
1056 Biophysical Journal Volume 96 February 2009 1056–1067
A Unified Poland-Scheraga Model of Oligo- and Polynucleotide DNA
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Daniel Jost* and Ralf Everaers
Laboratoire de Physique and Centre Blaise Pascal of the École Normale Supérieure de Lyon, Université de Lyon, CNRS UMR 5672, Lyon,
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ABSTRACT Key biological and nano-technological processes require the partial or complete association and dissociation of
complementary DNA strands. We present a variant of the Poland-Scheraga model for DNA melting where we introduce a local,
sequence-dependent salt correction of the nearest-neighbor parameters. Furthermore, our formulation accounts for capping and
interfacial energies of helical and coiled chain sections. We show that the model reproduces experimental data for melting tem-
peratures over the full experimental range of strand length, strand concentration, and ionic strength of the solution. In particular,
we reproduce a phenomenological relation by Frank-Kamenetskii for very long chains using a parameterization based on melting
curves for short oligomers. However, we also show that the parameters of the Poland-Scheraga model are still not known with
sufficient precision to quantitatively predict the fine structure of melting curves. This formulation of the Poland-Scheraga model
opens the possibility to overcome this limitation by optimizing parameters with respect to an extended base of experimental data
for short-, medium-, and long-chain melting. We argue that the often-discarded melting data for longer oligomers exhibiting
non-two-state transitions could play a particularly important role.
INTRODUCTION

A quantitative understanding of basepairing and opening of

the double-helix in DNA or RNA strands is relevant for

many fundamental biological processes like transcription,

replication (1), or RNA folding (2) and interference (3), as

well as bio- and nanotechnological applications like DNA

chips (4), DNA self-assembly (5) or guided nano-assembly

of colloidal nanoparticles with DNA linkers (6,7). There

are two standard theoretical descriptions of DNA thermal

denaturation: the nearest-neighbor (NN) model quantitatively

describes the melting of short oligonucleotides (8–10),

which exhibit a two-state transition from a fully paired, dou-

ble-helical complex to two separated single strands with

random coil conformations; and the Poland-Scheraga (PS)

model of polynucleotide melting (11,12) describes longer

chains on the secondary structure level as an alternating se-

quence of double-stranded (helical) parts and (coiled) loops.

The NN- and the PS-model have been employed routinely

for several decades to describe a large variety of DNA-

and RNA melting experiments, and the same formalism is

widely used to investigate RNA folding (13,14). A possible

point of criticism is the large number of adjustable parame-

ters, which makes it (too) easy to fit individual sets of exper-

iments. Not surprisingly, much effort has been devoted to the

comparison of parameters extracted from different systems.

Ten years ago, SantaLucia concluded, ‘‘A unified set of

NN-parameters is now available for making accurate predic-

tions of DNA oligo- and polymer thermodynamics’’ (10).

However, the compilation of results in SantaLucia (10)

also shows a large number of unrelated boundary terms and
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salt corrections to be used in different limits. Furthermore,

the available descriptions were limited to two-state melting

transitions of short oligomers and to stepwise melting of

long polymers, i.e., to the limit where DNA denaturation

becomes independent of the DNA concentration in the sam-

ple. The situation is more complicated for longer oligomers

exhibiting partial internal melting before strand separation.

Recent experiments of Zeng et al. (15) and Zeng and Zocchi

(16) have shed some doubts on the applicability of the stan-

dard formalism in this biologically (3,17) and technologi-

cally (4,5) important limit.

In this article, we present a unified PS like model covering

the full experimental range of chain lengths, strand, and salt

concentrations and compare its predictions to available exper-

imental data. In the first section, we augment a recent, unified

formulation for oligomer and polymer melting (18) by a

systematic extension of oligomer salt corrections (19) to the

longer chains limit. Furthermore, we pay particular attention

to the estimation of confidence limits on model predictions,

illustrated here for a parameterization of the model, which

is essentially based on published data for oligomer melting.

In a second section, we discuss the generic behavior of the

model, i.e., the influence of variations of strands and ionic

concentrations on the result of melting experiments for

DNA duplexes of different length. The following quantitative

comparison to experiment data shows that the model repro-

duces experimental data from short oligomers to long DNA

polymers. This includes the controversial non-two-state melt-

ing of long oligomers where, however, the uncertainty of the

predictions becomes particularly large. We conclude that

experiments along the lines of Zeng et al. (15) and Zeng

and Zocchi (16) could play an important role in future at-

tempts to improve the parameterization.
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MODEL AND METHODS

Association equilibria and internal melting

We treat a complex AB in equilibrium with two strands A and B, each con-

sisting of N basepairs (bps). For the association equilibrium A þ B 4 AB

between bound and unbound states, we can write the law of mass action

ðcA=c0ÞðcB=c0Þ
cAB=c0

¼ exp

�
DG0

kBT

�
; (1)

where c0 is a reference concentration (usually c0¼ 1 M), cA, cB, and cAB are,

respectively, the concentration of A, B, and AB, and

DG0 ¼ DGint þ DG0
mixðNÞ (2)

is the Gibbs free energy difference between the bound and unbound forms at

the reference concentration. DG0 depends on both, the internal free energy

difference, DGint ¼ GAB
int – GA

int – GB
int, and the difference of the mixing

entropies with the solvent DG0
mix. For chains of length N the latter can be

estimated as DGmix
0 ¼ �kBT log(0.44(N � 1)) (see (18) and Appendix A

of this article).

From Eq. 1 and using the definitions of the total, strand, and complex con-

centrations which are related via cT ¼ cA(T) þ cB(T) þ 2cAB(T), cA(T) ¼
cB(T) ¼ (1 – Qext(T))cT/2 and cAB(T) ¼ Qext(T) cT/2, we can derive the

degree of association Qext(cT, T) (20)

QextðxÞ ¼ 1 þ x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð2 þ xÞ

p
; (3)

with x ¼ c0

acT
expðDG0

kBT Þ (a ¼ 4 for self-similarity strand A ¼ B, otherwise

a ¼ 1).

