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ABSTRACT Structural and biochemical characterization of protein kinases that confer oncogene addiction and harbor a large
number of disease-associated mutations, including RET and MET kinases, have provided insights into molecular mechanisms
associated with the protein kinase activation in human cancer. In this article, structural modeling, molecular dynamics, and free
energy simulations of a structurally conserved mutational hotspot, shared by M918T in RET and M1250T in MET kinases, are
undertaken to quantify the molecular mechanism of activation and the functional role of cancer mutations in altering protein
kinase structure, dynamics, and stability. The mechanistic basis of the activating RET and MET cancer mutations may be driven
by an appreciable free energy destabilization of the inactive kinase state in the mutational forms. According to our results, the
locally enhanced mobility of the cancer mutants and a higher conformational entropy are counterbalanced by a larger enthalpy
loss and result in the decreased thermodynamic stability. The computed protein stability differences between the wild-type and
cancer kinase mutants are consistent with circular dichroism spectroscopy and differential scanning calorimetry experiments.
These results support the molecular mechanism of activation, which causes a detrimental imbalance in the dynamic equilibrium
shifted toward the active form of the enzyme. Furthermore, computer simulations of the inhibitor binding with the oncogenic and
drug-resistant RET mutations have also provided a plausible molecular rationale for the observed differences in the inhibition
profiles, which is consistent with the experimental data. Finally, structural mapping of RET and MET cancer mutations and
the computed protein stability changes suggest a similar mechanism of activation, whereby the cancer mutations which display
the higher oncogenic activity tend to have the greatest destabilization effect on the inactive kinase structure.
INTRODUCTION

A central goal of cancer research involves the discovery and

functional characterization of the mutated genes that drive

tumorigenesis (1,2). The Cancer Genome Atlas and related

DNA sequencing initiatives have motivated sequencing

studies of tumors and analysis of the genomic basis of tumor-

igenesis (3–8). The most common protein families impli-

cated in cancer are protein kinases, which are signaling

switches regulating the activity of their substrates by adding

phosphate groups to them, and there are>500 encoded in the

human genome (9–13). A landmark for understanding the

molecular basis of kinase function was the elucidation of

the crystal structure of protein kinase A (14,15). Since this

discovery, the crystal structures of nearly 70 different protein

kinases have been determined. Although the kinase catalytic

domain is highly conserved, protein kinase crystal structures

have revealed considerable structural differences between

the closely related active and highly specific inactive forms

of kinases (16–18). The dynamic interconversion between

distinct inactive and active protein states is a structural hall-

mark of the kinase domain, which is critical for its normal

function.

Cancer genome resequencing efforts have illuminated the

role of kinase addiction in a variety of human cancers and
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have classified tumor-associated somatic mutations accord-

ing to their involvement in tumorigenesis (19–22). The

dominant oncogenes that confer the oncogene addiction

effect include ABL, epidermal growth factor receptor

(EGFR), VEGFR, BRAF, MET, FGFR3, ALK, RET, and

Aurora kinases (23). A comprehensive computational anal-

ysis of the distribution of nonsynonymous coding SNP and

disease-causing nonsynonymous coding SNPs within the

protein kinase gene family has shown that somatic mutations

occurring at structurally conserved kinase positions may be

statistically enriched in cancers and form mutational hotspots

that promote the tumorigenic activity of multiple protein

kinases (24–26). Recent advances in understanding genomic

and molecular signatures of cancer-causing mutations in

protein kinases have facilitated molecular studies of the

mutation-dependent activation process and have identified

somatic mutations linked to nonsmall cell lung carcinoma

within the EGFR tyrosine kinase gene (27–30). Structural

determinations of the EGFR (31–34) and ABL cancer

mutants (35,36) in complexes with various cancer drugs

have provided a molecular rationale of the kinase activation

mechanism, revealing structural divergence of the kinases in

response to activating mutations with different degrees of

sensitivity. Computational studies have begun to investigate

a molecular basis of protein kinase function and the struc-

tural effects of activating mutations, which may ultimately
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control the activity signatures of cancer drugs and determine

the scope of drug resistance mutations (37–48).

According to the KinMutbase (49,50), there are >35

unique missense MET mutations and 127 missense RET

kinase mutations. A large number of inactivating and acti-

vating mutations in the human RET tyrosine kinase domain

can cause different disorders, including Hirschprung disease

and the thyroid gland cancers (51,52). Molecular mecha-

nisms of RET activation in endocrine tumors are largely

associated with the transforming ability of specific RET

mutations (53–56). Most notably, it was discovered that

>95% of multiple endocrine neoplasia type 2 (MEN 2B)

cancers arise from M918T mutation, which can lead to

a unique pattern of RET tyrosine phosphorylation and down-

stream signaling. Moreover, functional and thermodynamic

analysis have demonstrated that the M918T mutation

can cause a local conformational change in the RET

kinase that partially releases autoinhibition, resulting in the

decreased thermal stability and the increased structural flex-

ibility of the RET mutant (54). The experimental data have

shown that structurally conserved mutants M918T in RET

(53,54) and M1250T in MET kinases (57–61) are associated

with the mechanism of oncogenic activation and display the

highest transforming potential, leading to uncontrolled cell

proliferation and tumorigenesis.

The biochemical and structural analysis of the wild-type

(WT) RET and M918T mutant have recently identified

distinct, yet complementary effects of cancer mutations on

the RET kinase function, including the increasing kinase

activity, a partial release of the kinase autoinhibition, and

ligand-independent phosphorylation of RET receptors (54).

Structural and biochemical characterization of the human

WT RET kinase dimer has been reported in both nonphos-

phorylated and phosphorylated forms (62). These crystal

structures adopt the same active kinase conformation, inde-

pendent of phosphorylation status, which only modestly

affected the level of its catalytic activity (62). Importantly,

in the absence of activation, RET kinase monomers may

also adopt a closed, autoinhibited inactive conformation, in

which the A-loop blocks access to the substrate binding

pocket (54). There are other relevant examples of tyrosine

kinases (EGFR, ACK1) with active conformations in their

nonphosphorylated forms, which may also have a structurally

different inactive conformational state (63). Of particular

importance is the recent discovery that the cancer drug Sor-

afenib can act not only as a highly potent inhibitor of BRAF

(60), but also inhibit the inactive form of the WT RET kinase

and the gatekeeper RET mutations (64). The recently solved

crystal structures of the autoinhibited form for the WT MET

kinase (65) have suggested that activating cancer mutations

may act through weakening the interactions, which stabilize

the inactive state of the kinase, but may have a negligible

effect on stabilization of the active form.

