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Abstract
Hepatic steatosis affects 20% to 30% of the general 
adult population in the western world. Currently, 
the technique of choice for determining hepatic fat 
deposition and the stage of fibrosis is liver biopsy. 
However, it is an invasive procedure and its use is 
limited, particularly in children. It may also be subject 
to sampling error. Non-invasive techniques such as 
ultrasound, Computerized tomography (CT), magnetic 
resonance imaging (MRI) and proton magnetic 
resonance spectroscopy (1H MRS) can detect hepatic 
steatosis, but currently cannot distinguish between 
simple steatosis and steatohepatitis, or stage the 
degree of fibrosis accurately. Ultrasound is widely 
used to detect hepatic steatosis, but its sensitivity is 
reduced in the morbidly obese and also in those with 
small amounts of fatty infiltration. It has been used 
to grade hepatic fat content, but this is subjective. CT 
can detect hepatic steatosis, but exposes subjects to 
ionizing radiation, thus limiting its use in longitudinal 
studies and in children. Recently, magnetic resonance 
(MR) techniques using chemical shift imaging have 
provided a quantitative assessment of the degree of 
hepatic fatty infiltration, which correlates well with 
liver biopsy results in the same patients. Similarly,  
in vivo  1H MRS is a fast, safe, non-invasive method for 

the quantification of intrahepatocellular lipid (IHCL) 
levels. Both techniques will be useful tools in future 
longitudinal clinical studies, either in examining the 
natural history of conditions causing hepatic steatosis 
(e.g. non-alcoholic fatty liver disease), or in testing 
new treatments for these conditions.
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INTRODUCTION
In humans, adipose tissue is an important “energy bank” 
in which excess energy is stored and then released to 
meet the energy needs of  the body. In the fed state and 
during periods of  excess calorie intake, the excess energy 
is stored within adipose tissue as triglycerides. In the 
fasting state and during starvation, triglycerides within 
adipose tissue can be rapidly broken down by hormone-
sensitive lipase to generate fatty acids. Oxidation of  fatty 
acids releases more energy than that of  carbohydrate, 
protein or triglycerides. Fatty acids are thus the most 
efficient “fuel” to meet the body’s energy needs[1].

In addition to playing an important role in energy 
homeostasis, adipose tissue is now well recognised as 
an endocrine organ[2,3]. It is known to produce and 
secrete a wide variety of  bioactive peptides, known 
as adipokines. These include proteins, such as leptin, 
adiponectin, resistin, as well as the recently described 
visfatin and retinol binding protein 4[4-8]. In addition, 
proinflammatory cytokines, such as tumour necrosis 
factor alpha and interleukin-6, and acute phase reactants, 



such as C-reactive protein are also secreted by the 
adipocyte. All of  these adipokines may act at both a local 
(paracrine) and systemic (endocrine) level and contribute 
to the development of  obesity-related disorders, such 
as insulin resistance, Type 2 diabetes and cardiovascular 
disease[2,3].

Adipose tissue stores may become saturated, either 
due to failure to develop adequate adipose tissue mass 
(lipodystrophy), or to expand these stores sufficiently to 
accommodate increased energy intake. When this occurs, 
lipid starts to accumulate in non-adipose cells. Ectopic 
storage of  lipids in organs, such as the liver, skeletal 
muscle and pancreas (the “lean body mass”) is thought 
to play a critical role in the development of  insulin 
resistance and Type 2 diabetes[9]. The accumulation of  
ectopic fat has been shown to affect both renal and 
cardiovascular function and may contribute to the 
development of  cardiovascular disease[10].

Evidence to support the hypothesis that ectopic fat 
accumulation plays a crucial role in insulin resistance 
comes from the study of  subjects with lipodystrophies. 
These subjects have insufficient adipose tissue mass and 
hence store excess energy as triglycerides within organs, 
such as liver and skeletal muscle. As a result, individuals 
may develop insulin resistance and are at increased risk 
of  developing Type 2 diabetes[11-14].