Internal hybridization of the complex and the individual strands can be de-

scribed in terms of the fraction Qint(T) of bound basepair steps as a function

of temperature. Here we assume that only the complex can form double-

helical sections, hence, the experimentally observable overall fraction of

bound basepair steps (see note below Eq. 4) is given by

QðcT; TÞ ¼ QintðTÞQextðcT ; TÞ: (4)

(Note that experimental data used in this article for Q are UV absorbance

data. Typically, optical absorbance curves exhibit a linear increase in the

pre- and post-transition regimes due, respectively, to a slight elevation in

the average stacking of the double-stranded DNA and to the unstacking of

bases in the single strands (21). The Q-curves are obtained from a normali-

zation of the absorbance data (22) that deletes these linear contributions.)

Unified Poland-Scheraga model

To proceed, we need to determine the free energy DGint, as well as the

degree of pairing Qint(T) from a statistical mechanical description of single-

and double-stranded DNA. In this article, we employ a recent formulation

(18) of the PS model with a direct mapping to a lattice model.

The PS model describes DNA at the secondary structure level as a sequence

of double-stranded sections and denatured loop- or end-domains. We write

the association free energy in the double-stranded regions in the so-called

‘‘doublet format’’ (21) as a sum over sequence-dependent nearest-neighbor

pair formation free energies DgNN(T) ¼ DhNN – TDsNN for the 10 different

basepair steps. Furthermore, our description includes boundary terms. We

consider two different capping energies uA/T and uG/C for double-stranded

chain ends with u(T) h Dhu – T Dsu as well as cooperativity factors s

and �s suppressing the opening of loop and end domains respectively.

In Fig. 1, we show the contributions of the different free energies to the total

partition function of the system. The reference state is the helical state (Zhelix¼
1). Therefore, the contribution of an internal loop (size n) is

Zloop ¼ s n�cexpðb
P

DgNNÞ and the contribution of a free end (size �n) is

Zend ¼ �s �nc0expðb
P

DgNN þ buÞ. Here, n–c and �nc0 account for, respec-

tively, the number of self-avoiding polygons of length 2n and the number of
possible conformations for a free end of length 2�n. The values c and c0 take

into account the steric interactions in the loops and in the free ends. The values

of c and c0 have to be derived from polymer theory. The parameter c has been

extensively discussed (11,22–25) and is equal to 1.764 for noninteracting self-

avoiding loops and 2.15 for interacting self-avoiding loops. The value of c0 is

equal to 0.16 (26,27). The total partition function is the product of the different

partial partition functions. Here we only consider the formation of native con-

tacts in double-stranded DNA, but the general case can be discussed in the same

framework (28,29). Furthermore, it is possible to treat secondary-structure for-

mation in DNA or RNA single strands using the same formalism (13,14).

The PS model can be solved using dynamic algorithms based on recursion

relations (11,12,28,29). In Appendix B, we show how the method proposed

by Garel and Orland (29) for the calculation of partition functions and free

energies can be adapted to the doublet format. Use of the Fixman-Freire

algorithm (29,30) substantially accelerated the calculations.

Parameters and confidence limits

Despite the large number of adjustable parameters (10 DhNN, 10 DsNN, 2 Dhu,

2 Dsu, s, and �s), the PS model clearly represents a drastic simplification of the

true problem. The key assumption is that all nongeneric contributions to the

melting free energy difference can be written as a sum of independent

basepairs contributions. Furthermore, it is common to only partially consider

the sequence dependence of the boundary terms. For example, since the 50 and

30 of the sugar-phosphate backbone are chemically different (with corre-

spondingly modified solvation and stacking effects, etc.) there is no reason

to expect identical free energy penalties for 50 – A/30 – T and 50 – T/30 – A

ends as well as for 50 – G/30 – C and 50 – C/30 – G ends. Similarly, one would,

in general, expect sequence- and salt-dependent forking energies; yet the

available experimental data does not allow us to determine these values

reliably. In general, the basic assumptions and ad hoc choices can only be

corrected or justified a posteriori by evaluating the success of the model

in describing (and even more importantly) predicting the results of experi-

ments (10,21,31). Some care has thus to be taken in estimating parameter

values and the associated confidence limits from comparisons to experimental

data. In this article we use Monte Carlo methods (32) to account for the prop-

agation of these errors in the calculation of model predictions, i.e., results are

calculated for (and averaged over) an ensemble of models with parameters

drawn from a multidimensional Gaussian distribution defined by the mean

values and the covariance matrix resulting from the parameter fits.

Nearest-neighbor parameters

Short oligomers exhibiting a two-state melting transition can be used to

determine the association and capping free energies. In the NN-model,

DG0 ¼
P

DgNN þ 2Dgini, where DgNN and Dgini are pair formation and

initiation NN-parameters (10). In the unified PS-model, DG0 ¼
P

DgNNþ
2uþ DG0

mix. Equating the two expressions yields u(T) ¼ Dhini – T(Dsini

– DS0
mix/2), where DS0

mix ¼ 1.5 kB accounts for the mixing entropy of olig-

omers at a typical size of 10 bps used in experiments employed for param-

eterizing the NN-model (an arbitrary standard deviation of 30% is assumed

FIGURE 1 Example of a secondary structure, definition of the different

contributions in the partition function. Zhelix is the contribution of an helical

stem, Zloop is the contribution of an internal loop of size n, and Zend is the con-

tribution for a free end of size �n. The term u refers to the capping free energy.

The total partition function is the product Z¼ exp(�bu)ZhelixZloopZhelixZend.
Biophysical Journal 96(3) 1056–1067
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for DS0
mix). The corresponding total of 24 relevant parameters in the limit of

short oligomers undergoing two-state melting (10 DhNN, 10 DsNN, 2 Dhini¼
Dhu, 2 and Dsini ¼ Dsu þ DS0

mix/2) corresponds to the number of indepen-

dent parameters, which can be determined uniquely from the corresponding

experiments (31,33–35).

Correlations between NN-parameters are not negligible (correlation

between DhNN and DsNN approaches 99% for a given basepair step). To

have access to the covariance matrix, we repeated the analysis of Allawi

and SantaLucia (33) (singular value decomposition (32) and of error evalua-

tion via the Bootstrap method (36)), which consists in optimizing the melting

temperatures prediction for short two-state oligomers, using the same exper-

imental data. Our results (Table 1) slightly deviate from Allawi’s values due

to the larger number of resampling trials carried out (>100,000, compared to

30 in Allawi and SantaLucia (33)).

