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Kinetics of Genetic Switching into the State of Bacterial Competence
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ABSTRACT Nonlinear amplification of gene expression of master regulators is essential for cellular differentiation. Here we
investigated determinants that control the kinetics of the genetic switching process from the vegetative state (B-state) to the
competent state (K-state) of Bacillus subtilis, explicitly including the switching window which controls the probability for compe-
tence initiation in a cell population. For individual cells, we found that after initiation of switching, the levels of the master regulator
[ComK](t) increased with sigmoid shape and saturation occurred at two distinct levels of [ComK]. We analyzed the switching
kinetics into the state with highest [ComK] and found saturation after a switching period of length 1.4 5 0.3 h. The duration of
the switching period was robust against variations in the gene regulatory network of the master regulator, whereas the saturation
levels showed large variations between individual isogenic cells. We developed a nonlinear dynamics model, taking into account
low-number stochastic effects. The model quantitatively describes the probability and timescale of switching at the single cell
level and explains why the ComK level in the K-state is highly sensitive to extrinsic parameter variations. Furthermore, the model
predicts a transition from stochastic to deterministic switching at increased production rates of ComK in agreement with
experimental data.
INTRODUCTION

Populations of genetically identical cells often maintain

a diversity of phenotypes, characterized by different patterns

of gene expression. This is usually triggered by stochastic

fluctuations, which are amplified by the underlying gene

regulatory networks (1–4). The benefits of such non-geno-

type-derived heterogeneity lie in the enhanced adaptability

to environmental changes of the population as a whole (5–8).

To analyze phenotypic heterogeneity it is necessary to

monitor gene expression in individual cells (9). Real-time

kinetics of gene expression have been extensively measured

in individual cells to characterize noise in gene expression

(10–14), multistability (1,5,15,16), oscillations (16–19),

and timing of gene activities (20), but the determinants for

genetic switching kinetics are not well characterized so far.

Competence development in Bacillus subtilis is one

example in which a genetic switch determines cell fate. At

low cell density, a homogeneous cell population undergoes

exponential growth, but at high cell density (stationary

growth phase), the cell population becomes heterogeneous

in its phenotype, with a well-defined fraction of 15%

expressing genes that code for a strong DNA import machine

and recombination proteins (21). These cells are called

competent for DNA transformation and they express the

master regulator comK at high level (22–24). In this study,

the state in which comK expression levels are high is

denoted the K-state. The entry into the K-state is switchlike

(25,26). The positive feedback loop in the genetic control

circuit is important for the establishment of the competent
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phenotype in Bacillus subtilis (27,28). In noncompetent

cells, the positive autoregulatory loop is not activated and

comK expression is low (B-state). During exponential

growth, ComK is kept at a basal level through degradation

by the MecA/ClpC/ClpP protease complex, and by transcrip-

tional repressors including Rok, AbrB, and CodY (Fig. 1).

Due to a quorum-sensing mechanism, the concentration of

ComS (an inhibitor of MecA/ClpC/ClpP) rises with

increasing cell density. Work by Maamar et al. (29) revealed

that at T0 (i.e., at the entry into stationary phase, Tx¼x h after

transition point) the average number of mRNA coding for

ComK per cell is of order 1. In this regime, small number

fluctuations are, relative to the mean, of paramount impor-

tance. This is especially noteworthy since the reaction

kinetics of ComK is highly nonlinear. Experiments and

simulation have shown that the fraction of cells that switch

into the K-state is determined by the magnitude of intrinsic

fluctuations in comK expression (16,29). The second impor-

tant determinant of the fraction of cells in the K-state is the

length of a switching window in which basal comK expres-

sion rate is enhanced, which facilitates switching (30). Under

conditions in which nutrient concentrations are constantly

low, cycles of competence initiation and decay have been

observed in real-time experiments in individual cells and

a mathematical model described the system as an excitable

regulatory circuit (15,16). Escape from the K-state has

been attributed to negative feedback between ComK and

the inhibitor of ComK proteolysis, ComS. Theoretical

models of the competence decision system can be divided

into two different categories, by the description of the system

as excitable (15,16,31) as opposed to bistable (5,27–29,32).
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FIGURE 1 Core of the competence

circuit. Arrows denote upregulation,

blunt ends denote downregulation.
Here we investigated the switching kinetics of individual

