
ORIGINAL PAPER

Interferon-beta is activated by hepatitis C virus
NS5B and inhibited by NS4A, NS4B, and NS5A

Masaru Moriyama Æ Naoya Kato Æ Motoyuki Otsuka Æ
Run-Xuan Shao Æ Hiroyoshi Taniguchi Æ Takao Kawabe Æ
Masao Omata

Published online: 31 May 2007

� Asian Pacific Association for the Study of the Liver 2007

Abstract Innate immunity is part of the antiviral

response. Interferon (IFN)-beta plays a leading role in this

system. To investigate the influence of hepatitis C virus

(HCV) on innate immunity, we examined the effect of viral

proteins on IFN-beta induction. HepG2 cells were

co-transfected with plasmids for seven HCV proteins (core

protein, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) and

the IFN-beta promoter luciferase. Toll-like receptor (TLR)

3 and Toll/IL-1 receptor domain-containing adapter

inducing IFN-beta (TRIF) play key roles in dsRNA-med-

iated activation of interferon regulatory factor (IRF)-3 and

IFN-beta; therefore, the participation of TLR3/TRIF in

NS5B-mediated IFN induction was examined. Among se-

ven HCV proteins, only NS5B, a viral RNA-dependent

RNA polymerase (RdRp), activated the IFN-beta promoter.

However, mutant NS5B without RdRp activity or template/

primer association did not activate the IFN-beta promoter.

Activation of the IFN-beta promoter by NS5B required the

positive regulatory domain III, a binding sequence for IRF-

3. Moreover, IRF-3 was phosphorylated by NS5B. Both

inhibition of TLR3 expression by small interfering RNA

and expression of the dominant negative form of TRIF

significantly reduced NS5B-induced activation of IFN-

beta. Of the six other HCV proteins, NS4A, NS4B, and

NS5A efficiently inhibited this activation. HCV NS5B is a

potent activator of the host innate immune system, possibly

through TLR3/TRIF and synthesis of dsRNA. Meanwhile,

NS4A, NS4B, and NS5A block IFN-beta induction by

NS5B, which may contribute toward the persistence of this

virus.
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Toll-like receptor � Toll/IL-1 receptor domain-containing

adapter inducing IFN-beta

Introduction

Hepatitis C virus (HCV) is a major causative agent of

chronic hepatitis, cirrhosis, and hepatocellular carcinoma

(HCC) throughout the world [1–3]. HCV is a positive-

sense, ssRNA virus, consisting of an approximately 10-kb

genome containing a large open reading frame, encoding a

polyprotein precursor of 3010–3033 amino acids and an

untranslated region at the 5¢ and 3¢ ends. The putative

organization of the HCV genome includes the 5¢-untrans-

lated region, 3–4 structural proteins (core, E1, and E2/p7),

six non-structural (NS) proteins (NS2, NS3, NS4A, NS4B,

NS5A, and NS5B), and the 3¢-untranslated region [4, 5].

NS5B is a viral RNA-dependent RNA polymerase (RdRp)

with the GDD motif, which is highly conserved among

RdRp [6, 7].

Viral infection induces an innate immune response,

including the production of interferon (IFN) and other

cytokines [8]. Initially, Toll-like receptor (TLR) 3 rec-

ognizes dsRNA, a replicative intermediate generated in

the course of viral RNA replication, and triggers acti-

vation of the innate immune system [9]. TLR3 then

activates IFN regulatory factor (IRF)-3 through the

adapter protein Toll/Interleukin-1 receptor domain con-

taining adapter inducing IFN-beta (TRIF) [10–12].

Phosphorylated and dimerized IRF-3 upregulates the

IFN-beta promoter [13, 14]. Finally, IFN-beta binds to
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its cell surface type 1 receptor, activates the Janus kinase

and signal transducer of transcription (JAK-STAT)

pathway, and induces the IFN regulated genes responsi-

ble for the antiviral response [15].

Persistent HCV infection probably results from disrup-

tion of host antiviral immunity [16–18]. Recently, it was

reported that HCV NS3/4A protein blocks the phosphory-

lation and effector actions of IRF-3 [19, 20]. However, the

influence of HCV on innate immunity has not been eluci-

dated. Therefore, in this study, we analyzed the effect of

HCV proteins on the innate immune system, especially

induction of IFN-beta.