Salt correction

Experimental observations (19) show that changing the salt concentration

from 1 M to 100 mM shifts the melting temperature by ~10 K. These vari-

ations are described by a number of phenomenological salt corrections that

are different for short oligomers and polymers (10,19). A systematic, statis-

tical-mechanical approach should derive the observed melting temperatures

from a model with salt-dependent parameters. Given that DNA is a highly

charged molecule, such a dependence is not surprising and is formally the

result of integrating out microscopic degrees of freedom of the DNA along

with those of the solvent molecules and salt ions.

The correction most used in bioinformatics programs (DINAmelt (37),

MELTING (38)) is the one given by SantaLucia (10) for oligomer

NN-parameters:

DsNN

��
Naþ

��
¼ DsNNð1MÞ þ 0:368 � log

�
Naþ

�
: (5)

This correction is sequence-independent, while Owczarzy et al. (19) have

recently shown that the melting temperatures of oligomers undergoing

two-state melting follow the phenomenological rule

d

d
�
log
�
Naþ

��
�

1

Tm

�
¼ ðKs1f ðGCÞ þ Ks2Þ

þ 2 Ks3log
�
Naþ

�
; (6)

TABLE 1 Unified PS parameters and their standard deviations

in a 1 M [Naþ]-buffer

Sequence Dh (kcal/mol) Ds (cal/mol/K)

AA/TT �7.93 5 0.31 �22.4 5 1.0

AT/TA �7.15 5 0.78 �20.2 5 2.6

TA/AT �7.23 5 0.82 �21.6 5 2.7

CA/GT �8.44 5 0.77 �22.9 5 2.5

GT/CA �8.47 5 0.66 �22.9 5 2.2

CT/GA �7.73 5 0.66 �20.9 5 2.2

GA/CT �8.29 5 0.61 �22.6 5 2.0

CG/GC �10.54 5 0.82 �27.1 5 2.7

GC/CG �9.81 5 0.73 �24.6 5 2.4

GG/CC �8.02 5 0.68 �19.6 5 2.3

Cap with G/C 0.08 5 0.99 �3.7 5 3.4

Cap with A/T 2.22 5 1.02 2.8 5 3.3

Log s �9.0 5 2.7

Log �s �5.7 5 1.4

gS (cal/mol/K) �8.9 5 2.7

DS0
mix (cal/mol/K) 3.0 5 0.9

Ks1 (K–1) (4.29 5 0.29) � 10�5

Ks2 (K–1) (�3.95 5 0.16) � 10�5

Ks3 (K–1) (9.4 5 0.29) � 10�6
Biophysical Journal 96(3) 1056–1067
where Ks1, Ks2, and Ks3 are empirical numbers of the same order (see Table 1)

and f(GC) is the GC content of the sequence. Equation 6 cannot be used

directly for our purposes. To infer the salt-dependence of the local NN-param-

eters DhNN and DsNN we proceed in two steps: firstly, we follow the literature

(39,40) and assume that the complexation enthalpy is independent of salt-con-

centration. In contrast, the gain in mixing entropy of counterions released

from molten chain sections does depend on the salt concentration (41,42).

With

1=Tm ¼ ðDS0 þ kB logðcT=ðc0=aÞÞÞ=DH0 (7)

for two-state melting, we can rewrite Eq. 6 in the form

d

d
�
log
�
Naþ

��ðDS0Þ ¼ DH0 �
	�

Ks1f ðGCÞ þ Ks2

�

þ 2 Ks3log
�
Naþ

�

: (8)

Secondly, instead of applying Eq. 8 to the whole sequence, we use the

local GC content fl(GC) of a basepair step. This results in a correction of

the form

Ds
��

Naþ
��
¼ Dsð1MÞ þ Dh

	
ð4:29flðGCÞ

� 3:95Þlog
�
Naþ

�
� 10�5

þ 9:4 log2
�
Naþ

�
� 10�6



ð9Þ

for the NN-pair formation and capping entropies. We have checked that our

results do not change significantly if larger environments up to 5 bps are

taken into account for calculating fl(GC). Typical values of ds([Naþ]) h
Ds([Naþ]) – Ds(1 M) for the different basepairs are reported in Table 2.

Note that the fits of the salt correction parameters and of the NN-parameters

have been realized separately. Correlations between Ks1, Ks2, and Ks3 exist

and are considered in the error propagation analysis.

Cooperativity

There is no a priori reason why the cooperativity parameters should not have

an enthalpic contribution, or why they should be independent of DNA

sequence and of the salt concentration. To date, the interfacial parameters

s and �s are not known with sufficient precision. The cooperativity s is in

the range 10�4–10�5 (24,25,29,43) corresponding to a loop nucleation free

energy 2g h�kBT log s h�2gST of ~10 kBT. The bare free-end formation

TABLE 2 Salt correction from Eq. 9

ds([Naþ]) (cal/mol/K)

Sequence 0.01 M 0.05 M 0.1 M 0.5 M

AA/TT 3.0 5 0.2 1.6 5 0.1 1.1 5 0.05 0.3 5 0.01

AT/TA 2.7 5 0.3 1.5 5 0.2 1.0 5 0.1 0.2 5 0.03

TA/AT 2.8 5 0.3 1.5 5 0.2 1.0 5 0.1 0.2 5 0.03

CA/GT 2.4 5 0.2 1.2 5 0.1 0.8 5 0.1 0.1 5 0.02

GT/CA 2.4 5 0.2 1.2 5 0.1 0.8 5 0.05 0.1 5 0.02

CT/GA 2.2 5 0.2 1.1 5 0.1 0.7 5 0.05 0.1 5 0.02

GA/CT 2.3 5 0.2 1.1 5 0.1 0.8 5 0.05 0.1 5 0.02

CG/GC 1.9 5 0.2 0.8 5 0.1 0.4 5 0.05 0.0 5 0.02

GC/CG 1.8 5 0.2 0.7 5 0.1 0.4 5 0.05 0.0 5 0.02

GG/CC 1.5 5 0.2 0.6 5 0.1 0.3 5 0.05 0.0 5 0.02

Cap with G/C 0.0 5 0.2 0.0 5 0.1 0.0 5 0.05 0.0 5 0.01

Cap with A/T 0.8 5 0.4 0.5 5 0.2 0.3 5 0.1 0.0 5 0.03
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FIGURE 2 �dQ/dT versus T for different random