cells of Bacillus subtilis both experimentally and theoreti-

cally. We quantified the expression rate of the promoter of

comK in real-time and mimicked increasing cell density

with individual cells by continuously adjusting the growth

medium. Using this method, we investigated the variability

in the length of switching period, switching kinetics, and

accumulated comK expression against varying external

conditions due to growth phase and against genetic modifica-

tion of the competence circuit. We developed a mathematical

model predicting bistability during cell growth that retrieved

the length of the switching period and the fraction of compe-

tent cells. The model explains why the saturation level of the

K-state is highly sensitive to external fluctuations as

observed in the experiments. Transition to deterministic

switching, i.e., independence of fluctuations, as found for

a mutant strain with increased transcription rates, is neatly

explained by loss of the B-state in the stationary phase.

MATERIALS AND METHODS

Materials and strains

All B. subtilis strains used were derived from strain BD630 and are described

in Table S1 in Supporting Material. Bacillus strains were grown in liquid

competence medium (33) supplemented with glucose (0.5%), L-histidine,

L-leucine, L-methionine (50 mg/ml), and chloramphenicol, kanamycin

(5 mg/ml), or spectinomycin (100 mg/ml) at 37�C. Competent cells were

prepared as described previously (33). BM101 was created by transforma-

tion of genomic DNA of BD2711 into BD2955 ((28,41) (Table S1)).

Microscopy

Cells were taken at T0 5 1 h (where T0 is the transition from the exponential to

the stationary growth phase, Tx ¼ x h after the transition point), permitted to

attach to a polystyrene-coated cover slide and mounted onto a flow chamber.
An image was acquired every 15 min. To confirm that the conditions under the

microscope were equal to the conditions in an Erlenmeyer flask, the medium

was exchanged directly after every exposure for the supernatant of a parallel

culture grown in an Erlenmeyer flask (shaken at 300 rpm, at 37 �C).

Microscopy was performed with a Axiovert 200 M microscope (Carl

Zeiss, Jena, Germany) equipped with a digital camera (Andor, Belfast,

UK), and an EC Plan-Neofluar 100�/1.30 oil immersion objective (Zeiss).

Andor software was used for image acquisition. Stability of absolute fluores-

cence values was verified using a microscope image intensity calibration kit

(Focal-Check fluorescence microscope test slide #3, F 36914; Molecular

Probes, Eugene, OR). Homogeneity of illumination was tested using fluores-

cent slides and the maximum deviation was <5%.

Analysis

To analyze the ComK protein levels in single cells, we used strains contain-

ing a gfp-comK reporter construct standing under the control of the promoter

of comK (PcomK) in addition to the original copy of the comK gene. As the

green fluorescent protein (GFP) molecule is not likely to be a substrate for

MecA/ClpC/ClpP proteolysis, the concentration of GFP controlled by PcomK

is not a direct measure of ComK. However, the expression rates, i.e., the

production rate of ComK and GFP, are expected to be similar, as the

complete native promoter of comK including all native signals for comK

expression is present. We analyzed ComK expression in single cells as the

fluorescence intensity (FI) represented by the mean shaded value (measured

in arbitrary fluorescence units (FU)).

Images were processed using ImageJ software (National Institutes of

Health, Bethesda, MD). The image background was corrected using a rolling

ball algorithm with a radius of 50. An intensity threshold tool was used to

delimit the boundaries of the cells in the bright-field image (Fig. 2 a). The

areas encircled by the boundaries were then selected as a region of interest

using the ImageJ wand tool. These regions of interest were then applied to

the fluorescence images and the mean shaded value of each cell was obtained

using the ImageJ measurement tool.

The autofluorescence level of noncompetent BD630 was FIauto T�2 ¼
23 5 1 FU, and the width of the Gaussian fit was FIauto T�2 ¼ 9.2 5

1 FU. We verified recently that the autofluorescence level did not shift until

the basal fluorescence level reached its maximum (30). Since the time delay

between the expression of the GFP reporter and the onset of fluorescence is

5 min (30), but switching into the K-state occurred on a significantly longer
Biophysical Journal 96(3) 1178–1188
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FIGURE 2 Time course of PcomK-gfp expression in individual cells. (a) Time-lapse of a switching cell and corresponding plot of fluorescence intensity FI

as a function of time. (Green contour) Outline of the cell. Scale bar 1 mm. (b) Time course of fluorescence intensity of cells remaining in the B-state. Red

line indicates the average fluorescence intensity of cells remaining in the B-state. (c) Time course of fluorescence intensity of cells switching into the K-state.