RELEVANCE OF HEPATIC FAT 
ACCUMULATION
Fatty infiltration of  the liver is not a new phenomenon. 
However, until the last few decades, fatty liver, 
particularly that associated with insulin resistance 
rather than alcohol excess-“non-alcoholic fatty liver 
disease”, was considered to be a relatively benign 
condition. This notion was challenged when several 
reports documented the development of  liver failure 
in some patients following jejunal bypass operations 
for morbid obesity[15-17]. The liver histology in such 
patients was indistinguishable from that seen in 
alcoholic steatohepatitis[18]. Similar hepatic lesions 
were subsequently described in obese patients who 
had neither abused alcohol nor undergone bariatric 
surgery[19-21] and in patients with diabetes mellitus[22-24]. In 
1980, Ludwig and colleagues introduced the term “non-
alcoholic steatohepatitis” (NASH) to describe these 
histological findings in patients who did not consume 
alcohol[25]. A variety of  other terms have been used to 
describe this entity with non-alcoholic fatty liver disease 
now being the preferred term.

Accumulation of  fat within the liver is of  particular 
importance in that, over time, it may lead to the 
development of  steatohepatitis and ultimately cirrhosis, 
end-stage liver failure and hepatocellular carcinoma[26-29].

MECHANISMS OF HEPATIC FAT 
ACCUMULATION
The mechanisms leading to hepatic fat accumulation 

remain poorly understood. The liver synthesizes 
triglycerides from free fatty acids. Free fatty acids are 
derived from lipolysis of  triglycerides within adipose 
tissue, diet or de novo lipogenesis[1]. Once taken up by 
the liver, free fatty acids can either be oxidised in the 
mitochondria to form adenosine triphosphate (ATP), 
or esterified to produce triglycerides for storage, or 
incorporated into very low density lipoprotein (VLDL) 
particles. Triglycerides accumulate in the liver when their 
synthesis exceeds their export via VLDL[1,30,31]. 

The development of  non-invasive techniques for 
assessing hepatic fat content in vivo in humans has 
renewed interest in studying the mechanisms leading 
to hepatic fat accumulation. Ultrasound, computerized 
tomography (CT), magnetic resonance imaging (MRI) 
and proton magnetic resonance spectroscopy (1H MRS) 
have all played a prominent role in this. 

METHODS TO STUDY HEPATIC FAT
Currently, the gold standard for determining hepatic 
fat severity and morphology is a liver biopsy[31,32]. 
However, this procedure has several drawbacks, 
including discomfort, owing to its invasive nature, risk 
of  infection, haematoma formation, or more significant 
internal bleeding, and biliary leakage. Furthermore, 
biopsies are subject to sampling error, because less 
than 1/50 000th of  the liver is available for histological 
analysis.

Non-invasive imaging techniques, such as ultrasound, 
Computerized tomography (CT), magnetic resonance 
imaging (MRI) and proton magnetic resonance 
spectroscopy can detect fatty infiltration of  the liver, 
but unlike liver biopsy, they are limited in their ability to 
detect coexisting inflammation or fibrosis.

NON-INVASIVE TECHNIQUES FOR 
ASSESSING HEPATIC FAT CONTENT
Ultrasound
Hepatic ultrasound is a simple, non-invasive technique, 
which is widely used in clinical practice to detect fatty 
infiltration of  the liver. As shown in Figure 1, hepatic 
steatosis causes increased echogenicity on ultrasound, 
so that liver appears brighter than the cortex of  the 
ipsilateral kidney[33,34].

Diffuse hepatic steatosis and diffuse fibrosis can 
have similar sonographic appearances and therefore it 
can sometimes be difficult to distinguish between them. 
Some groups have used the term “fatty fibrotic pattern” 
to describe this pattern of  increased echogenicity, 
although the echo shadows tend to be coarser in the 
presence of  pure fibrosis[35,36].

In some cases, fatty infiltration of  the liver may be 
patchy, rather than diffuse, in distribution. The non-
uniformity may be so marked that the fat is deposited 
in one well-circumscribed region (focal fatty infiltration) 
or, alternatively, discrete areas of  liver parenchyma 
remain uninvolved when the remainder of  the liver is 
diffusely infiltrated with fat (focal fatty sparing). Both 
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conditions may create diagnostic problems for the 
radiologist. For example, with focal fatty sparing, if  the 
increased echogenicity of  the majority of  the liver is not 
appreciated, then the area of  normal hepatic parenchyma 
may be misinterpreted as a pathological hypoechoic 
lesion[37]. If, however, the increased echogenicity of  the 
remainder of  the liver is appreciated, then the area of  
normal hepatic parenchyma may be helpful in making 
the diagnosis of  fatty change[38].

