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ABSTRACT We study the folding of small proteins inside confining potentials. Proteins are described using an effective poten-
tial model that contains the Ramachandran angles as degrees of freedom and does not need any a priori information about the
native state. Hydrogen bonds, dipole-dipole-, and hydrophobic interactions are taken explicitly into account. An interesting
feature displayed by this potential is the presence of metastable intermediates between the unfolded and native states. We con-
sider different types of confining potentials to describe proteins folding inside cages with repulsive or attractive walls. Using the
Wang-Landau algorithm, we determine the density of states and analyze in detail the thermodynamical properties of the confined
proteins for different sizes of the cages. We show that confinement dramatically reduces the phase space available to the protein
and that the presence of intermediate states can be controlled by varying the properties of the confining potential. Cages with
strongly attractive walls destabilize the intermediate states and lead to a two-state folding into a configuration that is less stable
than the native structure. However, cages with slightly attractive walls enhance the stability of native structure and induce
a folding process, which occurs through intermediate configurations.
INTRODUCTION

Protein folding is one of the most intensively studied and still

unsolved problems in biology. Many diseases such as Alz-

heimer and Parkinson are believed to be caused by the mis-

folding and aggregation of certain proteins (1–3). Although

in the last years several aspects related to the Levinthal’s par-

adox have been clarified with the help of lattice models and

other approaches (4–7), many questions regarding details of

the folding and misfolding mechanisms still remain open.

In this article, we focus on the problem of protein folding

assisted by Chaperones, which is one of the mechanisms

present in nature to avoid aggregation and misfolding. Chap-

erones are molecules in the form of a cage inside which

proteins fold correctly. Recently, some progress has been

achieved in the understanding of the folding of proteins

inside chaperones. These studies have shown that stability

and folding kinetics are strongly correlated with the geome-

try and the degree of confinement inside the cage (8–13).

However, many details of the folding under confinement still

remain uncovered.

In this work, we focus on the folding of the peptide V3-

loop, Protein Data Bank ID 1NJ0, and analyze it under

two kinds of time-independent confining potentials. The first

potential simulates a cage being composed by rigid walls,

while the second potential describes a cage with an attractive

inner surface. The influence of both potentials is reflected in

the thermodynamical properties, which we calculate using

the Wang-Landau algorithm (14,15).
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As one of the main results of this work, we obtain that the

folding process of V3-loop occurs through metastable inter-

mediate states (16), and that the presence of those states can

be controlled by the confining potential.

For the description of the protein, we use a force field that

does not depend on the previous knowledge of the native

structure and is also able to describe folding of proteins

into both helices and b-sheets with the same set of parame-

ters (17). In addition to this improvement, two new features

not reported previously are included: 1), the dipole-dipole in-

teraction between the CO-NH pairs lying on the amide plane;

and 2), the local hydrophobic interaction between neighbor-

ing residues, which takes into account the hydrophobic and

hydrophilic properties of the side chains. The sequence of

the amino acids is the only input of the force field.

The article is organized as follows. In Theory, we describe

the model used and the Monte Carlo method applied to

calculate the thermodynamical properties of the protein. In

Results and Discussion, we present our results and make

a careful analysis of our simulations and finally, we present

a summary.

THEORY

The model

The structure of the protein is simulated using the reduced

off-lattice model developed in Chen et al. (17). The amino

acids are represented by means of backbones. Each back-

bone contains the atoms N, Ca, C0, O, and H. The residues

are modeled as spherical beads, R, attached to the Ca values.

The only remaining degrees of freedom are the
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Ramachandran angles j and f. The values for the bond

lengths and angles are given in Solomons and Fryhle (18).

The force field containing all relevant interactions in the

protein is given by

EProtein ¼ ESteric þ EHB þ EDD þ EMJ þ ELocalHP; (1)

where ESteric represents a hard-core interparticle-potential

to avoid unphysical contacts, EHB accounts for the

hydrogen bonding, and EDD describes the dipole-dipole

interactions. EMJ is a distance-dependent version of the

Miyazawa-Jerningan (MJ) matrix (19), which describes

the interactions between residues. ELocalHP accounts for

local hydrophobic effects. The role of the presence of

water molecules is taken into account by the terms EMJ

and ELocalHP. It is important to point out that EMJ partially

includes the effect of water polarization (20). The values

of the parameters of this potential are given in the original

work by Chen et al. (17).