Red line indicates the average fluorescence intensity of cells still in the B-state before switching.
timescale, we did not correct our data for GFP-folding. In addition, no signif-

icant GFP degradation could be found on the relevant timescale of 3 h (30).

We defined the switching threshold differently as in previous work with

fixed cells (30). Instead of defining the threshold from the histogram of fluores-

cence intensity, we defined the switching time as the point where the intensity

increased sharply in the FI(t) plot (Fig. 2 a). This led to slightly lower values for

the threshold but the fraction of competent cells was not affected (Fig. S4).

RESULTS

The basal comK expression rate increases
within the whole cell population

We quantified the expression of the master regulator comK in

individual cells by measuring the fluorescence intensity of

Biophysical Journal 96(3) 1178–1188
GFP fused to the promoter of comK (Fig. 2) (see Materials

and Methods). To stimulate growth-phase-dependent devel-

opment of cells on the microscope and to supply the cells

with oxygen, we exchanged the medium in the flow chamber

with medium from a cell culture growing under standard

competence conditions every 15 min. We quantified the

expression from the comK promoter by measuring the

average fluorescence intensity FI of individual cells

(Fig. 2 a). In agreement with previous experiments, we found

that in our real-time experiments 15% of the cells switched

into the K-state (Fig. S4). Initiation of switching was defined

as a sharp increase in fluorescence intensity, which was fol-

lowed by a sigmoidal increase in fluorescence intensity as a
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function of time. Before entry into the stationary phase at T0,

basal expression of comK increased significantly in all cells

between T�0.75 and T�0.5 (Fig. 2, b and c). The basal level of

comK expression was indistinguishable for cells that later

triggered the switch and cells that remained in the B-state,

indicating that no preselection had taken place as yet.

A fraction of cells switches into a state
with intermediate comK expression

The saturation levels showed a large variation between indi-

vidual cells with two distinct peaks of saturation fluorescence

intensity (Figs. 2 c and 3 a). An intermediate peak was distrib-

uted at ~200 FU, i.e., at a level between the basal fluorescence

level at 50 FU (B-state) and high fluorescence level (K-state)

at 1300 FU. We did not observe switching between the inter-

mediate fluorescence mode and the K-state. Furthermore, we

found no correlation between saturation fluorescence inten-

sity and basal fluorescence, daughter cells after cell division,

or cell length (data not shown). The intermediate fluorescence

peak disappeared in the rok-strain (Fig. S5) in which the

major repressor of comK transcription, Rok, was knocked-

out. Since the characterization of functionality and molecular

determinants for switching into the intermediate fluorescence

mode is subject to future experiments, we decided to analyze

the kinetics of switching into the K-state in the following, i.e.,

we concentrated on cells that obtained saturation fluorescence

values exceeding 300 FU.

The length of the switching period of individual
cells is well defined and independent of growth
phase

To quantify the switching kinetics, we normalized the indi-

vidual switching curves to their saturation level and shifted

the T-axis to overlay all curves at half-maximum expression

level at t1/2 (Fig. 3 b). To investigate whether the switching

kinetics were dependent on growth phase, we sampled

switching curves between T�0.25 and T2.5. The overlay

showed very little variation, indicating that the duration of

the switching period is well defined and independent of

growth phase (data not shown). The expression rate exr
was defined as the first derivative with respect to time of

the fluorescence intensity, FI (Fig. 3 c). Please note that

the cells did not grow during z1 h after the onset of switch-

ing (M. Leisner, K. Stingl, and B. Maier, unpublished data),

and therefore we did not correct the expression rate for cell

length. However, we attribute the negative expression rate

at T � t1/2 > 1 h to cell growth, since GFP fluorescence

was stable within several hours (Materials and Methods).

We defined the length of the switching period r as the

time during which exr exceeded 0.1exrmax. The average

period for switching into the K-state was r ¼ 1.4 5 0.3 h,

with a standard deviation of 0.3 h (Fig. S7 a). To address

the question whether the length of the switching period
was well defined in individual cells, we plotted the switching

period r as a function of growth phase T and found no signif-

icant variation (Fig. S7 b).