sequences (f(GC) ¼ 0.5): N ¼ 10 (first line), N ¼ 50

(second line), N ¼ 500 (third line), and N¼ 50,000 (fourth
line). (Left) [Naþ] ¼ 0.1 M and cT ¼ 2 � 10�3 M (dashed

lines), cT¼ 2� 10�5 M (solid lines), and cT¼ 2� 10�7 M

(dotted and dashed lines). (Right) cT ¼ 2 � 10�5 M and

[Naþ] ¼ 1 M (dashed lines), [Naþ] ¼ 0.1 M (solid lines),

and [Naþ] ¼ 0.01 M (dotted and dashed lines).
parameter �s is of course correlated to s (with the opening of a free-end there is

a creation of one interface whereas, with a loop, two interfaces appear) and

�s �
ffiffiffi
s
p

. In the following, we assume �s ¼ 0:3
ffiffiffi
s
p

. The numerical values of

the different parameters are listed in Table 1. The lack of data concerning

s forces us to assume an high arbitrary standard deviation of 30% for log s

and to neglect possible correlations between s and NN-parameters.

Generic melting behavior

The generic behavior of the model is shown in Fig. 2 for random sequences

(f(GC) ¼ 0.5) of different lengths (N ¼ 10, 50, 500, or 50,000). In the two

columns of the figure, we compare the evolution of the hybridization observ-

able �dQ/dT as a function of the strand concentration cT and the ionic

strength of the [Naþ]-buffer.

Oligomer melting curves (N¼ 10, 50) show one or two peaks. The height

and width of the main peak are related to the chain length. For short oligomers,

the transition occurs in a temperature interval of ~40 K and centers around

physiological temperatures (310 K). Melting curves for short- (N ¼ 500)

and medium-sized DNA polymers exhibit several peaks due to successive

domain opening. For very long chains (N¼ 50,000),�dQ/dT becomes again

featureless due to the superposition of large numbers of simultaneously

occurring domain-melting events.

The strand concentration cT has a strong influence on oligomer hybrid-

ization, but has negligible effects for long chains. Generally, larger concen-

trations reduce the single-strand gain in mixing entropy and stabilize the

complex. The relative importance of the strand translational entropy is
highest for short chains at low concentrations resulting in two-state transi-

tions. For longer oligomers and higher concentrations, internal melting

competes with strand dissociation, and the two-state character of the tran-

sition is lost.

Variation of the salt concentration leads to comparable shifts of melting

curves in all length regimes, and only to small changes in curve shapes.

Low concentrations tend to stabilize bubbles and single strands (due to

the decreasing screening effect of counterions (19,42)). Closer inspection

reveals effects of the sequence-dependence of the salt correction (shown

in Eq. 9). Lower salt concentrations tend to favor the partial opening of

AT-rich domains like TATA boxes (promoter region in eukaryote genes

and transcription initiator (44)).

QUANTITATIVE COMPARISON
TO EXPERIMENT—PREDICTIVE POWER

In the following, we compare available experimental data to

the predictions of the model. Good agreement for the short

oligomers used for the parameterization is to be expected,

but not trivial: the experimentally observed two-state melting

behavior (i.e., the irrelevance of fluctuations) has to be

a property of the correctly parameterized model including

fluctuations. The following comparisons for long polymers

and intermediate chain lengths constitute true tests of the
Biophysical Journal 96(3) 1056–1067
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FIGURE 3 Calculated melting temperatures Tm
th as

a function of the experimental ones Tm
exp for (left) 92

sequences from Owczarzy et al. (19) at five different salt

concentrations (cT ¼ 2 � 10�6 M): 69 mM (orange),

119 mM (blue), 220 mM (cyan), 621 mM (black), and

1.02 M (violet) (green dots are representative of the stan-

dard deviations); and for (right) 20 sequences from Santa-

Lucia et al. (53) at various strand concentrations ([Naþ] ¼
1 M): cT ˛ [3.65 � 10�6, 10�5] (blue), cT ˛ [10�5, 10�4]

(black), and cT ˛ [10�4, 6.32 � 10�4] (green).
predictive power of the model, since the experimental data

was not used for the parameterization.

Short oligomers (~10 bps)

The average error in the predicted melting temperatures

hDTmi ¼
1

N

X
i

jTexp
m � T th

m j (10)

for the data sets from the literature (19,33) that we used for the

parameterization is hDTmi ¼ 1.7 K (compared to hDTmi ¼
2.4 K using Eq. 5 for the salt correction and to the average ex-

perimental error of 0.3 K). The more detailed comparison of

calculated and experimental melting temperatures in Fig. 3

shows that there are no preferred salt or strand concentrations

over the entire experimentally available range of [Naþ] ˛
[0.01 M, 1 M] and cT ˛ [3.7 � 10�6 M, 6.3 � 10�4 M]: all

data points are uniformly aggregated along the bisectors

with error estimates corresponding to the typical deviation

from the experimental value. Moreover, the two-state behav-

ior of the transition can be shown by evaluating the maximum

Smax of S ¼ Qext – Q (15). If the sequence presents a two-

state transition, Qext ¼ Q or Smax ¼ 0 (Fig. 4). Note that

the comparison is made to the full model including fluctua-

tions, which were neglected for the parameterization. Thus,

the model properly reproduces the experimental observation

of two-state melting for the sequences in question. Neglecting

the cooperativity factors would lead to drastically different

results (18).

