in the

crystalline state. This protein was chosen for computational convenience, as it

is small enough (64 residues) to permit ready evaluation of a large number of

Hessian matrices for all atoms in a unit cell replicated with periodic boundary

conditions. Toxin II crystallizes in an orthorhombic unit cell with the

following lattice parameters: a ¼ 45.94 Å, b ¼ 40.68 Å, and c ¼ 29.93 Å.

The unit cell consists of four proteins. Explicit water molecules that were

resolved in the crystallographic analysis were included, i.e., 107 water mole-

cules per protein molecule. This model of a partially hydrated protein in crys-

talline form, although experimentally unrealizable, provides an appropriate

model of a powder system as has been used in neutron scattering experiments

on the dynamical transition and corresponding simulations (50).

Calculations were performed with the CHARMM program (51) using

the CHARMM27 force field (52). Water molecules were represented by

the TIP3P model (53). Electrostatic interactions were computed using the

particle mesh Ewald method (54) for which the direct sum cutoff was

14 Å and the reciprocal space interaction were computed on a 48 � 48 �
32 grid using sixth-degree B-splines.

Simulations were carried out in the isothermal-isobaric (NPT) ensemble at

temperatures starting at 20 K and increasing to 300 K in steps of 20 K. The

system at each temperature was equilibrated for 1 ns followed by a produc-

tion run of 1 ns during which atomic coordinates were written out every

50 fs. The starting structure for each temperature was the final structure from

the preceding temperature.
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For each temperature, 40 equally spaced configurations (separated by

5 ps) were extracted from the last 200-ps segment of MD trajectory and

were used for the INM analysis. For mean-square displacement (MSD)

computations, the full production run was used. This procedure determines

whether the diffusion constant calculated using the INM analysis from a few

configurations over a short timescale can furnish information pertaining to

the diffusion constant computed from the MSD of a longer trajectory.

The computation of the Hessian matrix followed by its diagonalization is

computationally demanding for a complex system studied here (with long-

range electrostatic interactions treated with PME). In this investigation,

the Hessian matrices were computed with a finite difference method using

CHARMM on a single processor. The finite difference method computes

the first derivative of the energy function (the force) for a small displacement

to either side of the minimum for each of the 3N directions (where N is the

number of atoms). In total, ~660 Hessian matrices were calculated (with finite

difference method followed by diagonalization), each requiring ~6.5 CPU

hours for the system studied here. Compute times are summarized in Table 1.

The landscape-based filtering methods were implemented in the

CHARMM program as follows. The eigenvectors and the atomic coordi-

nates were read and one-dimensional energy profiles calculated by displac-

ing the atomic coordinates along the eigenvector directions. An energy

threshold of 0.6 kcal/mol was used for exploring the potential energy profile.

The energy profiles were used to classify the imaginary modes into shoulder

or double-well types. In total, there were ~400,000 negative modes (evalu-

ated at 600 instantaneous configurations) and all modes were thus classified.

To identify escape modes, the configurations corresponding to the two

one-dimensional minima along each double-well mode were energy-mini-

mized. The adopted basis Newton-Raphson (ABNR) method was used for

these minimizations. After the minimization, the RMS distance between

the pair of quenched configurations was computed. It was assumed that

the minimized structures converge to a single minimum if the RMS distance

is less than a threshold value. The number of minimization steps (1000 steps)

and the distance cutoff (0.01–0.02 Å) were chosen after a few convergence

tests. The same procedure was applied to both the double-well and shoulder

modes so as to determine which of these types behave like escape modes.

For shoulder modes, the starting structures were chosen either with energy

or distance criteria.

The two minimization-based methods were implemented in CHARMM.

In the PQ method, instantaneous configurations were partially minimized

for 4–16 steps and the Hessian matrices computed and diagonalized so as

to determine the fraction of unstable modes.

The SO method uses generalized stationary points on the potential energy

landscape to describe the diffusive dynamics (47). In this method, the

squared gradient of the potential energy is minimized, leading to minima and

saddles around the instantaneous configurations. Here again the second-

derivative matrix was required, to minimize the squared gradient, thus

making this procedure computationally intensive.