Materials and methods

Cell culture

HepG2 (human hepatoblastoma) cells were obtained from

RIKEN cell bank (Tsukuba, Japan). Cells were maintained

in Dulbecco’s Modified Eagle’s Medium (DMEM) con-

taining 10% fetal bovine serum. Cells were cultured in

100-mm tissue culture dishes (IWAKI Glass, Chiba, Japan)

at 37�C in humidified air containing 5% CO2, and passaged

at intervals of 3 or 4 days.

Construction of plasmids expressing HCV proteins

Plasmids expressing HCV proteins were constructed as

described previously [21]. Briefly, HCV core, NS2, NS3,

NS4A, NS4B, NS5A, and NS5B derived from genotype 1b

were cloned into the Xho1 site of pCXN2 (kindly provided

by J. Miyazaki, Osaka University, Japan), a mammalian

expression vector with b-actin-based CAG promoter and

SV40 origin. Expression of these HCV proteins was con-

firmed by Western blotting [21].

N-terminal hemagglutinin (HA)-tagged NS5B protein

expression plasmid (pCXN2-HA-NS5B) was constructed

using the Gateway cloning system (Invitrogen, Carlsbad,

CA, USA). First, an HA (YPYDVPDYA) tag was attached

to the N-terminus of the NS5B gene by PCR. Then, addi-

tional sequences required for the recombination reaction,

attB1 (5¢-GGGGACAAGTTTGTACAAAAAAGCAGGCT-

3¢) and attB2 (5¢-GGGGACCACTTTGTACAAGAAAGC

TGGGT-3¢), were attached by PCR to the HA-NS5B

fragment. The resultant DNA fragment, attB1-HA-NS5B-

attB2, was inserted into a donor vector, pDONR201 (In-

vitrogen), by recombination, creating the entry clone

pDONR-HANS5B. Next, the HA-NS5B fragment was

transferred into the pCXN2 vector by recombination, cre-

ating pCXN2-HA-NS5B. Expression of the HA-tagged

NS5B protein was confirmed by Western blotting using

both anti-NS5B mouse monoclonal antibodies (kindly

provided by I. Fuke, Osaka University, Japan) and anti-HA

(Y-11) rabbit polyclonal antibodies (Santa Cruz, CA,

USA).

NS5B acts as an RdRp and has the GDD motif (aa 317–

319), which is highly conserved among RdRps in RNA

viruses. Mutation of G (aa 317) to V in the GDD motif is

reported to abolish RdRP activity [22]. HCV NS5B also

acts as a cooperative RNA-binding protein that is required

for viral RNA synthesis. The mutation of Y (aa 276) to A

in the template/primer association site abolishes RNA-

binding activity and RdRP activity [22]. Mutagenesis in the

substitutions pCXN2-HA-NS5Bm1 (G317V) and pCXN2-

HA-NS5Bm2 (Y276A) was generated by the Quikchange

site-directed mutagenesis kit (Stratagene, La Jolla, CA,

USA). The primers used for G317V were 5¢-GCTCGT

GAACGTAGACGACCTTGTC-3¢ and 5¢-GACAAGG

TCGTCTACGTTCACGAGC-3¢. The primers used for

Y276A were 5¢-GAACTGCGGTGCTCGCCGGTGCCGC-

3¢ and 5¢-GCGGCACCGGCGGAGCACCGCAGTTC-3¢.
Mutagenesis PCR was performed using pDONR-HA-

NS5B as a template, according to the manufacturer’s

instructions. Each mutated entry clone was transferred into

pCXN2 vector by recombination. Expression of these

mutated NS5B proteins was confirmed by Western blotting

using anti-HA antibodies.

Reporter plasmids for luciferase assay

The promoter region of the human IFN-beta gene (–125

to +19), derived from p125-luc (kindly provided by T.