Some tyrosine kinase inhibitors, including the pyrazolo-

pyrimidines PP1 and PP2 and the 4-anilinoquinazoline
ZD6474 can exhibit a strong activity toward the RET kinase

and the oncogenic RET kinase mutants, and thereby may be

used to treat specifically RET-associated cancers (66–69). In

particular, ZD6474, a low molecular weight tyrosine kinase

inhibitor, blocks the enzymatic activity of RET kinase and

various RET cancer mutants, including M918T, at the inhib-

itory concentration of 100 nM, and results in the efficient

inhibition of their tumorigenic potential (68,67). Moreover,

most of the RET mutants, including M918T, E768D,

L790F, Y791F, S891A, and A883F, have shown a sensitivity

profile to ZD6474 which is very similar to that of WT RET.

In contrast, mutations substituting gate-keeper V804 either

to leucine or to methionine (V804L and V804M) can render

the RET kinase which is resistant to ZD6474 with only

a modest inhibition effect observed at 5.0 mM (67).

However, substitution of V804 with a smaller glycine

residue results in the RET kinase, which is even more

susceptible to inhibition (IC50 ¼ 20 nM) than the WT

RET kinase (IC50 ¼ 100 nM) (67). The crystal structures

of RET kinase complexes bound to two inhibitors, the

pyrazolopyrimidine PP1 and the clinically important

4-anilinoquinazoline ZD6474, have unveiled a similar binding

mode of these inhibitors, suggesting a molecular rationale for

the drug resistance against specific RET mutants (62).

In this study, molecular dynamics (MD) simulations and

free energy stability analysis of the structurally conserved

mutations in the RET and MET kinases are undertaken

from a biophysical perspective to investigate the role of these

mutations in the molecular mechanism of activation. More-

over, we have also performed MD simulations and docking

and binding free energy evaluations of the inhibitor binding

with the oncogenic and drug-resistant RET mutants.

Combined with a structural mapping of the RET and MET

cancer mutations and the computed protein stability changes,

the results of this study offer a plausible common mecha-

nism, according to which activating cancer mutations may

trigger a partial destabilization of the inactive kinase, while

contributing to the enhanced stabilization of the active kinase

form.

METHODS

Structural modeling

Structural modeling of M918T RET and M1250T MET mutations has been

carried out using MODELLER (70,71) with a subsequent refinement of side

chains by the SCRWL3 program (72). The initial M918T RET model in the

active state was obtained using crystal structures of nonphosphorylated

(Protein Data Base (PDB) code 2IVS) WT RET kinase in the active state.

The initial structural models of the WT RET and M918T RET mutant in

the inactive, autoinhibited form were constructed using the crystal structures

of the closest homologous kinase, FGFR1, in the inactive state (PDB entries

1FGI, 1FGK) as structural templates. The resulting models were compared

and found to be essentially identical to a validated theoretical model of inac-

tive human RET (PDB code 1XPD). Structural model of the M1250T MET

kinase mutant in the inactive state was obtained based on the crystal struc-

ture of the unphosporylated, autoinhibited form of the WT MET kinase

(PDB code 2G15); the inactive WT FLT3 (PDB code 1RJB), and the
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inactive WT KIT (PDB entry 1T45). Structural models of all mutants were

built in MODELLER with a flexible sphere of 5 Å around each mutated

residue. In the final protocol, we gradually increased the radius of this sphere

in 5 Å steps until the radius reached the 25 Å value (i.e., all residues falling

within this range were treated as flexible). A hybrid protocol involving 5000

steps of a conjugate-gradient minimization, followed by MD with simulated

annealing (SA) refinement, was repeated 20 times to generate 100 initial

models for each cancer mutant in this study. In the optimization stage, we

initially used a conjugate-gradient minimization to remove unfavorable

contacts and to optimize geometry. MD simulations were then run at

increasing temperature values from 150 K to 1500 K, followed by simulated

annealing and sampling at temperatures of 1500 K, 1000 K, 800 K, 600 K,

500 K, 400 K, 320 K, and 300 K, respectively. The models were generated

using 20 iterations of the MD/SA procedure and the predicted structural

model was chosen out of the 100 models as scored by the MODELLER

default scoring function. These models were then relaxed using 1-ns MD

simulations with NAMD 2.6 software package and the CHARMM22 force

field (73) to ensure local refinement of the environment surrounding the

mutant residue (all residues within 5 Å distance), while keeping the rest

of the protein rigid.

Molecular dynamics simulations

All MD simulations of the RET and MET kinase forms were done for 20 ns

with the explicit solvent using NAMD 2.6 with the CHARMM22 force field

(73). The VMD program was used for the preparation and analysis phases of

simulations (74,75). The psfgen utility in the VMD software was employed

to generate a protein structure file for MD simulations with the CHARMM

27 force field. The kinase structures were solvated in a large box of water

with 15 Å buffering distance. Assuming normal charge states of ionizable

groups corresponding to pH 7, sodium Naþ and chloride Cl� counterions

at physiological concentration of 0.15 mol/L were added to achieve charge

neutrality and to mimic a realistic biological environment more closely. All

Naþ and Cl� ions were placed >8 Å away from any protein atoms and from

each other. The structure of RET kinase is unresolved for flexible residues

828–843, which were modeled and incorporated into the final structure using

MODELLER (70,71) with an additional refinement of side chains by the

SCRWL3 program (72) and minimization. During simulations with the inac-

tive (PDB entry 1XPD) and active forms of WT RET (PDB entry 2IVS), the

total number of simulated atoms in the system is 59,310 including 4908

protein atoms; 18,117 water molecules, and 22 sodium Naþ and 27 chloride

Cl� counterions. In simulations with the M918T RET mutant, the total

number of simulated atoms in the system is the same (59,310), including

4905 protein atoms (because of the effect of the mutated residue); 18,118

water molecules; and 22 sodium Naþ and 27 chloride Cl� counterions,

respectively. During MD simulations with the WT MET and M1250T

MET mutant (PDB entry 2G15), the total number of simulated atoms in

the system is also the same (59,783), including 4826 protein atoms for the

MET WT (4823 for the MET M1250T mutant); 18,302 water molecules

for the MET WT (18,303 for the MET M1250T mutant); and 51 sodium

Naþ and 25 chloride Cl� counterions.

The system was subjected to initial minimization for 10,000 steps keeping

protein atoms fixed (minimization of water molecules) followed by the

another 10,000 steps of minimization keeping only the protein backbone

fixed so as to allow protein side chains to relax. This was followed by

10,000 steps of minimization to allow the entire system to relax freely.

The equilibration and simulation protocol was carried out in steps by grad-

ually increasing the system temperature in steps of 20 K starting from 10 K

until 310 K, and at each step 20 ps equilibration was run keeping a restraint

of 10 Kcal mol�1 Å�2 on protein a-carbons. Thereafter the system was

equilibrated for 300 ps at 310 K (NVT) and then for a further 300 ps at

310 K using the Langevin piston (NPT) to maintain the pressure. At the final

stage of equilibration, the restraints were completely removed and the entire

system was equilibrated for an additional 2-ns time period. After the equil-

ibration phase had been completed, MD simulations in NPT ensemble were

run using the equilibrated structure for 20 ns of the production period,
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keeping the temperature at 310 K and pressure at 1 bar using the Langevin

piston coupling algorithm. The integration time step of the simulations was

set to 2.0 fs, the SHAKE algorithm was used to constrain the lengths of all

chemical bonds involving hydrogen atoms at their equilibrium values, and

the water geometry was restrained as rigid by using the SETTLE algorithm.