In addition to EProtein we add a term to simulate the

confinement of the protein within the cage. This is accom-

plished in the present work by using two different kinds of

spherically symmetric potentials depending on a radius Rc,

which is a measure of the size of the cage. In a first approach,

we use an external potential V1(r) which allows the protein

to fold freely for distances r smaller than Rc, but has

a strongly repulsive part for larger distances, simulating

the presence of the walls of the cage. The potential V1(r)

reads (11)

V1ðrÞ ¼
0:01

Rc

�
er�Rcðr � 1Þ � r2

2

�
; (2)

where r ¼ j~Rj denotes the position of each residue.

Since V1(r) might represent a too-simple description of the

confining potential of a chaperon, we also investigate the ef-

fect of an external potential V2(r) simulating attractive walls

(21), which reads

V2 ¼ 4�oh
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The physical meaning of the different parameters in Eq. 3

can be described as follows. A uniform distribution of beads

spreads out on the surface of the cage with a number density

1/s2. The parameter e is used to simulate the degree of attrac-

tion of the inner surface of the cage. A wall with a purely at-

tractive lining has a value of e¼ 1 whereas a purely repulsive

lining has a value e ¼ 0. In Eq. 3, we set eh ¼ 1.25 kcal/mol

and s ¼ 3.8 Å. The external potential V1(r) has the only

effect of confining the protein inside the cage whereas the

external potential V2(r) interacts with the protein by slightly

reducing its energy as e increases. As a consequence, the res-

idues tend to be far apart of each other in the region close to

the walls of the cage.
Simulations

Various methods based on Monte Carlo (MC) simulations

have been proposed to compute the thermodynamical prop-

erties of finite systems. They include, for instance, multica-

nonical simulations (22) and simulated annealing (23). In

this work we use the Wang-Landau algorithm (14), also in-

cluding a recent improvement introduced by Pereyra et al.

(15). One of the main advantages of Wang-Landau simula-

tions is that they allow us to obtain directly the density of

states (DOS) of the system, which is, of course, independent

of the simulation temperature. Once the DOS is known, one

can obtain all the thermodynamical properties of the system

at any temperature. Within this framework, the transition

probability between two conformations before and after

a MC trial move, X1 and X2 respectively, is calculated as

PðX1/X2Þ ¼ min

�
1;

gðX1Þ
gðX2Þ

�
; (4)

where g(X) is the DOS of the system and X is a generalized

coordinate, which in our case is represented by a vector with

two entries X ¼ (E, Q), being E the configurational energy

and Q the end-to-end distance of the protein structure.

Note that Q can be interpreted as an order parameter for

the folding (unfolding) transition.

The original scheme developed by Wang and Landau (14)

can be briefly described as follows: one sets the initial func-

tion g(X) together with an auxiliary histogram H(X) to be

equal to 1. Then, each time the bin X is visited, one updates

the histogram H(X) and modifies g(X) as gðXÞ/gðXÞ � f ,

with f ¼ e ¼ 2.718281. . This procedure is continued until

a flat histogram (with a certain significance, i.e., 80%) is ob-

tained. At this step, the histogram H(X) is reset and the factor

f is reduced. The usual way to perform this reduction is by

taking fiþ1 ¼
ffiffiffi
fi
p

. Convergence is achieved when a value

for fiþ1 close enough to 1 is obtained. The last step must

be compatible with the desired accuracy, for example f ¼
exp(10�7).

We use the modified Wang-Landau approach proposed in

Berlardinelli and Pereyra (15), which has been shown to

speed up simulations and to partially avoid the problem of

saturation error. According to the new scheme, one does

not need to wait until the histogram H(X) is flat, but it is

enough to require that all the entries of H(X) are visited.

Then H(X) ¼ 0 is reset, and fiþ1 ¼
ffiffiffi
fi
p

is updated.