Taniguchi, University of Tokyo, Japan), was transferred

to a position upstream of the luciferase gene in the pGL3-

basic vector using the Gateway cloning system. The

constructed plasmid, designated pGL3-p125 luc, contain-

ing the Photinus pyralis (firefly) luciferase reporter gene

driven by a basic promoter element (TATA box) plus

5¢-flanking region of the IFN-beta promoter gene, was

used as reporter plasmid. pRL-TK, expressing Renilla

reniformis (seapansy) luciferase driven by the herpes

simplex virus thymidine kinase promoter, was used to

monitor and standardize the efficacy of transfection

(Promega, Madison, WI, USA). The IFN-beta promoter

contains four positive regulatory domains (PRDs). Among

these, PRD I and III are known to be binding sequences

for IRF-3 [8]. To identify the site responsible for NS5B-

induced activation of IFN-beta promoter, we constructed

three reporter plasmids containing deletion mutants of the

IFN-beta promoter: pGL3-p125 PRD IV luc (bp –97 to

+19), pGL3-p125 PRD III luc (bp –84 to +19), and pGL3-

p125 PRD I luc (bp –71 to +19). All cloned plasmids

were purified using an Endofree plasmid kit (Qiagen,

Heiden, Germany).
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Inhibition of TLR3 expression by RNA interference

We used small interfering RNA (siRNA) to inhibit the

expression of TLR3. The sequence of TLR3 siRNA used in

this study was obtained from a previous study [12]. We

cloned this sequence into pSilencer 2.1-U6 hygro siRNA

expression vector (Ambion, Austin, TX, USA).

Expression plasmids of TRIF and its dominant negative

form

A recent study showed that TRIF activates the IFN-beta

promoter, and a dominant negative form of TRIF blocks

the response of TLR3 to dsRNA [11]. We used plasmids

expressing human full length TRIF (pEFBOS-myc-TRIF,

712 amino acids) and TRIF dominant negative form

(pCMV-myc-TRIF DN) that harbors only the TIR domain

(amino acids 380–541; both kindly provided by S. Akira,

Osaka University, Japan).

Transfection, luciferase assays, and reagents

Approximately 4 · 105 HepG2 cells were placed in a

six-well tissue culture plate (IWAKI Glass) 24 h before

transfection. Using the Effectene transfection reagent

(Qiagen), 0.2 lg reporter plasmid (0.18 lg pGL3-p125 luc

and 0.02 lg pRL-TK) were transiently co-transfected into

cells with a total of 0.4 lg plasmid expressing HCV pro-

teins. Thirty-six hours after transfection, whole cell lysates

were examined for luciferase activity (PicaGene Dual Sea-

pansy system; Toyo Ink, Japan) with a luminometer (Lumat

LB9507; EG&G Berthold). Synthetic dsRNA [poly(I:C)]

was used for the positive control of IFN-beta promoter

activation at 100 lg/ml in culture medium. Absolute firefly

luciferase activity was normalized for transfection effi-

ciency on the basis of seapansy–luciferase activity. The

luciferase activity of the cells transfected with the reporter

plasmid plus pCXN2 was set as 1.0, and the experimental

luciferase activity was compared to this standard value. All

experiments were performed at least in duplicate.

Western blotting

The antibodies used were anti-IRF3 rabbit polyclonal

antibody (Santa Cruz), anti-HA (Y-11) rabbit polyclonal

antibody, anti-NS5B mouse monoclonal antibody, and anti-

rabbit and anti-mouse immunoglobulin horseradish peroxi-

dase-conjugated secondary antibodies (Amersham Pharmacia

Biotech, Piscataway, NJ, USA). Cell lysates, prepared using

SDS lysis buffer (62.5 mM Tris pH 6.8, 2% SDS, 10%

glycerol, 50 mM DTT, and 0.1% BPB) or NP-40 lysis buffer

[15], were separated by SDS-PAGE and transferred by

electrophoresis to polyvinylidene difluoride membrane that

was incubated with each primary antibody. Immunoreactive

bands were visualized by the use of appropriate secondary

antibodies and a Western blotting detection system (ECL

Advance; Amersham Pharmacia Biotech).

Statistical analysis

Data are expressed as the mean ± SD. Statistical analysis

was done using Student’s t-test. P < 0.05 was considered to

be statistically significant.