Several studies have assessed the sensitivity and 
specificity of  ultrasound for detecting hepatic steatosis. 
In these, the sensitivity ranged from 60% to 94% and the 
specificity from 84% to 95%, respectively[35,39-41]. Another 
study combined fatty change with fibrosis and obtained 
a sensitivity of  98.7% and specificity of  94% for the 
“fatty fibrotic pattern”[42]. The sensitivity of  ultrasound 
increases with increasing degrees of  fatty infiltration. For 
example, in the presence of  hepatic fat content of  10% 
to 19%, it has a sensitivity of  55%, which rises to 80% 
in the presence of  > 30% fatty infiltration[43]. However, 
in the presence of  morbid obesity (defined by a body 
mass index > 40 kg/m2), the sensitivity and specificity 
of  ultrasound fall to 49% and 75%, respectively, possibly 
due to technical problems in performing ultrasound in 
such patients[44].

Whereas ultrasound is a useful technique for 
detecting hepatic steatosis, particularly in severe cases, it 
is unable to provide a precise determination of  hepatic 
fat content. Grading of  hepatic fat content into broad 
categories (mild, moderate and severe steatosis) has been 
reported, using diagnostic criteria, based upon the visual 
assessment of  hepatic echogenicity[35,41,42,45,46]. However, 
all of  the above studies found the grading of  hepatic fat 
content using ultrasound to be somewhat subjective. In 
addition, the most recent ones showed that ultrasound is 
very poor at discriminating small changes in hepatic fat 
content. For example, Fishbein and colleagues suggested 
from their study that an individual with hepatic steatosis 
undergoing a reduction of  MRI hepatic fat fraction from 
40% to 20% through successful intervention, would be 
unlikely to have a corresponding alteration in ultrasound 
appearance[45].

The operator dependency of  ultrasound, its inability 
to precisely quantify hepatic fat content, and its inability 
to detect small changes in liver fat with time, all 
potentially limit its use in longitudinal clinical studies.

Computerized tomography
Contrast-unenhanced Computerized tomography (CT) 
is the most accurate CT technique used to detect and 
characterise hepatic steatosis[47]. The CT diagnosis of  
hepatic steatosis is made by measuring the difference in 
liver and spleen attenuation values in Hounsfield units[48]. 
In individuals without hepatic steatosis, the mean 
attenuation value for the liver is at least 4 Hounsfield 
units greater than for the spleen[48]. However, in subjects 
with hepatic steatosis, the mean attenuation value for 
the liver is lower than that for the spleen, so the liver 
appears darker than the spleen, rather than brighter. 
This lower attenuation of  the liver in hepatic steatosis is 
thought to be secondary to the accumulation of  lipids 
(triglycerides and cholesterol) within the hepatocytes[49]. 
With severe hepatic steatosis, there is more marked 
contrast between the liver and intrahepatic vessels. The 
increased brightness of  the vessels relative to the liver 
parenchyma may erroneously suggest the use of  contrast 
(Figure 2)[36].

Great care should be taken in diagnosing fatty 
infiltration of  the liver on contrast-enhanced CT 
scans because contrast injection rate and timing of  
measurements can significantly influence the optimal 
liver-minus-spleen attenuation difference for diagnosing 
fatty liver[50,51]. It has been suggested that muscle, rather 
than spleen, may be a better qualitative standard of  
reference for diagnosing fatty liver on contrast-enhanced 
CT, and that fatty liver can be diagnosed if  the liver has a 
lower attenuation value than muscle[52]. However, such a 
comparison works only if  the degree of  fatty infiltration 
is severe.