Nonbonded van der Waals interactions were treated by using a switching

function at 10 Å and reaching zero at 12 Å distance. The particle-mesh

Ewald algorithm (76), as implemented in NAMD, was used to compute

long-range electrostatic forces.

Molecular docking simulations

We have modeled binding of ZD6474 inhibitor with the WT RET, M918T

RET, V804M, and V804G RET mutants using 1000 snapshots from the MD

trajectory of the ZD6474 inhibitor bound with the WT RET, followed by 1),

modeling these mutations into each of the 1000 snapshots and subsequent

10,000 steps of energy minimization; and 2), inhibitor docking with 1000

conformations of the WT and RET mutants. Docking simulations are per-

formed using a combination of the evolutionary search algorithm and the

knowledge-based energy model, which have been extensively documented

in our earlier studies (77). In brief, the inhibitor conformations and orienta-

tions are sampled in a parallelepiped that encompasses the binding site

obtained from the crystallographic structure of the RET kinase complexes

with a large 20.0 Å cushion added to every side of this box surrounding

the interface. The protein structure is held fixed in its minimized and equil-

ibrated conformation, while rigid body degrees of freedom and the peptide

rotatable angles are treated as independent variables. The initial inhibitor

conformations are generated by randomizing the encoded vector, where

the center of mass of the ligand is restricted to the rectangular parallelepiped

that encompasses the RET crystal structures. The three rigid-body rotational

degrees of freedom as well as the torsional angles for all rotatable bonds are

uniformly initialized between 0 and 360�.

Free energy simulations

Free energy calculations of the protein kinase stabilities and binding free

energy computations are done using the molecular mechanics AMBER force

field (78) and the solvation energy term based on the continuum generalized

Born and solvent-accessible surface area (GB/SA) solvation model (79,80).

The length of MD simulations and the size of the investigated molecules are

usually hampered by the necessity of including thousands of explicit solvent

molecules. The continuum dielectric methods evaluate only the solute elec-

trostatics and consequently reduce the number of interactions with respect to

explicit solvent methods. These methods have proven to be reliable and able

to provide crucial information for various biomolecules (79,80). The gener-

alized Born (GB) theory is an approximation of the Poisson equation for

continuum electrostatic solvation energy. It involves accurate evaluation

of Born radii, which characterize the average spherical distances of each

atom to the solvent boundary. Consequently, the GB energy expression

can reliably reproduce the Poisson energy at a significantly lower computa-

tional cost (79,80). The details of the MM-GBSA model typically used in

free energy simulations of biological systems have been extensively docu-

mented in our earlier studies (46,47,81–83). Here, we outline the major

components of the computational model that are relevant in the context of

this study. The total free energy is given as

Gmolecule ¼ Ggbtot þ Egas � TSsolute; (1)

where Gsolvation is the solvation free energy, and Egas is the molecular

mechanical energy of the molecule summing up the electrostatic Eele inter-

actions, van der Waals contributions Evdw, and the internal strain energy Eint.

TSsolute is the sum of TStrans, TSrot, and TSvib, which are the translational,

rotational, and vibrational entropy contributions, respectively. The vibra-

tional entropy term is determined using the NMODE module of the normal

mode analysis involving calculation and diagonalization of a mass-weighted

second derivative matrix.
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The vibrational entropy corrections for studied WT and cancer kinase

mutants were calculated and averaged for 1000 snapshots, selected at

20-ps intervals along the 20-ns MD trajectories for each of these systems.

It is worth stressing that because normal mode analysis scales quadratically

with the size of the structure, these computations continue to be rather

computationally intensive and are frequently omitted in calculations of large

biological systems. In our study, we have systematically applied normal

mode analysis for all studied RET and MET kinases to determine the entropy

contribution to the free energy and accurately assess differences in the

protein stability between WT and mutant kinases.

The electrostatic contribution to the solvation free energy Ggbele involves

using the GB equation to estimate the electrostatic contributions to the solva-

tion free energy and typically leads to a small error compared to the Poisson-

Boltzmann approach (79,80). The nonpolar contribution to the solvation free

energy, Ggbnp, was determined using the linear combinations-of-pairwise

overlaps method where the hydrophobic contribution to the solvation free

energy is determined by the solvent-accessible-surface-area (SASA) depen-

dent term. The total solvation free energy Ggbtot is the sum of the nonpolar

Ggbnp and polar Ggbele contributions. The Geletot is the total electrostatic

energy and is the sum of the electrostatic solvation free energy and molecular

mechanics electrostatic energy.

Using the MM-GBSA module in AMBER 8.0, we have evaluated protein

stability differences between 1), WT RET kinase and the M918T mutant and

2), WT MET and M1250T MET in both inactive and active states of the

enzyme. A practical implementation of this approach involved computation

of the energy contributions for each of the selected 1000 snapshots at 20-ps

intervals along the 20-ns MD trajectories for each of these systems, followed

by averaging to obtain the total free energy values. The trajectories obtained

from the earlier 20 ns MD runs were converted into individual PDB files in

VMD. These 1000 coordinate frames were then converted into AMBER-

compatible files using utilities from the multiscale modeling tools for

structural biology tool set (http://www.mmtsb.org/). The names of phos-

phorylated residues of MET and RET were modified to load all the required

libraries and parameters for phosphorylated residues. The AMBER parame-

ters and coordinate files were then generated using the Leap module in

AMBER and subsequently used in the MM-GBSA calculation.

The binding free energy of the inhibitor-kinase complexes is given by the

expression

Gbind ¼ Gcomplex � Gprotein � Gligand: (2)

Binding free energy evaluations can be performed using either separate

trajectories of the complex, protein, and ligand (separate trajectory protocol)

or from a trajectory of the complex (single trajectory protocol) (84). We have

used a single trajectory protocol based on 1000 snapshots of the inhibitor

complexes with the WT RET and RET mutants. This approach is less

computationally intensive and may also be less sensitive because of cancel-

lation of the intramolecular energies, caused by neglecting the effects of

structural adaptation during binding.