Results

HCV NS5B protein activates IFN-beta promoter

To determine the effect of HCV proteins on the induction

of IFN-beta, HepG2 cells were co-transfected with pGL3-

p125 luc, containing the luciferase reporter gene driven by

the IFN-beta promoter, and each of seven HCV protein

expression plasmids. Thirty-six hours later, the cells were

assayed for luciferase activity. Relative firefly luciferase

activity of PGL3-p125 luc/pCXN2-NS5B-transfected cell

lysates was 10.8 times higher than that of PGL3-p125 luc/

pCXN2-transfected cell lysates. The other HCV proteins,

however, did not influence IFN-beta promoter activity

(Fig. 1).
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Fig. 1 Effect of HCV proteins on IFN-beta promoter activity. HepG2

cells were co-transfected with 0.18 lg pGL3-p125luc, 0.02 lg PRL-

TK, and 0.4 lg expression plasmids for each of seven HCV proteins.

As a positive control, 100 lg/ml poly(I:C) were added to the culture

medium. Thirty-six hours after transfection, cells were harvested and

luciferase activity was measured. The normalized luciferase activities

were calculated by assigning a value of 1 to the levels of activity of

cells that were transfected with the empty vector. *P < 0.05

compared with the activity of the cells with the empty vector
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RdRp activity of NS5B is required for the activation

of IFN-beta

HCV NS5B is an RdRp and a cooperative RNA-binding

protein that is required for viral replication and RNA

synthesis. To examine whether activation of IFN-beta by

NS5B protein was mediated via RdRp activity, substitution

mutations were generated in the GDD motif (G317V) and

template/primer association site (Y276A) of NS5B.

Expression of NS5B G317V mutant protein did not activate

the IFN-beta promoter, suggesting that NS5B protein in-

duces IFN-beta via its RdRp activity (Fig. 2). Expression

of NS5B Y276A also did not activate the IFN-beta pro-

moter, suggesting that a putative template association with

NS5B is necessary to activate the promoter (Fig. 2).

Mapping the region of the IFN-beta promoter

responsible for activation by NS5B protein

The IFN-beta promoter contains four positive regulatory

domains, and PRD III is known as a binding sequence for

IRF-3. To identify the site responsible for NS5B-induced

activation of the IFN-beta promoter, three luciferase re-

porter plasmids with different lengths of IFN-beta promoter

region were co-transfected with pCXN2-HA-NS5B. For

comparison, poly(I:C) was added to the incubation medium

at a concentration of 100 lg/ml. The NS5B response/

luciferase activity ratio was reduced markedly when the

PRD III site was deleted (Fig. 3). The poly(I:C) response/

luciferase activity ratio was also reduced when the PRD III

site was deleted. These results suggest that the PRD III site

(bp –97 to –84) of the IFN-beta promoter was the major

element responsible for NS5B-induced upregulation of

IFN-beta.

IRF-3 was phoshorylated by NS5B expression

Viral infection induces phosphorylation of IRF-3 serine

residues, which then induces a comformational change,

leading to IRF-3 dimerization and subsequent nuclear

translocation [13]. Phosphorylated IRF-3 is known to mi-

grate slower in SDS-PAGE than the non-phosphorylated

form [14]. Therefore, we examined the effect of NS5B on

IRF-3 phosphorylation. The intensity of slow-migrating

IRF-3 was increased by NS5B expression at 36 h after

transfection (Fig. 4). The slow-migrating form was also

increased by poly(I:C) treatment or TRIF expression, both

of which are known to activate IRF-3 by phosphorylation
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Fig. 2 Effect of HCV NS5B mutated proteins on IFN-beta promoter

activity. HepG2 cells were co-transfected with 0.18 lg pGL3-

p125luc, 0.02 lg PRL-TK, and 0.4 lg pCXN2-HA-NS5B, pCXN2-

HA-NS5Bm1 (G317V), or pCXN2-HA-NS5Bm2 (Y276A). As a

positive control, 100 lg/ml poly(I:C) were added to the culture

medium. Thirty-six hours after transfection, cells were harvested and

luciferase activity was measured. The normalized luciferase activities

were calculated by assigning a value of 1 to the levels of activity of

cells that were transfected with the empty vector. *P < 0.05
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Fig. 3 Identification of the IFN-beta promoter region responsible for