Although non-contrast-enhanced CT is very good 
for the qualitative diagnosis of  macrovesicular steatosis 
of  30% or greater, there is conflicting evidence to as 
to whether or not it can accurately quantify hepatic 
fat content. Some studies have demonstrated that 

Liver

Right renal cortex

Figure 1  Ultrasound findings in hepatic steatosis. The steatotic liver is hyper-
echoic, compared to the cortex of the right kidney. In addition, there is posterior 
attenuation of the ultrasound beam and reduced definition of the portal vein 
walls.

Hepatic vessels

Liver

Figure 2  CT findings in hepatic steatosis. In this contrast unenhanced scan, 
the liver appears darker than the spleen and the hepatic vessels appear bright. 
The increased brightness of the vessels relative to the liver parenchyma may 
erroneously suggest the use of contrast.
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both the CT numbers for the liver and the ratio of  
CT numbers for the liver and the spleen show a good 
inverse correlation with the degree of  steatosis seen on 
liver biopsy[47,53,54]. Nevertheless, it should be noted that 
a more recent study by Park and colleagues concluded 
that the diagnostic performance of  unenhanced CT for 
quantitative assessment of  macrovesicular steatosis is not 
clinically acceptable[55]. In addition, CT scanning has the 
drawback of  exposing subjects to ionizing radiation. The 
above two factors limit its potential use in longitudinal 
studies and in children.

Magnetic resonance imaging and proton magnetic 
resonance spectroscopy
Principles of  magnetic resonance imaging and 
spectroscopy: The nuclear magnetic resonance (NMR) 
phenomenon was first reported by Bloch et al in 1946[56]. 
NMR techniques exploit the behaviour of  certain atomic 
nuclei in an externally applied magnetic field. Magnetic 
resonance sensitive nuclei, such as hydrogen-1 (1H), 
carbon-13 (13C), nitrogen-15 (15N) and phosphorous-31 
(31P) possess the quantum mechanical property of  “spin”,  
a source of  angular momentum intrinsic to nuclei with 
an odd mass number. When placed in a magnetic field 
they behave like magnetic dipoles, aligning parallel 
to or against the axis of  the applied static magnetic 
field. When excited by irradiation with non-ionizing 
radiofrequency (rf) energy, this alignment of  the nuclei 
is disturbed. During relaxation following excitation, the 
nuclei return to their original orientation, giving off  a 
radiofrequency signal, which may then be detected by 
a receiver coil. This signal, known as the free induction 
decay (FID), can be resolved by a computer-based 
mathematical process known as Fourier transformation 
into either an image, providing anatomical information 
(MRI) or a frequency spectrum, providing biochemical 
information (MRS)[57,58], as shown in Figure 3. 

MAGNETIC RESONANCE IMAGING
Nuclei from individual metabolites resonate at a given, 
but unique frequency, depending on the molecular 
structure of  each compound. This is known as chemical 
shift and occurs because nuclei in different chemical 
environments experience slightly different magnetic field 
strengths. This variation in magnetic field strength results 
from the intrinsic “shielding” offered by the nearby 
electrons, which partially counteract the force of  the 
main magnetic field. For example, the hydrogen nuclei in 
water (O-H bond) have less surrounding electrons than 
the hydrogen nuclei in lipid (C-H bond), so experience 
a slightly stronger magnetic field and, as a result, rotate 
at a slightly higher resonance frequency. The differences 
are extremely small and are typically measured using the 
dimensionless unit, parts per million (ppm)[59].

Chemical shift MR imaging utilises this difference in 
resonance frequency of  water and lipid to differentiate 
tissues containing only water from those containing both 
water and lipid[60], as illustrated in Figure 4.

Applying this  pr inciple,  Dixon developed a 
modified spin echo technique, now widely known as 
the Dixon method[61]. Using this technique, Lee and  
co-workers scanned the livers of  five humans, two 
healthy volunteers with no evidence of  liver disease and 
three patients with CT evidence of  fatty infiltration of  
the liver[62]. In the subjects with CT evidence of  hepatic 
fatty infiltration, there was a notable loss of  signal 

FID

Frequency

Intensity

Figure 3  Principles of magnetic resonance. The magnetic resonance (MR) 
signal or free induction decay (FID) may be converted by the mathematical 
process of Fourier transformation to form anatomical information (MR imaging) 
or localised biochemical information (MR spectroscopy). Modified from Taylor-
Robinson SD Applications of magnetic resonance spectroscopy to chronic 
liver disease. Clin Med 2001; 1: 54-60 Copyright © 2001 Royal College of 
Physicians. Adapted by permission.