Following Berlardinelli and Pereyra (15), we employ

a second histogram H2(X) which is never reset during the

whole simulation and define the Monte Carlo time-step as

t ¼ j/N, with N being the number of points in the energy

axis and j the number of trial moves performed. If fiþ1 %
t�1 then fiþ1 ¼ f(t) ¼ t�1, and from this point on, f(t) is

updated at each Monte Carlo time step. H(X) is not used dur-

ing the rest of the calculation. Convergence is achieved when

f(t) < ffinal. In the present simulations we used ffinal ¼
exp(10�7). Finally, the thermodynamical properties of the
Biophysical Journal 96(3) 1076–1082
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system such as the free energy F(T), internal energy U(T),

entropy S(T), and specific heat C(T) can be calculated from

g(X). For the specific case treated in this work, where X ¼
(E, Q), the corresponding definitions read as

FðTÞ ¼ �kBT ln

�Z
dE

Z
dQ gðE;QÞe�bE

�
; (5)

UðTÞ ¼ hEiT¼
R

dE
R

dQ EgðE;QÞe�bER
dE
R

dQ gðE;QÞe�bE
; (6)

SðTÞ ¼ UðTÞ � FðTÞ
T

; (7)

CðTÞ ¼
	
U2



T
�hUi2T

kBT2
; (8)

where b ¼ 1/kBT and kB is the Boltzmann constant. The free

energy landscape as a function of E and Q can be computed

as

FðE;QÞ ¼ �kBT ln

�
gðE;QÞ e�bER

dE
R

dQ gðE;QÞ e�bE

�
; (9)

and

FðEÞ ¼ �kBT ln

� R
dQ gðE;QÞe�bER

dE
R

dQ gðE;QÞe�bE

�
: (10)

RESULTS AND DISCUSSION

We focused our attention on a peptide composed of 16 amino

acids with PDB code 1NJ0 to study the folding mediated by

confining potentials. This peptide conforms to the V3-loop

of the exterior membrane glycoprotein of the Human Immu-

nodeficiency Virus type 1.

To explore the relevant part of the phase space of the pro-

tein we have chosen an energy window between �132.0

kcal/mol and �30 kcal/mol and the end-to-end distance Q
ranging from 5 Å to 50 Å. This region is enough to cover

both the highly ordered structures (present at T ~ 0) and

the fully disordered random coils (stable for T ~ N). The

MC search was generated by changing each pair of Rama-

chandran angles ji and fi at each MC step using cutoffs

with values jDjcj % 40� and jDfcj % 40�. To reach

ffinal ¼ exp(10�7), 8 � 109 trial moves were necessary.

We first analyze the properties of the peptide without con-

finement (bulk case). The obtained ground-state structure of

the V3-loop is depicted in Fig. 1. It consists of a b-sheet

structure with energy ~�132.0 Kcal/mol and an end-to-end

distance of ~5.5 Å.

A new feature described by our force field is the presence

of intermediate structures between the native (N) and the

unfolded (U) states as shown in Fig. 2 (16). We obtain two

intermediate states in the free energy profile F(E) at the tran-

sition temperature. The intermediates, denoted as I1 and I2 in
Biophysical Journal 96(3) 1076–1082
the figure, appear as local minima of F(E) versus E. To ana-

lyze the nature of the intermediate states we have split the en-

ergetic and entropic parts of the free energy. Results indicate

FIGURE 1 Ground-state structure (b-sheet) of the peptide 1NJ0

(Eg ~ �132.0).

FIGURE 2 Free energy as a function of the configurational energy E for

the bulk (Rc / N) showing the presence of the native (N), the intermediate

(I1, I2), and the unfolded (U) states.
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that the intermediates are mainly stabilized by their energy,

but that there is a nonnegligible entropic contribution.