Long polymers (R10 kbps)

In the opposite limit of very long DNA, melting curves

become again relatively featureless (see Fig. 2) and can be

characterized by a melting temperature, which depends on

the GC-content, fGC. More than 30 years ago, Frank-Kame-

netskii (45) and Vologodskii et al. (46) proposed the follow-

ing empirical relations:
Biophysical Journal 96(3) 1056–1067
Tm ¼ TAT
m þ f ðGCÞ

�
TGC

m � TAT
m

�
ð11Þ

with

TAT
m ¼

�
355:55 þ 7:9 log

�
Naþ

��
K

and

TGC
m ¼

�
391:55 þ 4:89 log

�
Naþ

��
K:

We have generated random DNA sequences of length N ¼
50,000 with 0.4 % fGC % 0.6 within the experimental range.

Fig. 5 A shows excellent agreement between our results and

Eq. 11, provided our variant Eq. 9 of the Owczarzy’s salt cor-

rection is used. We consider this agreement to be a key result

of this work, since it presents a systematic derivation of long-

chain experimental behavior from short-chain data used in

the parameterization on the basis of a statistical mechanical

FIGURE 4 Smax for different chain length (N) random sequences

(f(GC) ¼ 0.5) in a 0.1 M [Naþ]-buffer with cT ¼ 2 � 10�4 M (dots). The

oligomers of Zeng et al. (15) in a 0.05 M [Naþ]-buffer with cT ¼ 2 �
10�6 M (crosses, experimental results; dots, calculated results) and typical

short oligomers (37) in a 1 M [Naþ]-buffer with cT ¼ 2 � 10�6 M (dots)

are shown in the inset.
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model. In particular, Fig. 5 A provides strong evidence for the

validity of our local salt correction (9) for the NN parameters.

Short polymers (100 bps % . % 10 kbps)

Melting curves for short- and medium-sized polymers show

a rich structure, but can be discussed independently of strand

concentration (Fig. 2). To test the predictive power of our

model, we have chosen PN/MCS-13 (note that this sequence

is a 4660-bp duplex composed by a pBR322 mixed 245-bp

repetitive sequence. pBR322 is associated with the primary

accession number J01749 (43)). Fig. 6 shows that our model

FIGURE 5 (A and B) Computed Tm with the unified PS-model for random

heteropolymers (50,000 bp) with different GC content f(GC) in 74.5 mM

(dots) and 220 mM (squares) [Naþ] buffer. Salt corrections are Eq. 9 (A)

or Eq. 5 (B). The drawn error bars are representative of the standard devia-

tions due to parameterization. (C and D) Theoretical Tm computed for

random polymers if the transition was two-stated (C) or if the nucleation

entropy was null (D); we use the salt correction we introduced in the article.

Dashed lines represent the empirical relations given by Frank-Kamenetskii

(45) for very long polymers (Eq. 11).
reproduces the melting temperature of PN/MCS-13 fairly

well, but fails to predict the fine structure of the curves. In

particular, calculated and measured differential melting

curves agree only qualitatively. Other bioinformatics pro-

grams (DINAmelt (37), MELTSIM (47), etc.) give similar

results for these sequences.

How are these deviations to be interpreted? Apart from

melting curves calculated using the standard parameters,

Fig. 6 contains several other curves for parameter combina-

tions drawn randomly within the correlated confidence limits

from the parameterization. The curves work equally well (or

badly), in particular the deviations from the experimental curve

are actually within the confidence limits of the theoretical

predictions and do not reveal shortcomings of the model itself.

This raises the question whether the model has any predic-

tive power for polymer melting beyond Eq. 11. Judging from

the ensemble of differential melting curves, the answer ap-

pears to be negative. However, the position-dependent melt-

ing temperature, which allows for a convenient identification

of simultaneously opening basepairs, appears extremely

robust with respect to the small uncertainties in the parame-

terization (48). Errors on local Tm are of the same order of

magnitude as for oligomers. Testing these more detailed pre-

dictions using techniques based on the one-electron oxida-

tive modifications of guanine induced by UV-laser (49) is

therefore an interesting challenge.

Long oligomers (20 bps % . % 100 bps)

While short oligomers show two-state melting, this is no lon-

ger true for longer chains. Compared to the polymer case, the

additional difficulty arises that results depend on the strand

concentration (Fig. 2).

Attention recently focused on this regime with the develop-

ment of an experimental protocol by Zeng et al. (15) and Zeng

and Zocchi (16) for measuring the degree of strand association
FIGURE 6 Melting curves Q (A), Qext (B), �dQ/dT
(C), and evolution of the local basepair melting temper-

ature (D) for PN/MCS-13 (43,47) in a 74.5 mM [Naþ]

buffer. Green lines are experimental data, black lines

are computed results with standard parameters, and

other colored lines (gray, red) represent simulations

with different random set of parameters (see text).
Biophysical Journal 96(3) 1056–1067
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FIGURE 7 Melting curves Q (A), Qext (B), �dQ/dT

(C), and evolution of the local basepair melting temper-

ature (D) for the sequence L60B36 of Zeng et al. (15) in

a 50 mM [Naþ]-buffer (cT ¼ 2 � 10�6 M). Green dots

are experimental data, black lines are computed results

with standard parameters and other colored lines (gray,

red) represent simulations with different random set of

parameters. Red curve underlines a set of parameters

that reproduce well the experimental plots for L60B36.
Qext independently of the degree of basepairing and stacking.

In Fig. 7 we compare calculated and experimentally measured

results for an oligomer L60B36 (15) with one AT-rich domain

in the center. Using the standard parameters, our model

incorrectly predicts a two-state transition. However, other pa-

rameter combinations within the confidence limits correctly

reproduce the opening of an internal bubble before strand

separation and lead to good agreement with both Q and Qext

(see Fig. 7). Fig. 4 compares the calculated and experimental

results for Smax for the five sequences (inset) of Zeng et al.

(15) and Zeng and Zocchi (16) and shows the generic behavior

of Smax for random sequences. The large, asymmetric error

bars for long oligomers highlight the particular sensitivity of

the predicted behavior to the parameterization uncertainty.