RESULTS

The mean-square displacement (MSD) averaged over the

atoms as a function of temperature was calculated from the

MD trajectories, and the self-diffusion constant computed

TABLE 1 Approximate CPU times for the INM analysis of

scorpion toxin at 15 temperatures on an ~2 GHz CPU (see text

for number of configurations)

Computation CPU-time

Double-well filtering 300 days

Minimization for escape filtering 2 years

Escape filtering 3 years

Partial minimization (45 matrices) 10 days

Gradient minimization 10 days
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from the long-time slope of the time-dependent MSD. In

Fig. 1 is shown the temperature dependence of the diffusion

constant for both the whole system (including the solvent)

and the protein. A significant change in the diffusion

constant at ~220 K is evident, originating from the dynam-

ical transition as observed in many biological systems

(1,2,33,37,42,55–67). The temperature dependence of the

diffusion constant in Fig. 1 was used as a benchmark with

which to compare the INM results.

As a first necessary step for the INM method, the Hessian

matrices were computed. This was performed from the simu-

lations of 15 temperatures, for 40 configurations each, taken

from the last 200 ps of the MD production runs in steps of

5 ps. In Fig. 2 is shown the number of imaginary frequency

modes (Fu) as a function of temperature. As expected, Fu

increases with temperature, as anharmonic regions of the

potential energy surface become explored. However, unlike

the diffusion constant, Fu does not exhibit any slope change

at ~220 K and instead shows an almost constant slope. Thus,

it is evident that Fu cannot be equated with D and does not

adequately describe internal diffusion in proteins.

In the landscape-based filtering methods the energy

profiles are explored by evaluating the potential energy along

the modes. Inspection of the profiles revealed that a small

FIGURE 1 Diffusion constant of the protein (squares, scaled by 10�) and

the full system (circles) as a function of temperature.

FIGURE 2 Number of negative modes (Fu) as a function of temperature.

The total number of modes (negative and positive) is 15,348.
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number of negative modes correspond to double wells while

no double wells were found for positive frequency modes (as

described in Methods, the potential energy profile can only

reveal saddles close to the instantaneous position; because

no saddle can be close in the direction of a positive frequency

mode, no double well can be found for positive frequencies).

Representative double-well profiles are shown in Fig. 3.

The temperature dependence of the number of diffusive

modes (Fu
DW) after double-well filtering, and the tempera-

ture dependence of the average negative frequency of the

double-well modes huu
DWi, are shown in Fig. 4, panels

a and b, respectively. In this analysis, the contribution to

the number of negative modes by the protein was computed

by decomposing the normalized eigenvectors (~n) into protein

(~np) and water (~nw) components such that~n ¼~np þ~nw. We

compute the projection r of protein atoms as

r ¼ ~n ,~np: (1)

The negative modes for which r ~ 1 are assumed to be domi-

nated by diffusive protein dynamics while modes with

r ~ 0 are dominated by solvent dynamics. Fig. 4 a exhibits

a small slope change in the number of double-well modes

contributing to the motion of the water. However, similar

to the unfiltered case, no change of slope is observed for

the protein atoms, and thus the dynamical transition seen

in the temperature-dependent protein MSD is not seen in

the double-well filtered modes. The average frequency is

proportional to the temperature without inflection. The

variation of huu
DWi as a function of temperature is one of

the reasons for the weak T-dependence of the D f fu relation

observed for simple liquids (19).

The double-well modes were further classified into escape

modes and false double-well modes. The two one-dimen-

sional minima of an escape mode belong to different inherent

structure basins, while for false double wells they belong to

the same inherent structure. To check whether a given

double-well mode is an escape mode, the pair of configura-

tions corresponding to two minima of the double well was

energy-minimized (see Methods). This requires an efficient

FIGURE 3 Representative double-well potential energy profiles evalu-

ated at a randomly-chosen instantaneous configurations sampled at 300 K.
minimization scheme and a suitable criterion to check whether

the minimized configurations belong to the same inherent

structure. To determine a satisfactory minimization scheme,

a few modes were selected and escape-mode classification

was performed using different minimization methods (steep-

est descent, conjugate gradient, and Adopted Basis Newton-

Raphson (ABNR)) and numbers of steps. ABNR was found

to be the most suitable method for this classification.