activation by HCV NS5B protein. Three luciferase reporter plasmids

with different lengths of IFN-beta promoter region, deleting PRD IV

(bp –97 to +19), PRD III (bp –84 to +19), or PRD I (bp –71 to +19),

were co-transfected with pCXN2-HA-NS5B. The normalized lucif-

erase activities were calculated by assigning a value of 1 to the levels

of activity of cells that were transfected with the empty vector.

*P < 0.05
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(Fig. 4). These results show that NS5B can phosphorylate

IRF-3, leading to induction of IFN-beta.

HCV NS5B activation of IFN-beta through TLR3

and TRIF

To examine whether NS5B-induced activation of IFN-beta

is mediated by TLR3, HepG2 cells were co-transfected

with pCXN2/pCXN2-HA-NS5B, pGL3-p125 luc, and

siRNA-TLR3 expression vectors. Inhibition of TLR3

expression by siRNA significantly decreased NS5B-in-

duced IFN-beta activation to 45.6% (Fig. 5). To confirm

the effect of siRNA on TLR3 expression, we added

poly(I:C), a specific TLR3 ligand, to HepG2 cells

transfected with pCXN2 and pGL3-p125 luc. Activation of

the IFN-beta promoter by poly(I:C) was also significantly

inhibited by induction of TLR3 siRNA (Fig. 5). TRIF was

recently shown to be a TLR3 adapter protein and a potent

inducer of IRF3, leading to activation of the IFN-beta

promoter. To establish whether activation of the IFN-beta

pathway by NS5B protein was mediated through TRIF,

HepG2 cells were co-transfected with pCXN2/pCXN2-

HA-NS5B, pGL3-p125 luc, and pCMV-myc TRIF DN,

which expresses the dominant negative form of TRIF.

Expression of the dominant negative TRIF significantly

reduced NS5B-induced IFN-beta activation to 30.4% in

HepG2 cells (Fig. 6). These results suggest that NS5B

protein activates the IFN-beta pathway through TLR3 and

TRIF.

HCV NS4A, NS4B, and NS5A inhibit NS5B-induced

activation of IFN-beta

To examine the effect of other HCV proteins on

NS5B-induced activation of IFN-beta, HepG2 cells were

co-transfected with pCXN2/pCXN2-HA-NS5B, pGL3-

p125 luc, and expression plasmids for each of the six HCV

proteins, core protein, NS2, NS3, NS4A, NS4B, and NS5A.

Of these six HCV proteins, NS5A efficiently inhibited

NS5B-induced IFN-beta activation to 5.3% (Fig. 7).
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luc, and PCMV-myc TRIF DN. The normalized luciferase activities
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Meanwhile, NS3 inhibited this activation to 50.5%. NS4A

and NS4B also inhibited IFN-beta activation (Fig. 7). A

deletion mutant form of NS5A that lacks NS5B binding

sites did not efficiently inhibit NS5B-induced IFN-beta

activation (data not shown).

HCV NS4A, NS4B, and NS5A do not inhibit

TRIF-induced activation of IFN-beta

To examine the effect of HCV proteins on TRIF-induced

activation of IFN-beta, similar experiments were conducted

using pEFBOS-myc-TRIF and expression plasmids for the

six HCV proteins, core protein, NS2, NS3, NS4A, NS4B,

and NS5A. Of these six proteins, NS3 inhibited the TRIF-

induced IFN-beta activation to 68.1%, but NS4A, NS4B,

and NS5A had almost no effect (Fig. 8). These results

suggest that NS4A, NS4B, and NS5A can inhibit IFN-beta

activation upstream of TRIF.