The next problem to be addressed is the influence of con-

finement on the free energy landscapes and folding behavior

of the V3-loop. For this purpose, we calculated first the DOS

and the specific heat of the protein assuming the rigid-wall

confining potential V1(r) described above. We considered

different cage-diameters (Rc ¼ 15 Å, 20 Å, and 25 Å). In

Fig. 3 a, we show influence of V1(r) on the behavior of the

DOS. Note that, due to confinement, log [g(E)] considerably

decreases at high energies compared to the bulk case (Rc /
N). For energies close to the ground state, log [g(E)] does

not exhibit any noticeable change because the protein is al-

most folded. Since its gyration radius in the ground state is

Rg ~ 13 Å, barriers of radii equal or larger than 15 Å do

not affect folded structures. This result is consistent with

the intuitive picture that cages, for instance chaperones, re-

strict the otherwise huge phase space for high energies, mak-

ing the number of available structures, and consequently the

entropy, considerably smaller than in absence of a cage. The

effect of confinement can be also observed in the specific

heat of the V3-loop, which we show in Fig. 3 b. Here, we

plot the specific heat for different values of the cage radius

(15 Å, 20 Å, 25 Å) and for the bulk case (Rc / N) as a func-

tion of T/T0
f, where T0

f ¼ 321 K is the transition (unfolding)

temperature in absence of a cage. The effect of the rigid-wall

potential V1(r) is to increase the transition temperature (see

Table 1) and to make the curve of the specific heat broader

as the radius of the cage decreases. A broader curve means

that there are more structures with energies close to the na-

tive state than in the bulk-case, where only the native state

FIGURE 3 (a) Logarithm of the density of states (DOS) g(E) of the

protein inside the confining potential V1(r) and for different values of Rc

(15 Å, 20 Å, 25 Å) as well as for the bulk case. One notices the remarkable

decrease of the DOS for decreasing Rc. (b) Specific heat for the bulk case and

for confining potentials with radii 15 Å, 20 Å, and 25 Å. Tf ¼ 321 K is

the transition temperature in the bulk case. Tf increases as the radius Rc

decreases. The confining potential in panels a and b is purely repulsive.
is the most important compact structure. For radii larger

than 25 Å, the transition temperatures are equal to T0
f within

the statistical error of our simulations. We conclude that the

protein is more stable as the radius of the cage decreases.

This results are in agreement with Rathore et al. (11), in

which Monte Carlo simulations were used, and with Takagi

et al. (9) and Lu et al. (21), where Langevin simulations were

performed. It is important to mention, however, that in those

cited simulations a simplified G�o-type force field was used.

Thirumalai et al. (24) made a considerable improvement to

the force field by introducing the effect of the nonnative in-

teractions. However, important interactions such as dipole-

dipole and hydrogen bonds were not taken into account.

The presence of intermediates was not reported either in

those studies.

The main goal of this article is the study of the influence of

confinement on the potential landscape and, consequently,

on the stability of the native and intermediate states. Note

that the intermediates can be better characterized by analyz-

ing the free energy F as a function of both the energy E and

the order parameter Q. In Fig. 4 a, we show the contour plot

of F(E, Q) for the bulk case. Clearly, the two intermediate

structures, which we denote as I1 and I2, can be identified

as local minima of F(E, Q). It is important to point out that

the values of the end-to-end distance Q in the intermediates

I1 and I2 are larger than in the native structure, but smaller

than in the unfolded state. Fig. 3 a shows the importance

of choosing the adequate order parameters to plot the free

energy.

To study the effect of a cage with purely repulsive walls

(potential V1(r)) we have determined F(E, Q) for different

values of the cage-radius Rc. In Fig. 4, b–d, we show the

corresponding contour plots for Rc ¼ 25 Å, Rc ¼ 20 Å, and

Rc ¼ 15 Å, respectively. The different minima of F(E, Q)

are shown together with representative snapshots of the

corresponding structures. The main effect of the cage of

Rc ¼ 25 Å is to restrict the size of the unfolded states (U),

which is reflected in a shift of the local U-minimum to

a smaller value of Q (see Fig. 4 b). Further decrease of Rc leads

to a stronger reduction of the size of the unfolded states. For

example, for Rc ¼ 15 Å the local U-minimum is situated at

Q ~20 Å, i.e., which means that the end-to-end distance

of the unfolded states has been halved in value with respect

to the bulk case. This can also be observed by the change in

the form of the unfolded structures shown in the figure. Inter-

estingly, there is also a small shift of the U-minimum to lower

TABLE 1 Transition temperatures Tf for different values of the

radius Rc of the potential V1(r) (see main text)

Temperature (K) Radius (Å)