To select the optimal number of minimization steps

required to filter escape modes, the following procedure

was carried out: Let Rpert denote a perturbed configuration,

obtained by displacing the instantaneous configuration, Rinst

along a randomly-chosen double-well mode such that Rpert¼
Rinst þ DRinitudw, where udw is the eigenvector correspond-

ing to a double-well mode and DRinit denotes the RMSD

between Rpert and Rinst. Let Rpert
min and Rinst

min denote

configurations obtained by energy minimizing Rpert and

Rinst, respectively. The RMSD between Rpert
min and Rinst

min

is denoted as DRmin. For various values of DRinit and the

number of minimization steps, DRmin was calculated and

the results are presented in Fig. 5. It is evident that DRmin

is sensitive to the number of minimization steps: increasing

the number of steps leads to more highly-converged results.

For instance, the variations in DRmin (for �0.8 Å < DRinit <
�0.2 Å and 0.2 Å < DRinit < 0.8 Å) decrease as the number

FIGURE 4 Temperature dependence of (a) number of double-well modes

(Fu
DW). (b) Average frequency huu

DWi of double-well modes.
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of minimization steps increases, indicating that increasing

the number of minimization steps leads to more unique

inherent structures. Moreover, the diffusive nature of double-

well modes is evident in Fig. 5: a small displacement along

the negative direction of the mode leads to an inherent struc-

ture (after 1000 steps of minimization) with DRmin ~ 0.04 Å

while a small displacement along the positive direction leads

to a different inherent structure with DRmin ¼ 0.0 Å. This

analysis suggests that 1000 minimization steps are sufficient

to filter out escape-modes.

In addition to selecting the optimal number of minimiza-

tion steps, a suitable cutoff for the RMSD between the

inherent structures is required, so as to allow a decision to

be made as to whether perturbations to either side of

a double-well mode lead to the same inherent structure. To

estimate this cutoff, a set of perturbed configurations were

generated by displacing randomly-chosen instantaneous

configurations (sampled at 300 K) by DRinit¼ 0.014 Å along

the double-well modes. The value of DRinit ¼ 0.014 Å was

obtained by averaging the distances along the double-well

modes at which the potential energy is 0.6 kcal/mol (KBT
at 300 K) higher than that at the instantaneous configuration.

FIGURE 5 Distance (DRmin) between a pair of configurations obtained by

minimizing the instantaneous structure and a perturbed structure obtained by

displacing (by DRinit) along a randomly-chosen double-well mode for three

different numbers of minimization steps.

FIGURE 6 Histogram of (DRmin).
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These perturbed configurations were further energy-

minimized (with 1000 ABNR steps) resulting in an ensemble

of inherent structures. The RMSD (DRmin) between these

quenched configurations and Rinst
min was calculated as

described above and the histogram of DRmin is shown in

Fig. 6. Two most-probable inherent structures are found:

one at DRmin ~ 0.0 Å and the other at DRmin ~ 0.038 Å: these

values are consistent with the data presented in Fig. 5.

The first minimum seen at DRmin ~ 0.01 Å clearly sepa-

rates the probable inherent structures, suggesting that DRmin

~ 0.01 Å is a suitable cutoff for distinguishing between a pair

of inherent structures. Consequently, for each double-well

mode, a pair of configurations corresponding to two minima

of the double well was minimized with 1000 ABNR steps

and the double-well mode was classified as an escape

mode if the Euclidean distance between the two minimized

configurations thus obtained was >0.01 Å.

The number of escape modes Fu
esc, computed with a cutoff

of 0.01 Å, is shown as a function of temperature in Fig. 7. Fu
esc

increases gradually with temperature until ~200 K and an

abrupt change is observed at ~220 K. The large increase in

the population of escape modes at ~220 K is concomitant

with the onset of large amplitude displacements observed in

the MSD (Fig. 1). This observation indicates that the number

of barrier-crossing, diffusive degrees of freedom accessible to

the protein increases at the dynamical transition temperature.