HCV NS4A, NS4B, and NS5A partially inhibit

dsRNA-induced activation of IFN-beta

TLR3 recognizes dsRNA, a replicative intermediate gen-

erated in the course of RNA virus replication, and triggers

activation of host innate immunity. To examine the effect

of other HCV proteins on dsRNA-induced activation of

IFN-beta, HepG2 cells were co-transfected with pGL3-

p125 luc and expression plasmids for four HCV proteins,

NS3, NS4A, NS4B, and NS5A, and treated with poly(I:C)

at 100 lg/ml. NS4A, NS4B, and NS5A inhibited dsRNA-

induced activation of IFN-beta by 50% (Fig. 9). This result

suggests that NS4A, NS4B, and NS5A can partially inhibit

dsRNA-induced activation of IFN-beta upstream of TLR3.

Discussion

Viral infection induces host innate immunity, which can

immediately eliminate most viruses. In contrast, HCV

infection often leads to long-term persistence, and conse-

quently causes chronic hepatitis, cirrhosis, and HCC [16,

17]. However, the influence of HCV infection on host in-

nate immunity has not been elucidated. In this study, we

analyzed the effect of HCV proteins on innate immunity.

We demonstrated that HCV NS5B induces intrinsic IFN-

beta, through TLR3 and TRIF, by its RdRp activity, and

HCV NS4A, NS4B, and NS5A specifically inhibit this

NS5B-induced activation of IFN-beta.

Among seven HCV proteins tested, we found that NS5B

could activate IFN-beta in HepG2 cells. NS5B acts as an

RdRp in HCV replication, and mutant NS5B, lacking RdRp

activity, had no effect on IFN-beta promoter activation.

Therefore, NS5B activates IFN-beta via its RdRp activity.

The IFN-beta promoter contains four positive regulatory

domains. We constructed three luciferase reporter plasmids

with different lengths of the IFN-beta promoter region. We
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found that NS5B-induced activation of IFN-beta was

markedly reduced when the PRD III site was deleted. This

suggests that PRD III, which is known to be an IRF-3

binding sequence, was the major element responsible for

NS5B-induced activation of IFN-beta.

TLR3 recognizes dsRNA and activates IFN-beta

through TRIF and IRF-3. In our study, inhibition of TLR3

expression by siRNA significantly reduced NS5B-induced

activation of IFN-beta. Expression of the dominant nega-

tive form of TRIF also significantly reduced NS5B-induced

activation of IFN-beta. HCV is an ssRNA virus that gen-

erates a dsRNA intermediate during replication. The fact

that NS5B protein activated IFN-beta by its RdRp activity

supports the hypothesis that NS5B synthesizes non-specific

dsRNA, without an HCV specific template, which could be

recognized by TLR3 and lead to IFN-beta activation. NS5B

is reported to exhibit little binding specificity to various

RNA templates and carries out RNA synthesis using sev-

eral RNAs from both HCV and non-HCV sources [23–26].

We found that NS4A, NS4B, and NS5A are able to

inhibit NS5B-induced activation of IFN-beta. These three

HCV proteins partially inhibited dsRNA-induced activa-

tion of IFN-beta. In contrast, they showed no effect on

TRIF-induced activation of IFN-beta. These results indi-

cate that NS4A, NS4B, and NS5A may block synthesis of

non-specific dsRNA by NS5B and recognition of dsRNA

by TLR3. Our findings suggest that NS4A, NS4B, and

NS5A block synthesis of non-specific dsRNA generated by

NS5B, through formation of a replication complex

including NS5B. HCV NS proteins form a complex on

cytoplasmic membranes that catalyzes replication of the

viral genome [27]. The formation of multi-protein com-

plexes requires specific interactions between NS proteins

[28]. NS5A is reported to interact with NS5B, modulating

its RdRp activity [29], and is critical for HCV RNA rep-

lication [30]. There may be another mechanism where

NS4A, NS4B, and NS5A block TLR3 recognition of

dsRNA. It is possible that NS4A, NS4B, and NS5A bind

TLR3 and inhibit the interaction between dsRNA and

TLR3, resulting in the inhibition of IFN-beta activation.

HCV NS4A, NS4B, and NS5A may modulate the function

of NS5B or block TLR3 recognition of dsRNA, leading to

the inhibition of IFN-beta activation.

Our results indicate that HCV NS5B protein activates

host innate immunity and induces intrinsic IFN-beta.