Protein stability calculations

To quantify the destabilization effect of a number of known RET and MET

cancer mutations in the inactive, autoinhibited kinase form, we computed the

protein stability change upon these mutations using three different

approaches with the increasing level of complexity: 1), Cologne University

Protein Stability Analysis Tool (CUPSAT) approach for the prediction and

analysis of protein stability changes upon point mutations (85,86); 2),

FOLDx approach, which allows the calculation of the free energy of a macro-

molecule based on its high-resolution three-dimensional structure (87); and

3), MM-GBSA free energy calculations (79,80). In the CUPSAT approach,

coarse-grained atom potentials and torsion angle potentials are used to

predict protein stability upon point mutations (85). FOLDx analysis of

protein stability is based on the empirical force field, which was developed

for the rapid evaluation of the effect of mutations on the stability, folding,

and dynamics of proteins and nucleic acids (88). The free energy of folding
is evaluated in this approach from the difference in Gibbs free energy

between the crystal structure of the protein and a hypothetical unfolded

reference state of which no structural details are known.

The protein stability changes for a spectrum of studied RET and MET

mutants are also evaluated using a single trajectory MM-GBSA approach,

in which 1000 snapshots were extracted from 20-ns MD trajectories of the

WT RET and WT MET in the autoinhibited, inactive state. The RET and

MET mutations were modeled into each of the 1000 snapshots of the WT

trajectories, followed by a subsequent 10,000 steps of energy minimization.

The protein stability differences are approximated based on the total free

energy difference between the WT and mutant kinase conformations:

DGtotal ¼ DEgas þ DGgbtot � TDSsolute: (3)

RESULTS AND DISCUSSION

Evolutionary and structurally conserved M918 RET (Fig. 1,

A and B) and M1250 MET (Fig. 1, C and D) residues are

localized in the substrate binding C-lobe of the kinase

core. Somatic mutations occurring at this structurally

conserved kinase position are implicated in the tumorigenic

activity of multiple protein kinases, including M918T RET

and M1250T MET. Moreover, this mutational hotspot is

also shared in ALK1 (M-R), MET (M-T), RET (M-T), and

TGFbR2 (M-V). Three of the four mutations are transitions

from methionine to either arginine or threonine, indicating

that these mutations may disrupt the hydrophobic binding

pocket by introducing polar amino acids. This methionine

is highly conserved and specific for receptor tyrosine

kinases, while in cytosolic tyrosine kinases, including

SRC, ABL and LCK, this residue is converted to threonine.

M918T in RET and M1250T in MET are situated within the

WMxxEx motif, also known as the Pþ1 loop (Fig. 1). This

loop is a small motif, which is immediately C-terminal of the

A-loop and plays an important role in recognizing the resi-

dues flanking the target tyrosine in the substrate. Our study

is designed to quantify the role of this mutational hotspot

in altering structure and dynamics of RET and MET kinases

and assess their effect on the activation mechanism.

Analysis of the cancer mutation effects in the
inactive RET kinase: molecular dynamics and
protein stability

We have performed 20-ns MD simulations for the WT RET

and tumorigenic M918T RET mutant (Fig. 1, A and B),

which were independently launched from both inactive and

active kinase structures. Structural and energetic analysis

of these trajectories allows us to investigate the effect of

the cancer mutation on protein structure and dynamics at

atomic details. To provide a computational framework for

a comparative structural and mechanistic analysis of WT

RET and M918T RET, it is desirable to have crystal struc-

tures of these proteins in both active and inactive forms.

While the existing crystal structures of both phosphorylated

and nonphosphorylated RET have the same active conforma-

tion (62), it has been established that in the absence of
Biophysical Journal 96(3) 858–874
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FIGURE 1 (A) The crystal structure

of the wild-type RET kinase in the active

form (PDB entry 2IVS). (B) A closeup

of structural environment near M918T

mutation in the RET kinase. (C) The

crystal structure of the wild-type MET

kinase in the inactive, autoinhibited

form (PDB entry 2G15). (D) A closeup

of structural environment near M1250T

mutation in the MET kinase.
activation, RET kinase monomers may adopt a closed,

autoinhibited inactive conformation (54). Consequently, to

simulate dynamics of the RET kinase in the inactive, autoin-

hibited form, we have built a homology model of the inactive

RET using the crystal structures of the closest homologous

kinase FGFR1 in the inactive form (PDB entries 1FGI and

1FGK) as structural templates. It is worth noting that the

generated refined RET model is very similar to the previ-

ously validated and PDB-deposited modeled structure of

the inactive human RET kinase (PDB code 1XPD).

Examination of the MD trajectories in the inactive state

highlights some important similarities and differences in

the dynamical behavior of the WT RET and M918T RET

mutant. Indeed, while WT RET tends to rapidly reach

a steady equilibrium, the root mean-square deviation

(RMSD) fluctuations for the M918T mutant were noticeably

larger, reaching an equilibrium plateau after a considerably

longer simulation period (Fig. 2 A). The equilibrium struc-

tures of the WT RET fluctuated within ~2.0 Å from the

crystal structure, and 3.0 Å for the M918T RET mutant

(Fig. 2 A). To assess the effect of M918T RET mutation

on the protein kinase structure and dynamics, we have also

computed the root mean-square fluctuation (RMSF) values,

i.e., the average residue fluctuations of the backbone resi-

dues. In agreement with the structural factors, the regions

of larger thermal fluctuations and the increased protein flex-

ibility include segments of N-terminal, C-helix, and A-loop
Biophysical Journal 96(3) 858–874
(Fig. 2 B). MD simulations in the inactive, autoinhibited

RET conformation have also shown that larger fluctuations

in the M918T mutant coexist with the globally similar

dynamic profiles of the WT RET and M918T mutant.

Furthermore, MD simulations have pointed to the locally

increased conformational mobility of the mutant structure

near the mutational site at the Pþ1 pocket and A-loop

(Fig. 2 B).

The residues comprising the Pþ1 substrate binding pocket

in RET are highly conserved and include I913, P914, V915,

M918, S922, L923, and Y928 (Fig. 1, A and B). In the auto-

inhibited form of WT RET, M918 interacts with residues in

the activation (I913) and Pþ1 (P914) loops and with neigh-

boring residues S922, L923, and Y928, which in turn interact

with Pþ1 and catalytic loop residues, forming a closed, auto-

inhibited structure. In the course of simulations, the hydro-

phobic contacts formed by the side chain of M918 in the

Pþ1 pocket with the I913, V915, S922, L923, and Y928

residues are maintained, indicating their importance in

controlling the inactive conformation of the WT RET kinase.

Mutation to a smaller hydrophilic threonine may elicit

a protein response with the altered shape of the Pþ1 site

and weakened packing interactions, particularly a loss of

favorable intramolecular contacts formed by T918 with the

I913 and Y928 residues (Fig. 3). Nevertheless, the mutated

T918 continues to interact with V915, S922, and further

strengthens interactions with L923 (Fig. 3). Structural effects
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FIGURE 2 The RMSD values for Ca atoms from 20-ns simulations with the inactive RET kinase (A) and the active RET kinase. (C) The RMSF values of the

RET kinase residues (using original numbering in the PDB entries 1XPD and 2IVS) from 20-ns MD simulations with the inactive RET kinase (B) and the

active RET kinase (D). For all panels, time evolution of the WT RET is shown in blue; time evolution of the M918T RET mutant is shown in red.
of M918T are manifested through the enhanced local flexi-

bility, which is reflected in the increased distances with the

Y928 residue and a concomitant enlargement of the Pþ1

binding site (Fig. 4). At the same time, mutated T918 residue

maintains favorable contacts with V915 and improves inter-

actions with L923, which collectively amount to a subtly re-

shaped Pþ1 pocket. These results suggest that a locally more

mobile conformation of the T918 RET mutant as compared

to the WT RET, along with a subtly reshaped Pþ1 recogni-

tion pocket, may be functionally linked with the experimen-

tally observed subversion in substrate specificity (89,90).