To further characterize the escape modes, we have calcu-

lated for each escape mode the participation ratio (P) using

the equation

P ¼
 XN

i¼ 1

jui

��2!2 
N
XN

i¼ 1

jui

��4!�1

; (2)

with ui being the component of the eigenvector contributed

by atom i. P ~ 1 for an extended eigenmode while P ~ 0

for strongly localized modes (68).

Fig. 8 shows the frequency dependence of P together with

the density of states of the escape modes. The escape modes

FIGURE 7 Number of escape modes (Fu
esc) calculated from INM anal-

ysis performed at 10 (squares) and 40 (circles) configurations as a function

of temperature. A distance cutoff of 0.01 Å was used for the escape filtering

method.



are almost equally distributed across the negative frequen-

cies. The escape modes with frequencies >�75 cm�1 have

relatively larger P values compared to those with frequencies

<�100 cm�1, indicating that a large number of protein

atoms exhibit diffusive dynamics along these high-frequency

escape modes. A large fraction of escape modes (~80 % at

300 K) are located below �100 cm�1 with P ~ 0 leading

to an overall average P value of 0.005 (~4 times smaller

than the P value averaged over all negative modes, i.e.,

including those removed by escape filtering) at 300 K.

This indicates that a large fraction of the INM escape modes

activated at the transition describe diffusive processes that

involve excitation of a few protein atoms while only a minor

fraction of escape modes, i.e., those with frequencies above

�75 cm�1 (~10 % at 300 K), describe collective diffusive

dynamics in which a large number of protein atoms take part.

To investigate the nature of the delocalized escape modes,

a normal mode calculation of the Toxin II crystal was per-

formed and an essential space formed by the vibrational

modes below 100 cm�1 (7.3% of the total modes) was

defined. The delocalized escape modes (those with absolute

frequencies <100 cm�1) were projected onto this subspace.

It was found that ~75% of the atomic fluctuations in these

escape modes are captured by the essential space, thus indi-

cating that the delocalized escape modes effectively span the

same space as that of the low-frequency normal modes. A

large number of studies have shown that the low-frequency

collective normal modes are essential for biological func-

tions of proteins (69). This investigation suggests that those

collective normal modes that become escape modes across

the protein dynamical transition may be key players of

protein functions.

Fig. 9 shows the number of escape modes (calculated with

two different distance cutoffs) plotted against the diffusion

constant calculated from the MSD. A strong correlation of

D with Fu
esc is seen, confirming that the escape filtering

method can provide instantaneous modes related to internal

protein diffusion.

FIGURE 8 Participation ratio (P) and density of states for escape modes at

300 K.

Instantaneous Normal Modes of Proteins
Two minimization-based filtering methods were also

tested: 1), the PQ and 2), SO approaches. In PQ the instan-

taneous configuration is partially minimized and a complete

INM analysis is performed, involving computing and diago-

nalizing the Hessian for the minimized configurations, then

counting the number of imaginary modes. In SO, the squared

gradient of the potential energy is minimized, resulting in

configurations corresponding to stationary points, including

saddles, on the potential energy surface. After the application

of SO, a complete INM analysis was performed at these

stationary points. The imaginary modes thus obtained are

considered as diffusive.

The results of the minimization-based methods are shown

in Fig. 10. No change in the slope of Fu
PQ versus T is observed

at ~240 K when the instantaneous configurations are not

energy-minimized (see Fig. 2). As observed for simple

liquids, partial energy minimization of the instantaneous

FIGURE 9 Number of escape modes (Fu
esc) calculated with a distance

cutoff of (a) 0.01Å and (b) 0.02 Å versus the diffusion constant computed

from the MSD. Calculations performed using (a) 40 and (b) 10 configura-

tions. Straight lines (solid line, whole system; dashed line, protein) are fitted

(using y ¼ AxB) to the data.
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configuration removes a significant fraction of the nondiffu-

sive imaginary modes. The temperature dependence of the

number of diffusive modes obtained from the PQ method,

Fu
PQ, is sensitive to the number of minimization steps (n).