FIGURE 3 Switching characteristics of wild-type (wt) cells. (a) Distribu-

tion of maximum fluorescence intensity in the wild-type (BD2711). (b) The

fluorescence intensity in 28 individual cells was normalized to the cumula-

tive expression (maximum fluorescence intensity). The time axis was shifted

to t1/2, where cells had half-maximum fluorescence intensity. (Solid line)

Averaged fluorescence intensity; (shaded lines) individual cells. (c) Expres-

sion rates exr of wt (shaded), rok-strain (dotted), and ComS (solid) overpro-

ducing strain. Expression rates were obtained by multiplication of the

normalized values with the average maximum value of 28–50 cells.

Biophysical Journal 96(3) 1178–1188
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With increasing ComS concentration, the probability for

proteolysis of ComK by the MecA/ClpC/ClpP complex

decreases, leading to increased ComK levels. We investi-

gated whether the levels of ComS influenced the kinetics

of switching using a ComS overproducing strain comSþþ.

Although the fraction of switching cells increased from

15% to 85%, the switching kinetics of the individual bacteria

did not alter significantly as compared to the wild-type

(Fig. S6). In particular, the expression rate exr was compa-

rable to the wild-type (Fig. 3 c).

A two-variable model elucidates
the switching process

Nonlinear dynamics together with fluctuations can lead to

bimodal protein distributions (34). Here we analyze a fully

stochastic model for competence development. It incorpo-

rates production and degradation of both ComK proteins

(K) and corresponding mRNA molecules (M). Mathemati-

cally the model is captured by a Master equation; a formal

description of the model in terms of transition rates is given

in the Supporting Material. Since analytical solutions are not

feasible, we analyze the model by employing stochastic

simulations (see below).

To give a frame of reference for the dynamics of compe-

tence development, and to explain the emergence of distinct

phenotypes, it is instructive to analyze the equations:

vK

vt
¼ bkM� dKK

qk þ S þ K
� d0K; (1)

vM

vt
¼ am þ bm

1 þ ðpk=KfÞgK
� dmM: (2)

While these equations disregard stochastic effects (see

further below), they are easily discussed by a nonlinear

dynamics analysis.

The first term in Eq. 1 represents translation of K, which

happens with rate bK for each M. The second term describes

degradation of K according to Michaelis-Menten kinetics.

For very high K this happens at a maximal rate dK, and

half-maximal degradation of K is found where K ¼ S þ qK.

S corresponds to the number of ComS (S) proteins which

compete with ComK for degradation by the MecA/ClpC/

ClpP protease complex (see Supporting Material). Repre-

senting the effect of quorum sensing, S(t) communicates

the cell density which rises sigmoidal with time to the indi-

vidual cell. In our model, S(t) takes the role of an externally

determined control function (Fig. S1). The third term covers

linear degradation of ComK with rate d0 << dK, which must

always be present owing to nonspecific degradation/denatur-

ation of ComK. This term is important only for large K and

ensures that K cannot rise arbitrarily, as is biologically neces-

sary. In Eq. 2, aM is the basal transcription rate in absence

of K. The next term describes autocatalytic feedback of

ComK: Two ComK dimers bind cooperatively to the

Biophysical Journal 96(3) 1178–1188
comK-promoter (35,36), thereby strongly activating tran-

scription. Assuming dimer formation and dissociation as

well as promoter binding and unbinding are fast enough to

equilibrate, autocatalytic transcription can be modeled by a

Hill function, with maximal (for large K) transcription rate

bM, half-maximal concentration pK, and cooperativity gK.

The value Kf, appearing in the denominator, is the number

of free ComK, i.e., not bound to the MecA/ClpC/ClpP

protease complex (see Supporting Material). Finally, degra-

dation of mRNA is proportional to M and the rate dM. For

further details on the model and its parameters, see Table S2.

Using nonlinear dynamics analysis (37) and literature data

to set parameters, we investigated whether our two variable

model (Eqs. 1 and 2) could reproduce the switching

behavior. For low numbers of ComS we find only one stable

fixed point corresponding to the vegetative state (K z 100,

M z 1) (Fig. 4 a). As S rises, a saddle-node bifurcation

appears, creating a further stable fixed point with higher K

and M values and an intermediate unstable fixed point.

This, in principle, allows cells to stochastically switch to

the state with higher K and M. However, due to the high acti-

vation threshold, this is highly unlikely. At S ~ 1500, the

lower stable and the unstable fixed point almost meet in

another bifurcation. The lower stable fixed point (now

shifted to K z 200, M z 1) corresponds to the B-state.