329.2 15

323.4 20

323.2 25

321.0 N

Note that Tf decreases for increasing Rc.
Biophysical Journal 96(3) 1076–1082
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FIGURE 4 Contour plots of the free

energy landscape F(E, Q) as a function

of the configurational energy E and the

end-to-end distance Q for a purely

repulsive confining potential. Plots a–d

correspond to the bulk case and cages of

radius 15 Å, 20 Å, and 25 Å, respec-

tively. The unfolded states are strongly

affected when the size of the cage de-

creases. The native state and the inter-

mediates are only slightly modified. The

contour lines represent the free energy

difference with respect to the native

state and are given in Kcal/mol K.
energies for decreasing Rc. This is simply because strong spa-

tial confinement necessarily leads to the formation of contacts

which were not present in the bulk. The shift of the U-mini-

mum to lower energies also explains the reduction of the

DOS upon confinement shown in Fig. 3 a.

In contrast to the unfolded states, the native structure is

practically not affected by confinement, at least up to Rc ¼
15 Å, and the position of the N-minimum remains almost

unchanged (see Fig. 4).

Different and interesting features are observed in the

behavior of the intermediate states I1 and I2 upon repulsive

confinement. In the bulk, the minima corresponding to the

intermediates are well defined and separated by a potential

barrier. Although both the position of the minima and the

structure of the intermediates remain unchanged when the

radius of the cage is reduced, the depth of the energy minima

and the potential barrier between them decrease. Already for

Rc¼ 20 Å, both minima start to merge and form an extended

and shallow minimum. This effect is even stronger for Rc ¼
15 Å. Note that this happens when the radius of the confining

potential becomes comparable to the end-to-end distance of

the intermediate states in the bulk.

Now, we report on the influence of hydrophobic effects in

the inner surface of the cage. Attractive cage-walls were con-

sidered by using the confining potential V2(r) (Eq. 3) with ra-

dius Rc ¼ 30 Å. The degree of attraction is described by the

coefficient e. A completely attractive cage-wall is obtained

when e ¼ 1.0, whereas e ¼ 0.0 corresponds to a completely

repulsive or neutral inner surface of the cage. The effect of e

can be visualized in the following way: as e increases from

0 to 1, the walls of the cage tend to attract the residues be-

cause of the relative minimum generated by the potential

V2(r). The deepest minimum of V2(r, e) is reached when

e ¼ 1.0 and corresponds to Vmin
2 ~5 Kcal/mol. This energy

is comparable to the energy required to break one hydrogen

bond, DEHB ~ 4.8 Kcal/mol. Therefore, for e ~ 1.0 the poten-
Biophysical Journal 96(3) 1076–1082
tial is able to destroy the structure of the protein (denatur-

ation).

The influence of the confining potential V2(r) on the DOS

of the protein is shown in Fig. 5 a, where different degrees of

attraction and the bulk case are considered. Two clear fea-

tures can be distinguished. First, the DOS at energies close

to the native state increases for increasing e. This means

that the potential landscape is changed near the global

minimum. Furthermore, for large energies one can clearly

observe a dramatic reduction of g(E) by up to ~13 orders

of magnitude as e goes from 0 to 1. However, this remarkable

FIGURE 5 (a) Logarithm of the DOS g(E) for different degrees of hydro-

phobicity (e ¼ 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) and for the bulk case. Notice

the abrupt decay of g(E) by ~13 orders of magnitude as e goes from 0.0 to

1.0. For high values of e, the protein tends to be in the unfolded state. (b)

Specific heat of the protein for different values of e, 0.0, 0.2, 0.4, 0.6, 0.8,

and 1.0, compared to the bulk case. Tf ¼ 321 K is the transition temperature

for the bulk. Notice how Tf and the peak of the specific heat decrease as

e goes from 0 (purely repulsive wall) to 1 (strongly attractive wall).
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reduction of the phase space in this case does not help the

protein to fold correctly but forces it to acquire a denatured

conformation. This effect occurs because the peptide de-

creases its energy by placing some of the residues close to

the border of the cage. Then, the number of accessible states

at those energies decreases and residues are no longer al-

lowed to be far apart from the border, since it would cost

much energy. As a consequence, the peptide sticks to the

wall of the cage.