As n increases from 4 to 8, the number of diffusive modes

decreases significantly for temperatures <220 K. Further

increase in n from 8 to 16 does not greatly change the number

of diffusive modes for T< 220 K, indicating that convergence

has been reached. Although the number of diffusive modes

decreases as n increases for T> 220 K, there is no significant

change in the slope. For n¼ 8 and n¼ 16, the number of diffu-

sive modes increases almost linearly with temperature up to

~160 K, above which the slope increases slightly, with signs

of a further increase at ~240 K. The ~160 K increase may

correspond to the low-T dynamical transition in proteins

that is solvent-independent and may involve activation of

methyl group rotation (43,70–73). In Fig. 10 b is shown the

temperature dependence of the number of diffusive modes,

Fu
SO, obtained from the SO approach. The temperature

dependence of Fu
SO exhibits gradual increase in gradient

from ~100 K with a small further increase at ~240 K.

CONCLUSIONS

The connection between the topography of the underlying

potential energy surface (PES) and the diffusive dynamics

FIGURE 10 Number of diffusive modes obtained from (a) partial quench-

ing method (Fu
PQ) and (b) saddle order approach (Fu

SO) as a function of

temperature.
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of proteins has been investigated for several decades

(74,75). This article has examined the possibility of employ-

ing the INM-based theoretical methods to provide PES-

based insight into the anharmonic, diffusive dynamics of

proteins. One potential advantage of using INM is that, in

principle, it furnishes a picture of diffusive dynamics from

a few sampled configurations. Based on the curvature of

the local potential, the INM method determines the negative

modes on the PES.

An important question concerns the identification of those

negative modes that contribute to diffusive displacements.

Here, filtering methods that have been proposed for simple

liquids are evaluated for a small protein. For comparison,

the temperature-dependent diffusion constant of the protein

was computed from the slope of the average mean-square

displacement obtained from molecular dynamics trajectories

generated over a temperature range of 20–300 K. A signifi-

cant change in the MD diffusion constant is found at ~220 K,

corresponding to the dynamical transition observed in many

biological systems. In contrast, the number of INM negative

eigenvalues increases almost linearly with temperature, ex-

hibiting no transition with temperature. This indicates that

many negative modes are not diffusive. These may corre-

spond to, for example, local van der Waals repulsions.

Partial minimization (quenching) of the instantaneous

configurations is found to remove nondiffusive imaginary

modes, as has been seen for simple liquids (76), suggesting

that the nondiffusive modes correspond to regions of the

configuration space that are relatively high in energy.

Filtering the negative modes so as to retain only those corre-

sponding locally to double-well potentials does reveal a tran-

sition in the hydration water, consistent with results seen

previously for simple liquids (22,44), but again, no transition

in the protein is seen. This may be due to the relative

simplicity of the water energy landscape, in that most effec-

tive double-well potentials on the water landscape may lead

to diffusive dynamics. In contrast, the protein interior

possesses double wells that, on energy minimization, return

to the same inherent structure. Once these are filtered, retain-

ing only those modes that escape to different regions of

configurational space, clear dynamical transition behavior

is seen, i.e., the number of escape modes follows the dynam-

ical transition, with a good correlation with the diffusion

constant calculated from the MD MSD. The filtered INM

results obtained over a 200-ps segment of the MD trajecto-

ries provides physical information pertaining to the full 1 ns.

Previous work has demonstrated that the incipient dynam-

ical transition in myoglobin can be represented by a very

small number of solvent-driven, large-amplitude, multi-

minimum principal component modes involving hundreds

of atoms moving collectively (57,58). These results show

that the instantaneous diffusive escape modes activated span

a wide range of frequencies, from a few to several hundred

wave-numbers. The relatively small number of collective,

large-amplitude escape modes with low absolute frequencies
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will make the largest contribution to the diffusive MSD and

are likely to bear similarities with the largest-amplitude prin-

cipal components. Interestingly, however, a number of rela-

tively localized, low-amplitude escape modes with high

absolute frequencies also exist.

This analysis demonstrates that the negative normal

modes derived from instantaneous protein configurations

furnish, after appropriate filtering, a physical picture of local

diffusive dynamics accompanying protein glass transition

behavior. It will be of interest in the future to understand

the environmental and functional relevance of the diffusive

and nondiffusive imaginary modes in biological macromo-

lecular systems, and to examine their relationship to

measurable quantities such as, for example, neutron spectro-

scopic intensities.
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