The intermediate unstable fixed point at K z 600, M z 3

is very close to the B-state (Fig. 4 b). Under these conditions,

intrinsic noise is strong enough to carry some cells across the

switching threshold. A sample path in phase space is given in

Fig. S2, illustrating escape from B-state and passing of

threshold. Cells that cross the threshold evolve toward the

upper stable fixed point (K-state, K z 7000, M z 10),

i.e., bacteria switch into the K-state. Back-transitions from

the K-state into the B-state are highly improbable, because

in the K-state, fluctuations are too small compared to the

distance between the K-state and the threshold to revert

switching.

Noise-driven switching requires vicinity to region
with quantitatively different dynamics

The above scheme describes the evolution for a standard

wild-type cell as it evolves from the low cell density expo-

nential growth phase to the high cell density stationary

phase. In that sense, it can be considered as averaged descrip-

tion, while for single cells reaction rates may vary, which is

usually termed extrinsic noise (13). This can have major

influence on the single cell dynamics to the point of loss of

stochastic switching. To explore the consequences of varia-

tion in the rates we performed a stability analysis by exam-

ining the topology of nullclines and fixed points of the

model. If the topology changes, one expects to find qualita-

tively different dynamics to that described above. Fixed

points of the dynamics may emerge or disappear in bifurca-

tions, changing the switching behavior significantly. Since
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FIGURE 4 Nonlinear dynamics model. (a and b) Bifurcation analysis.

Nullclines of Eqs. 1 and 2. (a) S¼0. (b) S¼1500 are plotted (solid, dM/

dt¼0; shaded, dK/dt¼0). (c) A stability diagram, aM versus bM is plotted,
the expression rates are experimentally accessible, we show

the stability diagram (a cut through the parameter space) for

variation in the basal transcription rate aM and the transcrip-

tion rate with feedback bM (Fig. 4 c). Similar stability

diagrams can be drawn for any pair of parameters.

A general result for bistable systems exhibiting stochasti-

cally induced switching is that they are located close to lines

that separate regions with different topology. This is neces-

sary, since only then are random fluctuations frequent and

wide enough to enable a trajectory (an individual cell in

our case) to cross the threshold with a sufficiently high prob-

ability. It follows that the switching probability per unit time

is sensitive to the distance to the line of separation. This

feature is likely to be present in systems similar to ours (38).

Effects of perturbing the promoter activity
of comK on initiation probability, switching
kinetics, and saturation levels

The stability diagram (Fig. 4 c) predicts the loss of bistability

at increased transcription rates of comK. Previous experi-

ments using a rok-strain showed that the rok-strain has a

twofold increased basal expression (29,30,39). We further

measured that the maximum expression rate during switch-

ing increased ~1.5-fold (Fig. 3 c). We therefore analyzed

how the dynamics of the model qualitatively changes when

aM and bM vary strongly. For the rok-strain, one would

expect aM / 2 aM and (aM þ bM) / 1.5 (aM þ bM). In

this regime, as the stationary phase is reached (S ~ 1500),

the system has lost its lower and intermediate fixed point,

corresponding to B-state and threshold. This means achieve-

ment of competence is independent of fluctuations and is

initiated in all cells. In this altered reaction network a transi-

tion from a bistable system with stochastic switching to

a monostable, deterministic system occurs.

Experimental data showed indeed that 99 5 3% of all

cells reach high FI for the rok-strain (30). We further inves-

tigated experimentally whether deletion of the major

repressor protein of comK transcription, Rok, affected

switching characteristics (Fig. S5). The sigmoidal shape of

[ComK](t) and the switching period of r ¼ 1.4 h were not

altered, while the maximum expression rate and the cumula-

tive expression increased by a factor of ~1.5 as compared to

the wild-type strain (Fig. 3 c and Fig. S5 a).

Extrinsic noise determines the saturation value
of individual cells in the K-state

The observed spread in saturation levels (Figs. 2 c and 3 a) is

explained by extrinsic noise, which is present in any cell

population. This does not alter the behavior of the population

as a whole but affects every individual bacterium differently.

monostable (ms) and bistable (bs) regions with only upper (uf) or only lower

(lf) are indicated. Parameter combinations of the model for the wild-type (wt)

and rok-strain (rok) are indicated.