Upon activation of WT RET interactions between M918

and some of these residues (S922) are reduced in strength,

but are maintained with the V915, L923, and Y928 residues.

The mutated T918 residue in the inactive state retains some

of the normal interactions of M918 in autoinhibited WT

RET, but can also acquire some of the interactions present

in the active WT RET.

Using MM-GBSA analysis of the MD trajectories for the

WT RET and M918T RET mutant, we have evaluated

protein stability changes upon mutation (Tables 1 and 2).

This analysis demonstrates that the higher conformational

mobility and a greater entropy component of the free energy

in the M918T mutant is largely offset by the loss in the
enthalpy contribution. As a result, the increased protein flex-

ibility in the inactive state of M918T RET can lead to the

decreased protein stability of the mutant kinase relative to

the WT RET (Tables 1 and 2). The enthalpy loss in the

M918T RET mutant is determined by the less favorable

molecular mechanical energy of the molecule Egas, which

cannot be offset by a more favorable total solvation free

energy Ggbtot (Tables 1 and 2). In fact, the energy loss is de-

tected for all components of the molecular mechanical

energy Egas, including Eele, Evdw, and Eint contributions

(Table 1). These results are consistent with the functional

and thermodynamic analysis, which compared the overall

thermal stability and structural flexibility of the autoinhibited

forms of the WT RET and M918T mutant (54). According to

these experiments, in the inactive kinase state, the M918T

RET mutant has a lower melting temperature and is more

conformationally flexible than the WT enzyme.

It is worth stressing that there are many biological systems

and numerous examples where there is no a simple inverse

relationship between decreased molecular fluctuations and

increased stability. In general, coupling between rigid and

flexible regions of a protein and correlation of various

motions may lead to both increases and decreases in thermo-

dynamic stability. There are many protein systems with both
Biophysical Journal 96(3) 858–874
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FIGURE 3 Analysis of MD simulations with the inactive RET kinase. Time evolution history of the distances between Ca atoms of the residues in the local

structural environment of the mutational site. Time evolution of the distances between Ca atoms of the M918T RET and V915 RET (A), M918T RET and S922

RET (B), M918T RET and L923 RET (C), and M918T RET and Y928 RET (D). Time evolution of the distances for the M918 WT RET is shown in blue; time

evolution of the distances for the T918 RET mutant is shown in red.
high thermal stability and flexibility (91) as well as exam-

ples of proteins where enhanced thermal stability can be

achieved without increased conformational rigidity (92).

Some mutations may disrupt long-range coupled regions of
Biophysical Journal 96(3) 858–874
structural communication, while other mutations may result

in local changes, depending on structural interactions near

sites of substitution. In this study, the impact of the cancer

mutation manifests in the overall loss of the RET kinase
FIGURE 4 (A) The average structure of the inactive

form of the WT RET kinase with M918 residue shown in

CPK model. (B) A closeup of structural packing near the

mutational site in the inactive WT RET kinase. (C) The

average structure of the inactive form of the M918T RET

kinase mutant with T918 residue shown in CPK model.

(D) A closeup of structural packing near the mutational

site in the inactive T918 RET kinase.
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TABLE 1 The energy components of the MM-GBSA calculations of the protein kinase stability

Kinase

RET inactive RET active MET inactive

WT M918T WT M918T WT M1250T

Eele �10074.36 (111.75) �9678.37 (103.89) �9012.11 (100.03) �9185.27 (76.77) �9056.93 (62.83) �8970.41 (81.8)

Evdw �1693.18 (20.46) �1634.10 (20.63) �1699.82 (11.17) �1706.34 (15.21) �1665.84 (12.17) �1677.04 (16.09)

Eint 3202.34 (14.10) 3184.81 (10.81) 3010.75 (18.41) 3001.72 (10.7) 3227.72 (12.56) 3223.23 (11.97)

Egas �8565.20 (108.70) �8127.66 (108.34) �7701.19 (97.6) �7889.89 (75.18) �7494.96 (66.74) �7424.22 (83.67)

Ggbub 106.80 (2.49) 117.46 (3.36) 96.97 (1.57) 95.60 (2.13) 112.69 (1.85) 113.30 (1.18)

Ggbele �4212.55 (98.71) �4617.55 (102.96) �4182.58 (92.63) �4018.33 (70.19) �3857.12 (58.72) �3898.15 (71.24)

Ggbtot �4105.75 (97.68) �4500.09 (101.82) �4085.61 (91.63) �3922.73 (69.89) �3744.43 (57.86) �3784.86 (70.32)

Geletot �14,286.92 (20.12) �14,295.92 (12.70) �13,194.69 (17.63) �13,203.61 (13.69) �12,913.95 (18.42) �1168.56 (18.92)

EgasþGgbtot �12,670.95 (19.37) �12,627.75 (23.98) �11,768.80 (21.76) �11,812.62 (20.17) �11,239.39 (18.42) �11,209.08 (20.98)

TStrans 17.14 (0.00) 17.14 (0.00) 17.08 (0.00) 17.08 (0.00) 17.12 (0.0) 17.12 (0.0)

TSrot 17.78 (0.01) 17.84 (0.01) 17.70 (0.01) 17.68 (0.01) 17.83 (0.01) 17.82 (0.01)

TSvib 3496.14 (12.84) 3524.26 (11.27) 3311.5 (10.52) 3294.59 (11.85) 3475.16 (10.23) 3488.04 (9.63)

TStotal 3531.06 (12.85) 3559.23 (11.27) 3346.28 (10.52) 3329.36 (11.85) 3510.11 (10.24) 3522.98 (9.63)

All energies are in Kcal/mol. The contributions of the free energies are defined in Materials and Methods. The values in parentheses represent the standard

deviation values.
stability in the inactive state, caused by local structural

changes, where a moderate gain in the conformational entropy

is accompanied by a larger enthalpy loss and the decreased

thermodynamic stability (Table 1).