The influence of the potential V2(r) on the specific heat

C(T) is shown in Fig. 5 b. As e increases, the curve C(T) be-

comes broader. The transition temperatures for different

values of e and for the bulk case are presented in Table 2. In-

terestingly, for e ¼ 0–0.4 we obtain an increase of the tran-

sition temperature compared to the bulk case. The range

0.3 % e % 0.4 seems to be the optimal one regarding stabil-

ity. For that range of e, the protein is more stable than in the

absence of a cage. For higher values of e, the transition tem-

peratures become lower. For e¼ 1.0, the curve of the specific

heat is extremely broad and attenuated, reflecting the fact that

the protein is almost denatured.

One of the main results of this article is illustrated in

Fig. 6, where we show the contour plots the free energy

TABLE 2 Transition temperatures Tf for the confining potential

V2(r) (see main text) for different degrees of hydrophobicity,

e ¼ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, and for the bulk case

Temperature (K) Radius (Å)

321.0 Bulk

324.2 e ¼ 0.0

324.1 e ¼ 0.2

314.5 e ¼ 0.4

292.1 e ¼ 0.6

253.5 e ¼ 0.8

— e ¼ 1.0

Notice that in general Tf decreases as e increases. For e ¼ 1.0 it is not pos-

sible to define Tf because the specific heat is almost completely attenuated.
F(E, Q) for different values of e. The radius of the cage is

equal to 30 Å in all cases.

For e ¼ 0 (Fig. 6 a), the presence of the native state (N),

the intermediates (I1 and I2), and the unfolded states (U)

can be clearly observed. The increase of e leads to an effec-

tive increase of the confinement, and also to the presence of

shallower minima for the intermediate states. For e ¼ 0.4

(Fig. 6 b), the global minimum and the three local minima

can still be distinguished. However, the intermediates be-

come almost unstable and the energy landscape has practi-

cally only two well-defined minima. A further increase of e

completely changes the energy landscape. For e ¼ 0.6

(Fig. 6 c), the native state and the intermediates I1 and I2

are no longer present. Instead, a new intermediate state N0

appears, which has more native contacts than I1 and I2, but

less than N, and exhibits a much lower value of energy E.

By looking at the structure corresponding to the minimum

denoted by N0 it is clear that is very similar to N, but not

completely folded. We interpret that the N0 state is a slight

deformation of the native state produced by the presence

of attractive wall. Note that also the U-minimum is shifted

to much lower energies. This clearly indicates that the pro-

tein sticks to the wall of the cage. The net effect is that the

potential landscape shows for this value of e a two-state sit-

uation. Finally, for e¼ 0.8 (Fig. 6 d), only the unfolded states

are present.

Jewett et al. (13) showed that, for a particular protein, one

metastable state might exist in the presence of a weakly hy-

drophobic barrier. In this work and for the peptide V3-loop

we obtain a different result, namely, that the protein shows

a folding behavior through intermediates in the bulk, but

an attractive barrier with an optimum degree of hydrophobic-

ity can lead to weakening the intermediate states and induc-

ing a quasi two-state folding process.

Summarizing, we have studied the folding of the peptide

1NJ0 under different kinds of confining potentials. We
FIGURE 6 Contour plots of the free

energy landscape F(E, Q) for a cage

with attractive inner surface. Different

degrees of hydrophobicity are displayed

in plots a–d, corresponding to e ¼ 0.0,

e ¼ 0.4, e ¼ 0.6, and e ¼ 0.8, respec-

tively. The native and the intermediates

states are slightly modified for 0.0 <

e < 0.4 but for larger values of e the

intermediate states disappear and the

native structure is deformed. As a conse-

quence, F(E, Q) represents a two-states

landscape. The contour lines represent

the free energy difference with respect

to the native state and are given in

Kcal/mol K.
Biophysical Journal 96(3) 1076–1082
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used a force field which is independent on the native struc-

ture and includes relevant interactions such as the dipole-di-

pole and hydrogen bonds. We demonstrated the presence of

intermediate states not reported before. These intermediates

are strongly affected by the confining potentials.

P.O. thanks the Deutscher Akademischer Austausch Dienst for the financial

support for his PhD.
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