Biophysical Journal 96(3) 1178–1188
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Besides altering dynamics of a few cells qualitatively (as dis-

cussed above), the value of K at the upper fixed point is

highly sensitive to these fluctuations. This results from the

fact that the nullclines in Fig. 4 b are close to parallel at

the upper fixed point. Variations in the model’s parameters

thus shift the K-state to higher or lower values of K.

We quantified the effect of variation of the parameters on

the saturation value of ComK. Computing the relative

change of K at the upper fixed point due to a relative change

in a given parameter yields the sensitivity (see Supporting

Material). We find that variation in the overall degradation

rates dM and (dK þ d0) alter the fixed point’s position by

the same magnitudes, but opposite sign as the overall

production rates (aM þ bM) and bK. By comparison, the

half-maximal degradation of ComK, qK, has a minor effect

on the fixed point’s position, while variations in the other

parameters can be neglected (see Table S2).

Stochastic simulations with well-motivated
parameters fortify predictive character
of the model

Quantitative data, obtained by stochastic simulations (40),

corroborated the predictive value of the model (Fig. 5 and

Fig. S2). As found in earlier experiments of the whole bacterial

population (30), single cell time-lapse microscopy revealed a

transient increase in comK transcription aM before T0 (Fig. 2,

b and c), which we introduced in our simulations (Fig. S1).

Extrinsic noise was introduced in the stochastic simula-

tions by choosing model parameters from a Gaussian with

a standard deviation of 5% about their mean for each realiza-

tion (see Supporting Material for details). Theses variations

in the model parameters can change number and positions

of fixed points. The former can be addressed analytically

by stability analysis (see above, Fig. 4 c), the latter by

computation of sensitivities, as was done for the position

of the upper stable fixed point (Table S2).

Before entry into stationary phase, i.e., at values of S �
1500, cells showed fluctuations about the vegetative state,

but no escape was possible. Approximately 14.7% of all cells

entered the K-state, showing saturation in ComK level within

r¼ 1.2 h, in accordance with experimental findings of ~15%

competent cells and a length of the switching period of

r ~1.4 h. Further, we find a wide spread in saturation levels

and expression curves very much like those recorded in the

experiment (Fig. 2 c), indicating that extrinsic noise is an

important determinant of ComK levels.

These findings show that an effective two-component

model with well-motivated parameters is not only sufficient

to explain switching dynamics qualitatively but also returns

quantitative data in excellent agreement with the experiment.

DISCUSSION

Competence development in B. subtilis provides an inter-

esting regulatory network to study the kinetics of genetic

Biophysical Journal 96(3) 1178–1188
switching between different phenotypes. We developed an

experimental approach and a stochastic nonlinear dynamics

model to quantify the switching behavior of individual cells

of B. subtilis into the K-state in response to quorum sensing.

Both experiment and theory reveal that the switching period

is a robust property of the genetic switch whereas the satura-

tion levels show strong variability most likely due to external

fluctuations.

Rise in basal expression from the comK promoter
does not select cells for switching

In agreement with previous studies that concentrated on cell

populations, we found that the basal expression rate of

FIGURE 5 Stochastic simulations. (a) 100 realizations of the stochastic

simulation of the model are shown. (b) Time courses of cells that entered

the K-state were normalized to the maximal value. The time axis was shifted

to t1/2, where cells had half-maximal K values; compare to Fig. 3 b.
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ComK increased before entry into stationary phase (30).

Increased expression rate of comK may be explained by

decreasing expression of the repressor AbrB and by deacti-

vation of the GTP-dependent repressor function of CodY.

Using real-time experiments with individual cells, we were

able to distinguish the rise in basal expression rate between

cells that switched eventually after entry into the stationary

phase and cells that did not switch before the switching

window closed. The magnitude of increase was similar in

cells that remained in the B-state and cells that switched

into the K-state. This result indicates that the sharp rise in

the expression rate of the comK promoter upon switching

is not a result of predetermination in the B-state. Interest-

ingly, in the simulations, switching of individual cells could

not be predicted from the corresponding timecourses before

switching. While different cells must have different switch-

ing probabilities (due to extrinsic noise), the ones which

actually switch are picked randomly by fluctuations in the

number of molecules. This observation is in agreement

with the finding that noise in transcription from the comK
promoter was mainly intrinsic, i.e., that the transcription

probability from two copies of PcomK is uncorrelated (29).

Is the competence system multimodal?

We found that the maximum levels of ComK in the wild-

type strain were highly variable with two distinct levels.