Analysis of the cancer mutation effects in the
active RET kinase: molecular dynamics and
protein stability

MD trajectories initiated from the crystal structure of the

active RET enzyme rapidly reach equilibrium, exhibiting

small 1.0 Å deviations in the RMSD values for WT and

1.5–2.0 Å for the mutant (Fig. 2 C). Thermal fluctuations

of the WT RET and M918T RET in the active state are

largely conserved, including similar conformational flexi-

bility of the functionally important regions near the muta-

tional site, including the Pþ1 pocket and the adjacent

segment of the A-loop (Fig. 5). There are no appreciable

changes in the shape of the Pþ1 pocket in the active form

of M918T RET as compared to the WT RET (Fig. 5). As

a result, all favorable interactions formed in the Pþ1 pocket

of M918T RET are preserved and even further strengthened

TABLE 2 The differences in the protein stabilities between WT

and mutant RET and MET kinases

Kinase

RET active

GWT-GMUT

RET active

GWT-GMUT

MET inactive

GWT-GMUT

DEele �359.99 173.16 �86.42

DEvdw �59.08 6.52 11.2

DEint 17.53 9.03 4.49

DEgas �437.54 188.70 �70.74

DGgbub �10.66 1.37 �0.61

DGgbele 405.0 �164.25 41.03

DGgbtot 394.34 �162.88 40.43

DEgasþDGgbtot �43.20 25.82 �30.31

DTStotal �28.17 16.92 �12.87

DGtotal �15.03 8.90 �17.44

All energies are in Kcal/mol. The contributions of the free energy are defined

in Materials and Methods.
in the active state. We have found that the M918T mutation

may further stabilize the active RET conformation, leading

to the increased thermodynamic stability (Table 1). A rather

moderate loss in the entropy TSsolute of the active M918T

RET and an unfavorable change in the total solvation energy

Ggbtot are fully compensated by considerably more favorable

intramolecular interactions reflected in the predicted Egas

values (Tables 1 and 2).

These results are fully consistent with circular dichroism

spectroscopy experiments, in which no significant variations

are seen in the secondary or tertiary structure of the M918T

RET mutant (54). Interestingly, it was also proposed that the

M918T mutation may affect the interlobe flexibility of the

kinase domain and weaken the trans-inhibitory dimer inter-

action, which may favor the active state of the enzyme (62).

Hence, the results of simulations suggest that a molecular

basis of mutations that can contribute to the activation poten-

tial of RET kinase may be manifested through increased

local mobility at functionally critical regions and reduction

in the tight interactions seen in the autoinhibited form of

WT RET.

We have also found that RET kinase may be less stable in

the active form of the enzyme than in the inactive state. Our

analysis suggests the loss of protein stability in the active

form of RET as compared to the autoinhibited inactive

form for both WT and mutant (Table 1). These results are

consistent with the experimentally observed lower melting

temperatures of the active RET form (54), which are also

seen in the thermodynamic effects of the release of autoinhi-

bition in other kinases. In addition, these data are consistent

with the earlier experimental studies (93,94), which have

discovered the decrease in the level of stabilization of the

IRK kinase, as a result of autophosphorylation and respec-

tive conformational transition to the active form of the

enzyme (93,94).

Overall, the results quantify the hypothesis that the

M918T RET mutant may be more stable in the active form
Biophysical Journal 96(3) 858–874
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FIGURE 5 (A) The average structure of the ACTIVE

form of WT RET kinase with M918 residue shown in

CPK model. (B) A closeup of structural packing near the

mutational site in the ACTIVE WT RET kinase. (C) The

average structure of the ACTIVE form of M918T RET

kinase mutant with T918 residue shown in CPK model.

(D) A closeup of structural packing near the mutational

site in the ACTIVE T918 RET kinase.
of the enzyme, which could provide the thermodynamic

basis for diverting the normal equilibrium toward an exces-

sively stable active kinase form for the cancer mutant. This

effect may contribute to the high oncogenic activity and

profound transforming potential of the M918T mutation.

Together, these data suggest that changes in the intramolec-

ular interactions may play a significant role in modulating

functional effects of the M918T mutation in RET kinase.

Additionally, the predicted structural effect of the M918T

mutation on protein kinase dynamics and stability is sup-

ported by isothermal titration and differential scanning calo-

rimetry experiments, which have revealed that WT RET and

M918T RET kinases have very similar melting temperatures

and consequently similarly stable structures in the active

form (54).

Molecular dynamics and protein stability analysis
of cancer mutation effects in the MET kinase

MD simulations of the MET kinase and M1250T mutant are

based on the unphosporylated, autoinhibited crystal structure

of the enzyme in the inactive form (95). These simulations

provide further insight into structural implications of a cancer

mutational hotspot on protein dynamics and activation

mechanism. Examination of the MD trajectories shows

more significant differences in flexibility between WT and

mutant, as evidenced by larger RMSD values for the

M1250T mutant reaching 2.0–2.2 Å as compared to 1.0 Å

for the WT (Fig. 6 A). Moreover, larger protein fluctuations

in the M1250T mutant include regions of N-terminal, C-

helix, A-loop, and Pþ1 pocket (Fig. 6 B). The Pþ1 binding

pocket in MET is formed by the L1245, P1246, V1247,

M1250, S1254, L1255, and F1260 residues (Figs. 7 and

8). Analysis of the evolutionary and structurally conserved
Biophysical Journal 96(3) 858–874
Pþ1 binding pocket reveals only very minor differences

between RET and MET kinases, namely I913 RET corre-

sponds to L1245 MET and Y928 RET is converted into

F1260 MET. The local structural environment of conserved

M1250 in the MET kinase is formed by a similar network of

favorable packing interactions with neighboring V1247,

S1254, L1245, and F1260 residues. Importantly, in the

M1250T mutant a number of these favorable interactions

are weakened, most notably reflected in the increased contact

distances with the S1254 (Fig. 7 C) and smaller changes in

the hydrophobic contacts with V1247 and F1260 residues

(Fig. 7, B and D). Moreover, this mutation seems to elicit

a conformational change in the L1245 side chain that may

partially disturb the optimal arrangement between the

L1245 and V1247 residues from the A-loop and Pþ1 loop,

respectively (Fig. 8), which partly control the accessibility

of the substrate-binding pocket. MD simulations have re-

vealed that the M1250T substitution in MET may lead to

the greater local mobility near mutational site and an expan-

sion of the Pþ1 pocket as compared to the WT MET kinase

structure (Fig. 8). As a result, M1250T mutant may destabi-

lize structurally rigid, inactive MET conformation through

a partial displacement of the A-loop from the autoinhibitory

position (Fig. 8). A concomitant loosening of the interactions

between residues in the activation and Pþ1 loops can lead to

the eventual release of the inactive autoinhibitory conforma-

tion of the enzyme and the increased accessibility of the

substrate binding pocket.

Hence, we have predicted that the mechanistic basis of the

activating M1250T MET mutation may be driven by an

appreciable free energy destabilization of the inactive kinase

state in the mutational form. It appears that the higher confor-

mational mobility of M1250T in MET, as compared to the

WT MET, is largely canceled out by detrimental changes
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in the intramolecular interactions and the overall enthalpy

loss (Table 1). These results support the molecular mecha-

nism of activation, which causes a detrimental imbalance

in the dynamic equilibrium shifted toward the active form

of the enzyme. This effect may be an important contributing

factor of the adverse character and transforming properties of

the M1250T MET mutation.