Figure 4  In and opposed phase MR images of a liver illustrating the signal 
drop-off from an in-phase (A) to an opposed-phase image (B) in a patient with 
marked steatosis. Reproduced from Rinella et al. Liver Transplantation 2003; 
9: 851-856. Copyright (2003) American Association for the Study of Liver 
Diseases. Reprinted with permission of Wiley-Liss, Inc., a subsidiary of John 
Wiley & Sons, Inc.

A

B
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intensity on the out-of-phase images (because opposing 
signals from water and lipid tended to cancel each other 
out), and a less appreciable increase in signal intensity 
on the in-phase images. In contrast, in the healthy 
volunteers without hepatic steatosis, the signal intensity 
of  the liver parenchyma was not altered between in-
phase and out-of-phase images. They concluded that the 
Dixon method was capable of  distinguishing fatty liver 
from normal liver, and that it might also be useful for 
the quantification of  liver fat. Using the same technique, 
Heiken and colleagues scanned the livers of  35 subjects 
(12 healthy volunteers and 23 patients with CT evidence 
of  fatty infiltration of  the liver)[63]. They demonstrated 
the Dixon method to be a clinically useful technique for 
detecting and quantifying fatty infiltration of  the liver 
and for differentiating non-uniform fatty infiltration 
from liver metastases[63]. However, this methodology has 
its limitations. It was time-consuming, and the quality 
of  the images obtained was affected by respiratory 
and other motion artefacts, as well as by magnetic field 
inhomogeneities[61,64].

Since these early studies, many researchers have 
developed modifications of  the Dixon method with the 
aim to reduce these limitations. Levenson and colleagues 
used the technique to quantify hepatic fat in 16 subjects 
with a variety of  liver abnormalities, and compared the 
imaging results with those from liver biopsies[65]. The 
results were reproducible and there was reasonably good 
correlation between the imaging and biopsy findings[65]. 
In pursuit of  a quick, accurate, non-invasive evaluation 
of  hepatic steatosis, Fishbein and co-workers developed 
a fast gradient echo technique, which allowed them to 
obtain images of  the liver in both adults and children, 
using breath holding manoeuvres[66]. This technique not 

only reduced the time taken for the scan, but had the 
advantage of  reducing motion artefact due to respiration. 
Using the same scanning sequence, these authors 
compared hepatic MRI with ultrasound and liver biopsy 
in quantifying hepatic fat in 38 patients with a variety of  
liver diseases[45]. Both MRI and ultrasound assessment 
of  steatosis severity correlated well with liver histology, 
but MRI was superior to ultrasound in detecting and 
quantifying minor degrees of  hepatic steatosis. Several 
other groups have also demonstrated a good correlation 
between the severity of  hepatic steatosis on MRI and 
liver biopsy[67-69]. Recently, Qayyum and colleagues 
studied 27 patients, 16 with cirrhosis, and compared 
two different MRI techniques in quantifying hepatic fat. 
Their preliminary results suggested that liver fat may be 
more accurately quantified with fat-saturated fast spin-
echo MR imaging than with out-of-phase gradient echo 
MR imaging, especially in patients with cirrhosis[70].

Further modifications continue to be made to the 
Dixon method for water and fat separation, such as 
the recently reported fast spin-echo triple-echo Dixon 
(fTED) technique, which enables both uniform water/
fat separation and fast scanning with uncompromised 
scan parameters[71]. Thus, in the future, chemical shift 
MRI is likely to provide an accurate, safe and fast 
method of  detecting and quantifying hepatic steatosis in 
both adults and children.