However, HCV cannot be eliminated by the host immune

system and often leads to long-term persistence. Persistent

infection probably results from disruption of the host an-

tiviral response or HCV protein-induced alteration of sig-

naling pathways in the host immune response. A recent

study showed that HCV NS3/4A protein blocks activation

of IRF-3 induced by TRIF expression or Sendai virus

infection [19]. The blocking of IRF-3 activation by HCV

NS3/4A protein is considered one of the causes of persis-

tent infection. In our study, NS3 partially inhibited both

NS5B- and TRIF-induced activation of IFN-beta. In con-

trast, NS4A, NS4B, and NS5A efficiently inhibited NS5B-

induced, but not TRIF-induced, activation of IFN-beta.

These results suggest that NS3 blocks the IFN pathway

downstream of TRIF, and NS4A, NS4B, and NS5A may

inhibit NS5B function or recognition of dsRNA by TLR3.

In other words, HCV has a dual strategy against host innate

immunity, which may contribute to the higher rate of

persistent infection compared to other viruses.

Recently, significant advances have been made in

developing cell culture systems for HCV [31, 32]. The

HCV subgenomic replicon system is based on the self-

replication of HCV RNA in a transfected human hepatoma

cell line. The HCV replicon is known to be propagated

only in Huh7 cells. In our study, NS5B and other HCV

proteins did not influence IFN-beta promoter activity in

Huh7 cells. Poly(I:C) treatment also did not activate IFN-

beta in Huh7 cells (Fig. 10). These results indicate that

innate immunity may be disrupted in Huh7 cells. This

could be one of the mechanisms allowing replication of

HCV replicon system in Huh7 cells.

In conclusion, HCV NS5B potentially activates host

innate immunity through TLR3, TRIF, and IRF-3 by its

RdRp activity. Meanwhile, HCV NS4A, NS4B, and NS5A

specifically inhibit NS5B-induced activation of IFN-beta.

NS4A, NS4B, and NS5A combine with NS3 to act against
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Fig. 9 Inhibition of dsRNA-induced activation of IFN-beta by HCV

proteins. HepG2 cells were co-transfected with pGL3-p125 luc with

the expression plasmids for the four HCV proteins, NS3, NS4A,

NS4B, and NS5A, and treated with 100 lg/ml poly(I:C). The

normalized luciferase activities were calculated by assigning a value

of 1 to the levels of activity of cells that were transfected with the

empty vector. *P < 0.05 compared with the activity of the cells with

the vector plus poly(I:C) treatment
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the host antiviral response, which may contribute to the

higher rate of persistent infection seen with HCV.

Acknowledgement This work was supported in part by Health

Science Research Grants for Medical Frontier Strategy Research from

the Ministry of Health, Labor, and Welfare of Japan, and by grants-in-

aid for scientific research from the Ministry of Education, Culture,

Sports, Science, and Technology of Japan.

References

1. Kuo G, Choo QL, Alter HJ, Gintick GL, Redeker AG, Purcell

RH, et al. An assay for circulating antibodies to a major etiologic

virus of human non-A non-B hepatitis. Science 1989;244:362–4.

2. Saito M, Miyamura T, Ohbayashi A, Harada H, Katayama T,

Kichi S, et al. Hepatitis C virus infection is associated with the

development of hepatocellular carcinoma. Proc Natl Acad Sci

USA 1990;87:6547–9.

3. Shiratori Y, Shiina S, Imamura M, Kato N, Kanai F, Okudaira T,

et al. Characteristic difference of hepatocellular carcinoma be-

tween hepatitis B- and C- viral infection in Japan. Hepatology

1995;22:1027–33.

4. Choo QL, Richman KH, Han JH, Berger K, Lee C, Dong C, et al.

Genetic organization and diversity of the hepatitis C virus. Proc

Natl Acad Sci USA 1991;88:2451–5.

5. Hijikata M, Kato N, Ootsuyama Y, Nakagawa M, Shimotohno K.

Gene mapping of the putative structural region of the hepatitis C

virus genome by in vitro processing analysis. Proc Natl Acad Sci

USA 1991;88:5547–51.