It is worth noting at this point that while MD simula-

tions reveal functionally relevant conformational motions

and flexibility of the A-loop, computationally feasible

timescales of simulations are not sufficient to observe

reproducible and reversible transitions between the closed

and opened enzyme forms. Our attempts to considerably

extend the timescale based on MD simulations with the

crystal structure of the active RET kinase and the crystal

structure of the inactive MET kinase suggest that direct

simulations of such large conformational changes may be

still beyond our current capabilities and require alternative

approaches such as targeted molecular dynamics

(40,42,96).

FIGURE 6 (A) The RMSD values for Ca atoms from 20-ns MD simula-

tions with the inactive MET kinase. Time evolution of the WT is shown

in blue; time evolution of the M1250T mutant is shown in red. (B) The

RMSF values of the RET kinase residues (using original numbering in the

PDB entry 2G15) from 20-ns MD simulations with the inactive MET kinase.

Time evolution of the WT is shown in blue; time evolution of the M1250T

mutant is shown in red.
Docking and binding simulations of the RET
kinase inhibitor with the cancer mutants

The recently solved crystal structures and thermodynamic

data of the WT RET (PDB entries 2IVS and 2IVT) and

RET complexes with ZD6474 (PDB entry 2IVU) (62)

have provided a basis for molecular docking and binding

free energy simulations. We have employed the results of

MD simulations performed for the WT RET and M918T

mutant, and followed with MD simulations of the RET

complex with ZD6474 to investigate molecular determinants

mediating binding and resistance of oncogenic forms of the

RET kinase with the 4-anilinoquinazoline ZD6474 inhibitor

(Fig. 9). The binding free energy analysis of the V804G and

V804M mutations was carried out using the results of MD

simulations of the WT RET, followed by introducing the

respective mutation to the 1000 representative RET confor-

mations and docking of the inhibitor to the obtained confor-

mational ensemble of RET mutants.

In agreement with the experimental data, binding simula-

tions of the RET kinase complexes have predicted the

binding mode of the ZD6474 inhibitor with the WT RET,

which is virtually identical to the crystallographic conforma-

tion (Fig. 9, A and B). The analysis of the crystal structure

and the predicted inhibitor conformation shows a virtually

identical position of the bromofluorophenyl group of

ZD6474, which occupies a hydrophobic cavity near the

back of the ATP site in the optimal proximity of V804

(Fig. 9 B). Although the inhibitor does make hydrogen bonds

with Val-804, the size of the side chain at this position is

important in controlling access to this small pocket. Indeed,

simulations with the V804G RET mutant suggest a more

tightly bound conformation of the inhibitor, which optimizes

interactions of the bromofluorophenyl inhibitor group in the

created cavity and improves the overall fit of the inhibitor in

the binding site (Fig. 9 C). In contrast, Val-804 mutations to

the larger Leu and Met residues can severely interfere with

the binding of the inhibitor and render resistance to

ZD6474. The inhibitor may compromise the favorable

extended structure, being forced to adopt an intrinsically

strained conformation to avoid direct van der Waals clashes

with the V804M residue (Fig. 9 D). These changes may only

partially improve the intermolecular inhibitor interactions

with the V804M and packing against the Lys-858 side chain,

while leading to overall dramatic loss in the binding affinity

due to combined loss of the favorable intramolecular and

intermolecular contacts (Fig. 10).

The predicted binding free energies of the ZD6474

complexes with the WT RET and mutants agree with the

biochemical data (66–69). A considerable improvement in

the binding affinity of ZD6474 with the V804G RET mutant,

as compared to the WT RET, is in full accordance with the

experimentally observed inhibition values. In a sharp

contrast, docking simulations with the conformations of

the V804M RET mutant lead to significant changes in the
Biophysical Journal 96(3) 858–874
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FIGURE 7 Analysis of MD simulations with the inactive MET kinase. Time evolution of the distances between Ca atoms of the residues in the local struc-

tural environment of the mutational site. Time evolution of the distances between Ca atoms of the M1250T MET and L1245 MET (A), M1250T MET and

V1257 MET (B), M1250T MET and S1254 MET (C), and M1250T MET and F1260 MET (D). Time evolution of the distances for the M1250 WT MET is

shown in blue; time evolution of the distances for the T1250 MET mutant is shown in red.
binding mode of the inhibitor, which encounters severe steric

clashes with the larger hydrophobic residue at the gate-

keeper position and abrogates efficient inhibitor binding

(Fig. 9 D). Hence, docking and binding free-energy evalua-
Biophysical Journal 96(3) 858–874
tions of the inhibitor binding with the oncogenic and drug-

resistant RET mutants reproduce the experimental data and

provide a structural rationale of the drug inhibition profile,

which is consistent with the experimental data.
FIGURE 8 (A) The average structure of the inactive

form of WT MET kinase with M1250 residue shown in

CPK model. (B) A closeup of structural packing near the

mutational site in the inactive WT MET kinase. (C) The

average structure of the inactive form of M1250T MET

kinase mutant with T1250 residue shown in CPK model.

(D) A closeup of structural packing near the mutational

site in the inactive T1250 MET kinase.
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FIGURE 9 The predicted binding mode of the ZD6474

inhibitor (in blue CPK model) with the WT RET Binding

site residues are shown in CPK models. (A) Superposition

of the predicted binding mode (in blue stick) with the crys-

tallographic conformation of the ZD6474 inhibitor from

the WT complex(default colors, stick model) in the WT

RET (B); V804G RET mutant (C); and V804M RET

mutant (D).
Structural mapping of RET and MET cancer
mutations: modeling protein stability effects

Mapping of disease-linked mutations on the dynamical

profile of the WT RET and MET kinases has allowed

computational predictions of protein stability changes in

a number of important activating mutation sites. In the

CUPSAT approach (85), coarse-grained statistical poten-

tials, which are used to predict protein stability changes

caused by mutations, may primarily reflect the enthalpy

contribution to the free energy. Despite a rather simplistic

model, the CUPSAT-based protein stability assessment has

captured highly oncogenic RET and MET mutations as the

mutations which display a larger destabilization effect on

the inactive kinase structure (Figs. 11 A and 12 A). Another

approach for the protein stability analysis, FOLDx (87),

which provides an estimate of the differences in the empir-

ical folding free energy, has shown a similar trend in the

protein stabilities for both RET (Fig. 11 B) and MET mutants

(Fig. 12 B). Modeling protein stability effects using the MM-

GBSA approach (79,80) can arguably provide a more

detailed, quantitative evaluation of the thermostability and

complement the results obtained from knowledge-based,

empirical models. Importantly, all three approaches have re-

vealed a consistent trend and support a mechanism of activa-

tion, whereby the mutations that display the higher onco-

genic activity tend to have the greatest destabilization

effect on the inactive kinase structure.