This observation is reminiscent of a previous result reported

by Maamar and Dubnau (28) showing the existence of two

subpopulations with an intermediate and a high ComK-

expressing class of cells. Since their setup only allowed for

snapshots in time for a whole-cell population, they could

not resolve whether the cells expressing comK at interme-

diate levels had already reached their maximum. Using

single cell time-lapse microscopy, we showed that indeed

the intermediate fraction has already reached their maximum

ComK concentration.

Multimodality in the distribution of ComK of cells in the

K-state hints toward further distinguishable phenotypes.

There are two possible sources for multimodal expression:

stochastic bursting or a deterministic mechanism due to addi-

tional regulation circuits. Transcriptional bursts mediated by

slow promoter dynamics could lead to different protein

levels. Then, however, typical times for binding/unbinding

of transcription factors would need to be on the order of

several hours, as no transitions between the two levels are

evident. This is unlikely, as for prokaryotes it is known

that promoter dynamics are usually very fast. Translational

bursts might also lead to multimodality if mRNA dynamics

are much slower than protein dynamics. In that case, one

would expect to find multiple peaks in the protein distribu-

tion which are equidistant to each other. Again, the timescale

of mRNA dynamics would need to be on the order of hours

to explain the absence of transitions between the distribu-

tion’s modes. Since these two stochastic explanations seem

unlikely we suppose that a deterministic mechanism due to
additional regulatory circuits is responsible for the observed

multimodality. The circuit could couple into the dynamics

of the comK promoter, thereby altering the maximal

transcription rate (aM þ bM) by a significant amount. This

assumption would be consistent with the observation that

the intermediate peak is not present in the rok-strain, where

transcription rates are elevated. A more thorough under-

standing of the observed multimodality has to await further

experimental investigations.

A minimal model can describe the time course
of switching in individual cells

Here we presented a plausible two-component model incor-

porating well-known processes, intrinsic and extrinsic noise.

All parameters are taken directly from literature or within

biological meaningful ranges, and quantitative results

remarkably match those of the experimental system. Our

model covers the development of competence on the single

cell level which we also recorded experimentally. To include

escape from competence, extended models with further inter-

actions and more molecular species are necessary. Since the

mechanisms of escape from competence are as yet sketchy

and extended models tend to be less descriptive, we decided

to focus on competence onset and clarify it in detail. Of

special significance is the accordance in the timescale for

reaching the K-state, as well as in the fraction of cells attain-

ing competence. A discussion of the system gives straight

explanations of probabilistic and deterministic switching in

different B. subtilis strains.

For the wild-type, we identify the low-number mRNA

fluctuations about the mean value 1, together with a large

burst factor, as the outstanding source of fluctuations in the

vegetative state. While in exponential phase our model

predicts monostability (thereby forbidding switching), in

stationary phase, switching initiation is facilitated due to

the vicinity of B-state and threshold. Values of ComK satu-

rate in K-state, whose position is highly sensitive to extrinsic

noise, explaining broad distributions in saturation levels.

We see the minimal number of species and reaction

parameters as an advantage of our model as compared to

others (16,29). It grants an intuitive understanding of the

key properties of competence decision: the interplay of

low-number fluctuations and nonlinear dynamics.

Bistable versus excitable models

We focused on the time interval of transition from exponen-

tial to stationary phase. Similar to independent research

(5,27–29,32), we find that a model featuring bistability is

well fit to explain experiments performed in that temporal

regime. Studies characterizing the competence system as

excitable (15,16,31) focus on longer time intervals later in

stationary phase. They find that an indirect inhibition of

comS expression by ComK acts as a further feedback loop,

rendering the system excitable in a region of parameter

Biophysical Journal 96(3) 1178–1188
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space. These two different approaches appear to be contra-

dictory at first sight only: The models address experiments

using different strains and growth conditions. In particular,

these differences led to different length scales of the switch-

ing period, to different fractions of competent cells and

length of cell cycle. Another highly important difference is

that Suel et al. (16) observed initiation and decay of compe-

tence over a timescale of days without actively changing the

medium. The effect of quorum sensing and nutrient limita-

tion (that is known to initiate competence development

during entry into the stationary growth phase) is not explic-

itly involved in these studies, although change in cell

concentration under microscope conditions may have an

effect on the probability of switching initiation. In our exper-

iments, we explicitly included the effect of cell density by

continuously adjusting the medium thus simulating quorum

sensing.