CONCLUSION

We have presented a unified Poland-Scheraga model of DNA

thermal denaturation. In contrast to previously available
Biophysical Journal 96(3) 1056–1067
formulations, our description covers the entire crossover

from oligo- to polynucleotide melting behavior and is appli-

cable in the full experimental range of DNA strand and salt

concentrations. We have used this Ansatz to discuss generic

aspects of DNA melting and were able to obtain a systematic

link between the different phenomenological sequence and

salt dependences of short- and long-chain melting tempera-

tures. Within the expected margin of error, our model

reproduces experimental data for DNA of arbitrary length

including the case of non-two-state-melting of longer

DNA-oligomers. However, here (and to some degree in the

case of domain melting of polymeric DNA) the model predic-

tions for easily observable qualitative features are particularly

sensitive to the remaining parameterization uncertainty.

Fig. 8 shows how the uncertainty in the knowledge of

particular parameters (or parameter classes) affects predic-

tions for melting curves in the various length regimes. In

most cases, the dominant contribution comes from the set of

20 NN-parameters for the dinucleotide steps. They are most
FIGURE 8 Melting curves �dQ/dT for short random

(N ¼ 10) and long (L19AS2 (15)) oligomers and for short

(PN/MCS-13) and long random (N ¼ 50,000) polymers.

For each chain-length DNA, we vary different parameters:

initiation (red), capping (black), cooperativity (green), and

NN-parameters (violet). The thick lines represents the mean

curve over the variation of parameters. The thin lines are

the confidence limits. The standard parameters curves are

the dashed blue lines.
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easily determined using data for short oligomers undergoing

a two-state melting transition (10,21), since results in this

case become independent of the cooperativity parameters s

and �s. We emphasize that the Frank-Kamenetskii relations

cannot be used directly to determine (linear combinations

(34) of) the microscopic parameters of the PS Hamiltonian.

They represent a sequence average over highly cooperative

domain opening events and are not given by a trivial average

over the employed NN-parameters (see Fig. 5, C and D).

However, Figs. 5 A and 8 suggest that a proper comparison

to averaged melting temperatures calculated from the full

PS-model might be an excellent (albeit computationally ex-

pensive) strategy to refine the NN parameters. The coopera-

tivity parameters s and �s affect the melting profiles of short

polymers and, in particular, long oligomers. The sensitivity

of these sequences has to be used to minimize errors during

the parameterization process (50). The best strategy to deter-

mine their values is to devise comparative melting experi-

ments along the lines of Blake and Delcourt (43), which allow

us to isolate their effect (for more details, see Appendix C).

However, there will still exist inherent error bars that re-

flect the hypothesizes of the model and the ad hoc simplifi-

cations made. To reduce the intrinsic errors, one solution

should be to increase the number of parameters describing

chemical or physical effects not taken into account in the

PS model (elasticity, basepair dependence of cooperative

factors, etc.). Nevertheless, this could make the model diffi-

cult to parameterize and computationally more demanding.

For future work, our results suggest (a combination of)

several strategies:

1. The analysis of the importance of the various parameter

types for particular melting experiments (Fig. 8).

2. The design of (comparative) melting experiments isolat-

ing particular parameters following the framework used

in Blake and Delcourt (43) (more details and examples

can be found in Appendix C).

3. A simultaneous fit of the model to an extended base of ex-

perimental data for short-, medium-, and long-chain melt-

ing. This option is finally available with this formulation

of the Poland-Scheraga model where all cases are treated

within the same statistical-mechanical framework.

APPENDIX A: MIXING ENTROPY AND CHEMICAL
EQUILIBRIUM

To calculate the chemical equilibrium between the individual strands and the

dimer, we need to account for the translational entropy, i.e., the entropy of

mixing with the solvent. Using a lattice approach, one can show that the en-

tropy of mixing per unit volume for two species P and Q is given by (51)

�TDSmix=V ¼ kBT

�
F

VP

logF þ 1� F

VQ

logð1�FÞ
�
; (12)

where F is the volume fraction of species P, and VP and VQ are the respective

molecular volumes. We have F ¼ cPVP and 1 – F ¼ cQVQ, where cP and cQ
are the respective concentrations (cP ¼ nP/V with nP the number of particles

P, and the same for Q). Now we apply precedent equation to the DNA-water

problem. P is either a single strand (A or B) or a double-strand (AB), and Q is

water. All the studies are made at very low DNA concentration, i.e., F<< 1,

then (1 – F)/VQ log(1 – F) z �F/VQ ¼ �cPVP/VQ. Therefore, the entropy

of mixing per molecule P can be obtained as

�TDSmix=nP ¼ �TDSmix=V=cP

¼ kBT

�
logðcPVPÞ �

VP

VQ

�
: (13)

Finally, if concentrations are measured in units of a reference concen-

tration c0 (typically c0 ¼ 1 M),

�TDSmix=nP ¼ kBT

�
log
�cP

c0

�
þ logðc0vPÞ �

vP

vQ

�
; ð14Þ

where vP and vQ are the respective molar volumes.

Now we combine the entropy of mixing with the single-chain partition

functions to obtain the free energy per molecule

GA ¼ Gint
A þ kBT

�
log
�cA

c0

�
þ logðc0vAÞ �

vA

vwater

�
ð15Þ

(and the same for B and AB). The chemical potential per molecule can be

calculated by differentiating the free energy density with respect to density,

mA ¼
d

dcA

ðcAGAÞ

¼ Gint
A þ kBT

�
log
�cA

c0

�
þ logðc0vAÞ �

vA

vwater

þ 1

�

(16)

(and the same for B and AB). To obtain the law of mass action, we equate the

chemical potentials of the bound and unbound molecules mAB ¼ mA þ mB:

�
Gint

AB � Gint
A � Gint

B

�
=ðkBTÞ ¼ log

�
cAcB

cABc0

�

þ log

�
c0vAvB

vAB

�

� vA þ vB � vAB

vwater

: (17)

By assuming that the molar volumes in the complex simply add up vAB ¼
(vA þ vB), this simplifies to

DG0hkBT log

�
cAcB

cABc0

�
¼
�
Gint

AB � Gint
A � Gint

B

�

� kBTðlogðc0vAB=4Þ þ 1Þ: ð18Þ

By defining Gint¼ (GAB
int – GA

int – GB
int) and DGmix

0 ¼�kBT(log(c0vAB/

4)þ 1), we find Eq. 2. The molar volume of the duplex is proportional to the

number of dinucleotide steps in the double-strand: vAB ¼ (N – 1)vs, where

vs is the molar volume of one dinucleotide step. Numerically, we obtain

DGmix
0 ¼ �kBT log(0.44(N – 1)).
Biophysical Journal 96(3) 1056–1067
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APPENDIX B: SOLVING THE UNIFIED PS MODEL