PROTON MAGNETIC RESONANCE 
SPECTROSCOPY
Chemical shift magnetic resonance imaging enables 
the identification of  tissues that contain a significant 
proportion of  intracellular lipid. In contrast, proton 
magnetic resonance spectroscopy (1H MRS) facilitates 
the examination of  the resonance frequencies of  all 
hydrogen nuclei (protons) within a region of  interest. 
Although the absolute differences in resonance 
frequencies in MRS are quite small, they can be separated 
out to form a spectrum. Frequency separation, and 
hence spectral resolution, is determined by the strength 
of  the main magnetic field. The MR spectra are plotted 
on an axis of  chemical shift. With MR spectroscopy, 
the concentration of  any given molecule in a sample 
is represented by the area under the specific resonance 
peak within the spectrum. Quantification of  hepatic fat 
using proton MR spectroscopy requires evaluation of  
the two dominant peaks within the unsuppressed MR 
spectrum, water at 4.7 ppm and lipid at 1.0-1.5 ppm[59]. 
Livers with fatty infiltration demonstrate an increase in 
the intensity of  the lipid resonance peak as shown in 
Figure 5.

Since proton magnetic resonance spectroscopy 
allows direct measurement of  the area under the lipid 
resonance, it can be used to provide a quantitative 
assessment of  fatty infiltration of  the liver. Allowance 
must be made for both T1 and T2 relaxation effects, 
which differ for lipid and water. A correction must also 
be made for unsaturated lipids, as a portion of  the MR 

Water

Fat (IHCL CH2)

Mild

Moderate

Severe

5.0                3.0                 1.0                ppm

Figure 5  Proton magnetic resonance spectra from three volunteers showing 
progressive degrees of hepatic fatty infiltration. Resonances from water and 
lipid (IHCL CH2) can be clearly seen. For each individual hepatic fatty infiltration 
was quantified using the equation: -Percentage fat = IHCL CH2 peak area/Water 
peak area × 100. Shown are spectra from a liver with very mild fatty infiltration 
(1.0%), a liver with moderate fatty infiltration (10.2%), and a liver with severe 
fatty infiltration (74.9%). Adapted from Thomas et al. Gut 2005; 54: 122-127, 
with permission from the BMJ Publishing Group.
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signal from these molecules overlaps with the water 
resonance at 4.7 ppm[59]. 

Allowing for these corrections, Longo and colleagues 
studied a population of  subjects with non-alcoholic 
fatty liver disease and found the percentage hepatic 
lipid measurements using 1H MRS correlated well with 
those obtained by CT and liver biopsy[54,72]. Thomsen 
and co-workers demonstrated similar results in patients 
with alcohol-induced fatty liver disease[73]. Since then, 
several other studies have shown 1H MRS to be a fast, 
safe, non-invasive method for the quantification of  
hepatic fat content[74-78]. Recently, 1H MRS has been used 
in a large United States population study to determine 
the prevalence of  non-alcoholic fatty liver disease in 
the general adult population[79] and also in longitudinal 
clinical studies[80-84]. However, in most centres 1H MRS 
remains largely a research tool, despite the fact that 
all commercially available MR scanners have MRS 
capabilities.

CONCLUSION
Non-alcoholic fatty liver disease (NAFLD) is now 
recognized as the most common cause of  chronic 
liver disease in the Western World[31]. Its prevalence 
will likely increase in the future in parallel with the 
predicted increase in obesity and Type 2 diabetes. 
Currently, the only proven treatments for this condition 
are lifestyle measures, such as dietary modification and 
exercise[82,85-87].

Liver biopsy remains the gold standard investigation 
for determining hepatic fat deposition, but it is an 
invasive procedure and may be prone to sampling error.

Of  the non-invasive imaging techniques used to detect 
fatty infiltration of  the liver, ultrasound is the most widely 
used in clinical practice today. It will remain popular in 
the future due to its widespread availability and excellent 
tolerability. Magnetic resonance techniques using chemical 
shift imaging and in vivo 1H MRS have an advantage over 
ultrasound in that they are able to detect small changes 
in liver fat content. They can be performed as an adjunct 
to whole body MRI, as part of  the same examination, 
allowing a comparison to be made between hepatic fat 
content and whole body adipose tissue distribution in the 
same subject. Thus, in the future, as more technological 
advances are made and scanning times shorten further, 
it is anticipated that both techniques will be used much 
more widely, both in longitudinal clinical research studies, 
but also in clinical practice.
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