Indeed, M918T RET and M12509T MET mutations, which

have the highest oncogenic activity, may result in the largest

destabilization effect on the inactive kinase structure (Figs.

11 and 12). Similarly, mutations of D1228 and M1250, which

cause a significant oncogenic transformation (61,97), are pre-

dicted to have a significant destabilization effect on the protein

structure. In contrast, the transforming potential of mutations
at H1094 and H1106 positions is known to be very small

(98). In accordance with these experimental data, we have

observed a small stabilization effect of H1094Y and

H1106D mutations on the autoinhibited MET structure. Inter-

estingly, M918T, Y806C, S891A, and A919V mutations,

which display a high transforming potential (62), have the

greater destabilization effect on the computed protein stability

changes (Fig. 11). Furthermore, P973L and M980T muta-

tions, which have markedly decreased the expression of the

RET protein with normal kinase activity and impair the

RET kinase activity (99), are shown to have a significant de-

stabilizing effect on the inactive form of RET kinase.

Although a detailed quantitative analysis and validation of

the computed protein stability changes would be warranted

only when the complete experimental data set becomes avail-

able, it is consistent with previous knowledge (100) and may

be instructive to note, in the context of this study, that the

effect of cancer mutations on normal kinase activity may be

associated with their impact on protein stability. Hence, the

results suggest that structural effects of activating cancer

mutations in RET and MET kinases may manifest in reduced

protein stability in the inactive state of the enzyme, thereby

triggering a detrimental imbalance in the dynamic equilib-

rium shifted toward the constitutively active kinase form.

Protein stability and structural effects of cancer
mutations: the energy landscape perspective

Our results suggest that structural topology of protein kinase

tends to preserve globally similar protein flexibility profiles

in the WT and mutational forms, whereas allowing for func-

tionally important local divergences near the mutational site.

This result is consistent with the recent studies, which have

revealed protein flexibility profiles that can diverge slowly,

being conserved both at family and superfamily levels
Biophysical Journal 96(3) 858–874
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FIGURE 10 The correlation between the computed and

experimental binding free energies of the ZD6474 inhibitor

with WT RET, M918T, V804G, and V804M RET mutants.
(101,102). From an evolutionary point of view, structural

conservation of global protein flexibility and local deviations

at functionally critical regions for the mutants may be deter-

mined by natural selection of dynamical features that are
Biophysical Journal 96(3) 858–874
most important for function, as evolution may partly deter-

mine the functional motions for proteins. Thus, in case of

protein kinases, natural selection would tend to preserve

protein flexibility features that retain the ability of the protein
FIGURE 11 Structural mapping of cancer mutations and modeling protein stability effects in the RET kinase. Protein stability differences between the WT

RET and RET mutants using CUPSAT (A), FOLDx (B), and MM-GBSA (C). Mapping of cancer mutations into the structure of the RET kinase (D). Negative

values of protein stability changes correspond to destabilizing mutations. Mutational sites are in green CPK Ca models. Mutations with the largest destabi-

lization effect are shown in red.
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FIGURE 12 Structural mapping of cancer mutations and modeling protein stability effects in the MET kinase. Protein stability differences between the WT

RET and RET mutants using CUPSAT (A), FOLDx (B), and MM-GBSA (C). Mapping of cancer mutations into the structure of the RET kinase (D). Negative

values of protein stability changes correspond to destabilizing mutations. Mutational sites are in green CPK Ca models. Mutations with the largest destabi-

lization effect are shown in red.
to fluctuate normally between active and inactive states. In

contrast, cancer kinase mutations may result in the increased

conformational space to be explored in the inactive state,

therefore disrupting optimal equilibrium balance between

active and inactive enzyme forms. The results of our study

can be interpreted from the perspective of the energy land-

scape theory (103–106), which suggests that less stable

and less selective protein states may be a result of a more

rugged bottom of the energy funnel, while functionally rele-

vant and specific protein structures are likely to be relatively

rigid, with a steep funnel of conformations leading to the

native state. In the framework of the energy landscape

theory, we can speculate that detrimental activating muta-

tions in protein kinases may act by shifting the accessible

conformational space away from regions that facilitate

normal functional performance of the kinase and perturb

the funneled nature of the free energy landscape. This anal-

ysis is consistent with a recently proposed mechanism (107),

in which proteins can modulate their function by altering the

accessible conformational space, while deleterious mutations
may increase the probability of exploring additional confor-

mational regions that are incompatible with the normal func-

tional attributes. While the structural diversity of WT protein

kinases has been illuminated in recent years given the rapidly

increasing body of crystal structures, structural knowledge of

functionally important kinase mutants is limited and presents

an important challenge for structural pathology studies of

protein kinases (34). It is evident that the accuracy of compu-

tational structure predictions for kinase cancer mutants and

the atomic details of activation mechanisms can be fully

understood only when the respective high resolution crystal

structures become available. However, considering current

experimental challenges in dissecting the molecular basis

of cancer-causing mutations (34), the presented computa-

tional analysis provides useful insights into the mechanistic

basis of activating kinase mutations, which agree with avail-

able experimental data. Computational predictions from this

study can inform future experiments exploring the molecular

pathology of tumorigenesis and facilitate rationale drug

design of personalized cancer therapies.
Biophysical Journal 96(3) 858–874
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CONCLUSIONS

Computer simulations of the conserved cancer mutations in

the RET and MET kinases have allowed us to elucidate at

atomic resolution the impact of these mutations in altering

protein kinase structure, dynamics, and stability. The func-

tional role of a structurally conserved mutational hotspot in

the RET and MET kinases, shared by M918T RET and

M1250T MET, has been deciphered by simulating the differ-

ential effect of these mutations on active and inactive kinase

states. We have found that the mechanistic basis of the acti-

vating RET and MET cancer mutations may be driven by

an appreciable free energy destabilization of the inactive

kinase state in the mutational forms. The computed protein

stability differences between the WT and cancer mutants

are consistent with circular dichroism spectroscopy and

differential scanning calorimetry experiments, and therefore

provide a molecular rationale of the observed phenomenon.

These results support the molecular mechanism of activation,

which causes a detrimental imbalance in the dynamic equilib-

rium shifted toward the active form of the enzyme. Further-

more, structural mapping of cancer mutations in RET and

MET kinases and the computed protein stability changes

using three different approaches have revealed a consistent

trend and reinforced the proposed mechanism of activation,

whereby the mutations that display the higher oncogenic

activity tend to have the greatest destabilization effect on

the inactive kinase structure. Ultimately, understanding struc-

tural and functional effects of conserved cancer mutations can

aid in the development of therapeutics to specifically combat

mutation-dependent tumorigenesis, while avoiding potential

side effects related to normal functions of the targeted kinase.
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