Recursion relations

First, we consider the forward partition function Zf(a þ 1) starting at base 1,

ending at base a þ 1, bases a and a þ 1 being paired. There are three ways

to have these bases closed: either the dinucleotide basepair step (a – 1, a) is

double-stranded, or there is a loop starting at any base a0 and ending at a, or

the duplex is completely open from base 1 to base a (Fig. 9). Therefore, con-

sidering the closed state as the reference state, we can write

Zfða þ 1Þ ¼ ZfðaÞ þ s
Xa�2

a0 ¼ 2

ða� a0Þ�cebga0 ;a�1 Zfða0Þ

þ �sða� 1Þc
0
ebg1;a�1 ;

ð19Þ

where (a – a0)–c accounts for the number of self-avoiding polygons of length

2(a – a0) (i.e., the number of loops starting at base a0 and ending at base a);

(a – 1)c0 accounts for the number of possible conformations for a free end,

ga0 ;a ¼
Pa

i¼a0 DgNNði; iþ 1Þ, with DgNN(i, i þ 1) the NN-stacking free en-

ergy of basepairs (i, i þ 1); c and c0 take into account the steric interactions

between loop or the free end with the rest of the chain. The value of c has

been extensively discussed (11,22–25) and is equal to 1.764 for noninteract-

ing self-avoiding loops and 2.15 for interacting self-avoiding loops. The value

of c0 is derived from polymer theory (26) and is equal to 0.16 ¼ 1.16 – 1.

In a similar way, we consider Zb(a) the backward partition function, start-

ing at base a and ending at base N, with base a being paired. So,

ZbðaÞ ¼ Zbða þ 1Þ þ s
XN�1

a0 ¼aþ 2

�ða0 � aÞ�cebga;a0�1 Zbða0 þ 1Þ

þ �sðN � aÞc
0
ebga;N�1 : ð20Þ

Finally, we denote by Zsf(a) the second forward partition function, start-

ing at base 1 and ending at base a, base a being closed and base a – 1 being

opened. In the same way, Zsf satisfies

ZsfðaÞ ¼ s
Xa�2

a0 ¼ 2

ða� a0Þ�cebga0 ;a�1 Zfða0Þ

þ �sða� 1Þc
0
ebg1;a�1 : ð21Þ

The probability p(a) that basepair a is bound can be expressed as

pðaÞ ¼ ZsfðaÞZbða þ 1Þ þ Zf ðaÞZbðaÞ þ e�bðu1 þuNÞ

Z
;

(22)

where Z is the total partition function (Fig. 10)

Z ¼ e�bðu1 þuNÞ þ e�buN Zf ðNÞ

þ �s
XN�1

a¼ 2

ðN � aÞc
0
ebga;N�1 Zf ðaÞ: ð23Þ

FIGURE 9 Graphical representation of the recursion relation for Zf(aþ 1).
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We can now express Qint

Qint ¼
1

N

XN

a¼ 1

pðaÞ (24)

and DGint ¼
PN�1

i¼1 DgNNði; iþ 1Þ � kBT logZ. The technical issue is now

to solve numerically Eqs. 19–21. An answer is to simplify the recursion re-

lations and speed up their numerical resolutions by using the Fixman-Freire

algorithm (29,30).

Fixman-Freire algorithm

We first fine-tune the recursion relations. With

Z�f ðaÞ ¼ exp
�
� b

Xa�1

i¼ 1

DgNNði; i þ 1Þ
�

Zf ðaÞ; (25)

Z�bðaÞ ¼ exp
�
� b

XN�1

i¼a

DgNNði; i þ 1Þ
�

ZbðaÞ; (26)

Z�sfðaÞ ¼ exp
�
� b

Xa�1

i¼ 1

DgNNði; i þ 1Þ
�

ZsfðaÞ; (27)

we derive

Z�f ða þ 1Þ ¼ e�bDgNNða;aþ 1ÞZ�f ðaÞ

þ s0ðaÞ
Xa�2

a0 ¼ 2

ða� a0Þ�cZ�f ða0Þ þ s1ðaÞ; ð28Þ

Z�bðaÞ ¼ e�bDgNNða;aþ 1ÞZ�bða þ 1Þ þ s0ða� 1ÞebDgNNða�1;aÞ

�
XN

a0 ¼ 3

ða0 � a� 1Þ�c
e�bDgNNða0�1;a0ÞZ�bða0Þ

þ s2ðaÞebDgNNða�1;aÞ; ð29Þ

Z�sfðaÞ ¼ s
Xa�2

a0 ¼ 2

ða� a0Þ�cZ�f ða0Þ þ �sða� 1Þz�1
; (30)

where s0ðaÞ ¼ se�bDgNNða;aþ1Þ, s1ðaÞ ¼ �se�bDgNNða;aþ1Þ ða� 1Þc
0
, and

s2ðaÞ ¼ �se�bDgNNða�1;aÞðN � aÞc
0
. The Fixman-Freire approximation con-

sists in developing

x�cz
XI

k¼ 1

ake
�bk x: (31)

We introduce new variables

ebia emiðaÞh
Xa�2

a0 ¼ 2

ebia
0
Z�f ða0Þ (32)

FIGURE 10 Graphical representation of total partition function Z.



A Unified PS Model of DNA Melting 1065
e�bia eniðaÞh
XN

a0 ¼a

e�bia
0
e�bDgNNða0�1;a0ÞZ�bða0Þ: (33)

Therefore

Z�f ðaÞ ¼ emiðaÞ � e�bi emiða�1Þ (34)

Z�bðaÞ ¼ ebDgNNða�1;aÞ�eniðaÞ � e�bi eniðaþ 1Þ�; (35)

and we obtain new recursions relations

miða þ 1Þ ¼ miðaÞ þ logðA þ B þ C þ DÞ; (36)

niðaÞ ¼ niða þ 1Þ þ logðA0 þ B0 þ C0 þ D0Þ; (37)

with

A ¼ e�bi B ¼ e�bDgNNða;aþ 1Þ ��
1� e�bi emiða�1Þ�miðaÞ

�
C ¼ s0ðaÞ�PI

k¼ 1

ake�2bk emkða�2Þ�miðaÞ D ¼ s1ðaÞe�miðaÞ

A0 ¼ e�bi B0 ¼ e�bDgNNða�1;aÞ ��
1� e�bi eniðaþ 2Þ�niðaþ 1Þ�

C0 ¼ s0ða� 1Þ�PI

k¼ 1

ake�2bk enkðaþ 3Þ�niðaþ 1Þ D0 ¼ s2ðaÞe�niðaþ 1Þ;

and for Zsf*,

Z�sf ¼ s
XI

k¼ 1

ake
�2bk emkða�2Þ þ �sða� 1Þc

0
: (38)

To solve this relation, we have to know initial conditions

Z�f ð2Þ ¼ e�bðDgNNð1;2Þþu1Þ (39)
Z�f ð3Þ ¼ e�bðDgNNð2;3ÞþDgNNð1;2Þþu1Þ þ �se�bDgNNð2;3Þ (40)

Z�f ð4Þ ¼ e�bðDgNNð3;4ÞþDgNNð2;3ÞþDgNNð1;2Þþu1Þ

þ �se�bðDgNNð3;4ÞþDgNNð2;3ÞÞ

þ �s2c0e�bDg0
NN
ð3;4Þ: ð41Þ

Then

mið2Þ ¼ logðZ�f ð2ÞÞ; (42)

mið3Þ ¼ logðZ�f ð3Þ þ e�bi Z�f ð2ÞÞ; (43)

mið4Þ ¼ logðZ�f ð4Þ þ e�bi Z�f ð3Þ þ e�2bi Z�f ð2ÞÞ: (44)

In the same way for ni,

Z�bðNÞ ¼ e�bðuNÞ; (45)

Z�bðN � 1Þ ¼ e�bðDgNNðN�1;NÞþuNÞ þ �s; (46)

Z�bðN � 2Þ ¼ e�bðDgNNðN�2;N�1ÞþDgNNðN�1;NÞþuNÞ

þ �se�bDgNNðN�2;N�1Þ þ �s2c0 : (47)

Hence,

niðNÞ ¼ log
�
Z�bðNÞe�bDgNNðN�1;NÞ�; (48)

niðN � 1Þ ¼ log
�
e�bDgNNðN�2;N�1ÞZ�bðN � 1Þ

þ e�bi e�bDgNNðN�1;NÞZ�bðNÞ
�
; (49)

niðN � 2Þ ¼ log
�
e�bDgNNðN�3;N�2ÞZ�bðN � 2Þ

þ e�bi e�bDgNNðN�2;N�1ÞZ�bðN � 1Þ
þ e�2bi e�bDgNNðN�1;NÞZ�bðNÞ

�
: (50)
FIGURE 11 Tm
2loop – Tm

loop as a function of 1/N for

different values of gS: �10.9 cal/mol/K (triangles),
�8.9 cal/mol/K (squares), and �6.9 cal/mol/K (dots).

Error bars reflect the confidence limit on NN-parameters.
Biophysical Journal 96(3) 1056–1067
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For Zsf*,

Z�sfð1Þ ¼ 0 (51)

Z�sfð2Þ ¼ �s (52)

Z�sfð3Þ ¼ �s2c0 : (53)

Moreover, as seen in Fig. 4, the two-state parameter Smax is highly s-de-

pendent for long oligomers. Therefore, more experimental data for long olig-

omers would allow better estimates for the cooperativity factors by including

the Smax values in the global parameterization process.

R.E. acknowledges support from the chair of excellence program of the

Agence Nationale de la Recherche (ANR/France).

FIGURE 12 Tm
loop – Tm

end as a function of 1/N for

different values of DS0
mix: 5 cal/mol/K (triangles),

3.0 cal/mol/K (squares), and 1 cal/mol/K (dots). Error

bars reflect the confidence limit on NN-parameters.
The algorithm consists in solving recursion relations for mi and ni, in de-

ducting values for Zf*, Zb*, and Zsf*. Then it is easy to compute p(a), Qint,

and Qext.

APPENDIX C: IMPROVING THE MODEL
PARAMETERIZATION

For example, to parameterize gS¼ kB/2 log s, we propose to study two types

of sequences: Sloop ¼ GPANGP (one central bubble) and S2loop ¼ G2P/3AN/

2G2P/3AN/2G2P/3 (two internal bubbles) with P large enough to neglect border

effects. Following Blake and Delcourt (43), we can compute the difference

of melting temperatures Tm
2loop – Tm

loop of the different bubbles (Tm
loop for

Sloop and Tm
2loop for S2loop) for various N. As both sequences have the same

basepair composition, this observable should not be very sensitive to NN pa-

rameters and should be responsive to the energy difference between the two

types of strands, which is ~2g. Fig. 11 shows the simulated evolution of

Tm
2loop – Tm

loop versus 1/N for different gS values with the error bars due

to standard deviations of NN-parameters. We remark that the observable

is more and more sensitive to gS as long as 1/N increases. Therefore, exper-

iments have to be done with short bubbles (N must be big enough to permit

to observe the bubble subtransition). Moreover, we notice that errors due to

NN-parameters uncertainty limit the accuracy of thegS parameterization by

~10%. Nevertheless, as experimental error are ~0.3 K, a precise evaluation

of gS is possible with sequences in the range N ˛ [20–40].

In the same manner, to parameterize DS0
mix, we can study Sloop and Send

¼ AN/2G2PAN/2. Fig. 12 reveals the sensitivity of Tm
loop – Tm

end according

to DS0
mix for little N. Nonetheless, error bars do not allow a precise eval-

uation of DS0
mix. This difference with the previous example comes from

the important role played by the borders. Indeed, NN-initiation parameters

have large standard deviations that automatically reflect on the theoretical

errors. Without an improvement on the errors of the initiation enthalpies

and entropies, there is no hope to parameterize DS0
mix with these types

of experiments.
Biophysical Journal 96(3) 1056–1067
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