At the transition from exponential to stationary phase, the

environment of a single cell, which couples into its dynamics

by quorum sensing, is not in equilibrium yet. This constantly

pushes the system away from steady state dynamics so that

slow processes (like indirect feedback) are of less impor-

tance. Furthermore, model parameters are influenced by

the overall state of the cell, so that the relative importance

of network components might change over time. These vari-

ations in parameters can also carry excitable systems into

regions of mono- or bistability (15,31). If indirect feedback

is bypassed cells are no longer excitable (15). From an evolu-

tionary point of view a system that initially reacts fast and in

a bistable manner to stressful conditions and then transits to

an excitable mode is meaningful: A fast response enhances

fitness, but only cells that can exit competence and reproduce

can make use of that advantage. If a first wave of transient

competent cells does not succeed in producing a beneficial

phenotype, there are always other individuals entering and

leaving the competent state.

All models identify noise as a necessary ingredient of the

competence decision network of B. subtilis, supporting the

idea of functional noise. Noise is needed to leave the vicinity

of a stable fixed and cross a threshold, which either leads to an

excursion in phase space or to the approach of another stable

fixed point. The origin of these fluctuations can be manifold

but were analyzed by Schultz et al. (31) in a systematic

way. There it was found that fluctuations in binding to the

protease complex can be neglected which we accounted for

by adiabatic elimination of this fast reaction. In previous theo-

retical studies (31,32), fluctuations in the mRNA were

ignored. However, since transcript numbers per cell are

extremely low, and promoter dynamics are usually assumed

to be fast in prokaryotes (4) we regard the finite number effect

of mRNA and the consequential translational bursting as the

main source of noise (1,4). Quantitative switching times

cannot be determined reliably if noise in mRNA levels is

neglected (38). If promoter dynamics are slow, the corre-

sponding fluctuations will leave their mark in the downstream
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mRNA, which amounts to large fluctuations in mRNA. Here

we showed that extremely low mRNA numbers coupled to

transcriptional bursting suffice to trigger crossing of threshold

and onset of competence in a stochastic manner.

The duration of the switching period
is intrinsically defined and robust toward
variations of the regulation circuit

We studied the switching kinetics of individual cells, depen-

dent on growth phase. Switching was accomplished after

a period of r ¼ 1.4 h in individual cells. One explanation

could be that dependent on growth phase an external signal

accumulated in the surrounding medium. However we

found, that overlaying switching curves between T0 and T4

did not reveal large variation, indicating the expression rate

and switching period did not depend on growth phase. We

therefore conclude that in the K-state expression of comK
and degradation of the protein equilibrate to a new steady

state, without further extracellular regulation. Furthermore,

we found that neither overproduction of the proteolysis

inhibitor ComS nor knockout of the repressor for comK tran-

scription had an effect on the length of the switching period,

indicating that the period is a robust property of the system.

Transition from stochastic to deterministic
switching at increased promoter activity

In the rok-strain, B-state and threshold are nonexistent in

stationary phase and render the system monostable, forcing

individuals into the K-state in a deterministic manner. Smits

et al. (27,39) and Maamar et al. (28) showed bistable

behavior in their rok-strain. Since we found deterministic

switching with different rok-strains both in real-time and in

bulk experiments, we attribute the difference to our more

rigorous quantification of fluorescence levels to determine

the threshold between cells in the B-state and cells in the

K-state. Furthermore, the close proximity to the stability

transition (Fig. 4 c) could explain that slightly different

growth conditions may have a strong effect on the stability

of the system.

CONCLUSION

Our combined experimental and theoretical approach

showed that the length of the switching period from the

B-state to the K-state of Bacillus subtilis is robust against

variations of regulation circuit of the master regulator for

competence and against the growth phase. Switching charac-

teristics of B. subtilis can be understood by a well-defined

two-component mathematical model that couples nonlinear

dynamics to probabilistic effects. The model quantitatively

retrieves the fraction of competent cells and the switching

period and predicts a transition from stochastic to determin-

istic genetic switching at increased basal transcription rate.
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Experiments verified this prediction. Furthermore, the model

explains the large fluctuations between individual cells in

comK expression in the K-state. We hypothesize that the

expression of late competence proteins may be induced

once a threshold concentration of ComK is reached and

that therefore the cell does not require tight control over

the saturation level of ComK.
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