6. Poch O, Sauvaget I, Delarue M, Tordo N. Identification of four

conserved motifs among the RNA-dependent RNA polymerase of

hepatitis C virus. EMBO J 1989;8:3867–74.

7. Behrens SE, Tomei L, De Francesco R. Identification and prop-

erties of the RNA-dependent RNA polymerase of hepatitis C

virus. EMBO J 1996;15:12–22.

8. Du W, Maniatis T. An ATF/CREB binding site protein is re-

quired for virus induction of the human interferon-beta gene. Proc

Natl Acad Sci USA 1992;89:2150–4.

9. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins

linking innate and acquired immunity. Nat Immunol 2001;2:675.

10. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies C,

Mansell AS, Brady G et al. Mal (MyD88-adaptor like) is required

for Toll-like receptor-4 signal transduction. Nature 2001;413:78.

11. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda

K, et al. A novel toll/IL-1 receptor domain-containing adaptor

that preferentially activates the IFN-beta promoter in the toll-like

receptor signaling. J Immunol 2002;169:6669–72.

12. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T.

TICAM-1, an adaptor molecule that participates in Toll-like

receptor 3-mediated interferon-beta induction. Nature Immunol

2003;4:161–7.

13. Suhara W, Yoneyama M, Iwamura T, Yoshimura S, Tamura K,

Namiki H, et al. Analysis of virus-induced homomeric and het-

eromeric protein associations between IRF-3 and coactivator

CBP/p300. J Biochem 2000;128:301–7.

14. Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E,

Fujita T. Direct triggering of the type I interferon system by virus

infection: activation of transcription factor complex containing

IRF-3 and CBP/p300. EMBO J 1998;17:1087–95.

15. Servant MJ, ten Oever B, LePage C, Conti L, Gessani S, Julkunen

I, et al. Identification of distinct signaling pathways leading to the

phosphorylation of interferon regulatory factor 3. J Biol Chem

2001;276:355–63.

16. Cerny A, Chisari FV. Pathogenesis of hepatitis C: immunological

features of hepatic injury and viral persistence. Hepatology

1999;30:595–601.

17. Disson O, Haouji D, Desagher S, Loesch K, Hahne M, Kremer

EJ, et al. Impaired clearance of virus-infected hepatocytes in

transgenic mice expressing the hepatitis C virus polyprotein.

Gastroenterology 2004;126:859–72.

18. Keskinen P, Nyqvist M, Sareneva T, Pirhonen J, Melen K,

Julkunen I. Impaired antiviral response in human hepatoma cells.

Virology 1999;263:364–75.

19. Foy E, Li K, Wang C, Sumpter R Jr, Ikeda M, Lemon SM, et al.

Regulation of interferon regulatory factor-3 by hepatitis C virus

serine protease. Science 2003;300:1145–8.

20. Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, Dharel

N, et al. Interaction between the HCV NS3 protein and the host

TBK1 protein leads to inhibiton of cellular antiviral responses.

Hepatology 2005;41:1004–12.

21. Kato N, Yoshida H, Ono-Nita SK, Kato J, Goto T, Otsuka M,

et al. Activation of intracellular signaling by hepatitis B and C

viruses: C-viral core is the most potent signal inducer. Hepatol-

ogy 2000;32:405–12.

22. Qin W, Yamashita T, Shirota Y, Ling Y, Wei W, Murakami S.

Mutational analysis of the structure and functions of hepatitis C

virus RNA-dependent RNA polymerase. Hepatology 2001;

33:728–37.

23. Vo NM, Oh JW, Lai MMC. Identification of RNA ligands that

bind hepatitis C virus polymerase selectively and inhibit its RNA

synthesis from the natural viral RNA templates. Virology

2003;307:301–16.

24. Lohmann V, Ross A, Körner F, Koch JO, Bartenshlager R.

Biochemical and kinetic analysis of NS5B RNA-dependent RNA

polymerase of the hepatitis C virus. Virology 1998;249:108–18.

25. Oh JW, Ito T, Lai MM. A recombinant hepatitis C virus RNA-

dependent RNA polymerase capable of copying the full length

viral RNA. J Virol 1999;73:7694–702.

26. