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Peroxisome proliferator-activated receptors (PPARs) are transcrip-

tion factors belonging to the nuclear receptor superfamily that het-

erodimerize with the retinoid X receptor and bind to specific

response elements in target gene promoters. PPARs have three iso-

forms: α, β (or δ) and γ. The prostaglandin D2 metabolite, 15-deoxy-

12,14-prostaglandin J2, is an endogenous ligand for PPARγ. The

antidiabetic thiazolidinediones are synthetic ligands for PPARγ.

PPARγ is expressed predominantly in adipose tissue and promotes

adipocyte differentiation and glucose homeostasis. PPARγ is also

present in various cell types including cardiac myocytes. PPARγ reg-

ulates various neurohumoral factors involved in the progression of

heart failure; its ligands inhibit cardiac hypertrophy and ischemia-

reperfusion injury via, in part, a PPAR-independent pathway.

Although experimental studies suggest that PPARγ ligands might

have a favourable influence on heart failure, their use in patients with

heart failure is limited because of an increase in plasma volume.

Further studies are needed to determine whether PPARγ ligands pre-

vent the development of heart disease in clinical settings.
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Peroxisome proliferator-activated receptors (PPARs) are
transcription factors belonging to the nuclear receptor

superfamily that heterodimerize with the retinoid X receptor
and bind to specific response elements termed PPAR responsive
elements in target gene promoters. The PPAR responsive ele-
ments are formed by a direct repeat of the hexameric consensus
sequence AGGTCA, separated by one spacer nucleotide. These
nuclear receptors are ligand-dependent transcription factors, and
activation of target gene transcription depends on the binding of
the ligand to its receptor. PPARs have three isoforms: α, β/δ and
γ. Until relatively recently, PPARα was thought to be limited to
the regulation of lipid catabolism and peroxisome proliferation
in the liver (1), whereas PPARγ was thought to be involved in
adipocyte differentiation and glucose homeostasis (2,3).
Although PPARβ/δ is almost ubiquitously expressed (4-6), its
roles are poorly understood. Earlier observations indicated that
PPARα was present in tissues with a high oxidative capacity,
such as liver, kidney and heart, while PPARγ was expressed pre-
dominantly in adipose tissue (2,3). More recently, it has been
demonstrated that PPARγ is also expressed in many other cell
types, such as macrophages, vascular smooth muscle cells,
endothelial cells and cardiac myocytes of the cardiovascular sys-
tem (7-11). Thus, interest in PPARγ’s functions in the cardio-
vascular system has grown and numerous investigations have
focused on PPARγ. In the present review, we introduce the cur-
rent trends of PPARγ research and discuss the function of PPARγ
in the heart.

PPARs: THEIR LIGANDS AND 
INTRACELLULAR SIGNALLING PATHWAYS

The prostaglandin D2 metabolite, 15-deoxy-12,14-
prostaglandin J2, was the first endogenous ligand discovered for
PPARγ (12,13). Although 15-deoxy-12,14-prostaglandin J2 is
the most potent natural ligand of PPARγ, the extent to which its

effects are mediated through PPARγ in vivo remains to be
determined. Two components of oxidized low-density lipopro-
tein, 9-hydroxyoctadecadienoic and 13-hydroxyoctadecadienoic
acids, are also potent endogenous activators of PPARγ (14,15).
Activation of 12/15-lipoxygenase induced by interleukin-4 also
induces the endogenous ligands for PPARγ (16). The antidia-
betic thiazolidinediones (TZDs), such as troglitazone, pioglita-
zone HCl, ciglitazone and rosiglitazone maleate, are synthetic
ligands of PPARγ (17,18). TZDs bind PPARγ with various affini-
ties and their insulin-sensitizing effects are exerted by activating
PPARγ.

The splice variants of the γ isoform, PPARγ1 and PPARγ2,
have been cloned; these two forms differ only in their N-ter-
minal 30 amino acids (19). Although PPARγ1 is expressed in
various tissues including liver, kidney, spleen, intestine, mus-
cle, brain and lung, PPARγ2 is predominantly expressed in
adipose tissue (4,5,20-22). Both PPARγ isoforms are derived
from the same gene with alternative promoter usage and
splicing. Like other members of nuclear receptors, PPARs
have several modular domains (Figure 1) (23). The N-termi-
nal A/B domain, which contains a ligand-independent acti-
vating function-1, is the least conserved. The C domain,
which is the best conserved and consists of two zinc fingers,
is the DNA-binding domain. The D domain allows for bend-
ing or conformational alteration of PPAR. The E/F domain is
the ligand-binding domain (LBD). Ligand-dependent tran-
scription requires activating function-2, which is located at
the C-terminus of the LBD. Ligand binding by PPARγ is reg-
ulated by intramolecular interaction between its N-terminal
A/B domain and its C-terminal LBD.

The activity of PPARs can be modulated by phosphoryla-
tion. PPARγ activity is depressed by phosphorylation of a ser-
ine residue (Ser112) in the A/B domain, which is mediated by
a member of mitogen-activated protein kinase family, the
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extracellular signal-regulated protein kinase (24,25). C-Jun
N-terminal kinase, another member of the mitogen-activated
protein kinase family, also phosphorylates PPARγ at Ser82,
reducing the transcriptional activity of PPARγ (26). These
modifications may control interactions between PPARγ and
coactivators or co-repressors that have been shown to interact
with many members of the nuclear receptor family (27). Several
lines of evidence have implicated the functional significance of
the interaction between nuclear receptors and coactivators in
transcriptional activation. The cyclic AMP response element
binding protein-binding protein (CBP)/p300 is a transcriptional
coactivator of PPARα, PPARγ and nuclear factor kappa B
(NF-κB) (28-30). Steroid receptor coactivator-1 (SRC-1) is also
a coactivator for both PPARγ and NF-κB (31-33). Puigserver
et al (34) reported that both CBP/p300 and SRC-1 interact with
the PPARγ:retinoid X receptor heterodimer, and that this inter-
action was mediated by the initial binding of PPARγ coactiva-
tor-1. These findings suggest that nuclear competition for
limited amounts of CBP/p300 or SRC-1 may occur between
PPARs and other transcription factors.

POSSIBLE ROLE OF PPARγ IN HEART FAILURE
Accumulating evidence suggests that PPARγ ligands have mul-
tiple antiatherosclerotic effects, including attenuation of the
growth and migration of vascular smooth muscle cells (9,35-39)
and endothelial cells (40-42), inhibition of the migration of
monocytes (43,44), reduction of inflammatory cytokines from
monocytes/macrophages (10,45-47), suppression of vascular
cell adhesion molecule-1 and intracellular adhesion molecule-1
expression in endothelial cells (45,48), and increase of choles-
terol efflux from foam cells (49-51). Diabetes mellitus is one of
the leading and growing causes of coronary artery disease and
heart failure. The antiatherosclerotic effects of PPARγ ligands
may stabilize atherosclerotic lesions in coronary arteries, which
might indirectly result in an improvement of cardiac function in
diabetic patients with coronary artery disease.

Left ventricular hypertrophy is an important risk factor for
ischemic heart disease and cardiac-related mortality. Insulin
resistance and hyperinsulinemia are involved in cardiac hyper-
trophy (52,53). Yamamoto et al (54) demonstrated that the
PPARγ activators, troglitazone and 15-deoxy-Delta-(12,14)-
prostaglandin J2, inhibited cardiac hypertrophy caused by
mechanical strain in neonatal cardiac myocytes, mediated, in
part, through the NF-κB pathway (54).

The renin-angiotensin system is activated as cardiac func-
tion deteriorates, and inhibition of angiotensin-converting
enzyme favourably remodels the myocardium in patients with

heart failure (55). Asakawa et al (56) reported that PPARγ lig-
ands, such as troglitazone, pioglitazone HCl and rosiglitazone
maleate, inhibited angiotensin II-induced cardiac hypertrophy
in neonatal rat cardiac myocytes and pressure overload-induced
cardiac hypertrophy in mice, suggesting the potential clinical
efficacy of TZDs for the prevention of cardiac hypertrophy.

Evidence suggests that the production of tumour necrosis
factor-alpha (TNF-α) by cardiac myocytes promotes the devel-
opment and progression of heart failure (57). Takano et al (11)
reported that both PPARα and PPARγ activators inhibited the
cardiac expression of TNF-α, in part, through attenuating NF-κB
activation, suggesting that treatment with PPAR activators
may prevent the development of congestive heart failure. They
used only lipopolysaccharide to induce TNF-α production in
cardiac myocytes. Because other cytokines, such as inter-
leukin-1beta, interleukin-2 and interleukin-6, are also
involved in the pathogenesis of congestive heart failure, fur-
ther studies are needed to clarify the effects of PPAR activators
on the development of heart failure in vivo. 

Circulating endothelin-1 (ET-1) levels are correlated with
the severity of hemodynamics and symptoms in patients with
congestive heart failure (58,59). Preliminary studies (60-62) sug-
gest that glitazones may reduce ET-1 production, which, in turn,
may benefit diabetic patients with heart failure. ET-1 has been
shown to induce cardiomyocyte growth in vitro (63,64) and to
promote collagen synthesis by cardiac fibrosis (65). Recently,
Iglarz et al (66) reported that inhibition of cardiac ET-1 produc-
tion by both PPARα and PPARγ activators was associated with
decreased cardiac fibrosis in deoxycorticosterone acetate-salt
rats, a model of ET-1-dependent hypertension.

Shimoyama et al (67) suggested that troglitazone may exert
inotropic effects in isolated perfused rat hearts, but the exact
mechanism of this response still remains controversial. Ghazzi
et al (68) reported that troglitazone enhanced cardiac output
and stroke volume in patients with type II diabetes, but that
this may have been a result of decreased arterial blood pressure
and peripheral resistance.

Recently, TZDs and other ligands of PPARγ were thought to
reduce tissue injury caused by regional myocardial ischemia and
reperfusion in rodents. Ligands of PPARγ caused a substantial
reduction in myocardial infarct size when given before onset of
myocardial ischemia in the rat (69-71). Rosiglitazone maleate
also improved the functional recovery of rat hearts obtained from
diabetic animals subjected to global ischemia and reperfusion
(72). Although the mechanisms of the cardioprotective effects of
TZDs are not entirely clear, they may be due to inhibition of the
activation of NF-κB, reduced expression of inducible nitric oxide
synthase, monocyte chemoattractant protein-1 and intracellular
adhesion molecule-1, and inhibition of Jun NH2-terminal kinase
(70-72). Thus, there is growing evidence that ligands of PPARγ
may be useful in the therapy of conditions associated with
inflammation and ischemia-reperfusion of the heart and other
organs (11,73-82). Shiomi et al (83) reported that pioglitazone
HCl administration in mice subjected to infarction significantly
reduced left ventricular dysfunction, and that this effect was asso-
ciated with a decrease in myocyte hypertrophy and interstitial
fibrosis, and reduced expression of TNF-α, transforming growth
factor-beta and monocyte chemoattractant protein-1. In contrast,
Lygate et al (84) did not observe modulation of left ventricular
remodelling, and also found increased mortality in rats treated
with rosiglitazone maleate when subjected to infarction. However,
Frantz et al (85) reported that the administration of pioglitazone
HCl had no effect on mortality, left ventricular remodelling,
cytokine expression (including TNF-α, interleukin-1β and ET-1),

Figure 1) Schematic representation of the peroxisome proliferator-
activated receptors (PPAR). The N-terminal A/B domain contains a
ligand-independent activating function (AF)-1. The C domain consists
of two zinc fingers and is the DNA-binding domain (DBD). The
D domain allows for bending or conformational alteration of PPAR.
The E/F domain is the ligand-binding domain (LBD) and ligand-
dependent transcription requires AF-2, which is located at the C-termi-
nus of the LBD. Ligand binding by PPARγ is regulated by
intramolecular interaction between its N-terminal A/B domain and its
C-terminal LBD
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collagen content or endothelial function in mice with chronic
myocardial infarction. Thus, further studies are needed to evalu-
ate the effects of TZDs on ischemic myocardium.

The majority of mechanistic and experimental studies sug-
gests that TZDs might favourably influence cardiac hemody-
namics in heart failure. However, a large scale clinical trial
(86) reported fluid retention and increased plasma volume
with glitazone therapy, with an increased incidence of periph-
eral edema. A large retrospective cohort study (87) suggested
that TZD use was predictive of heart failure even after control-
ling for other variables. This effect may be related to increased
endothelial cell permeability induced by glitazone therapy
(88,89) and/or, indirectly, the facilitation of insulin’s action in
promoting renal sodium retention (90,91). Because an
increase in preload may contribute to worsening cardiac func-
tion in patients with heart failure, TZDs are contraindicated in
patients with heart failure.

CONCLUSIONS
Experimental studies suggest that PPARγ ligands might have a
favourable influence on heart failure, as summarized in
Figure 2. However, PPARγ ligands increase plasma volume,
which contributes to worsening cardiac function. Further studies
are needed to clarify the role of PPARγ ligands in heart failure.

PPARγγ and heart failure
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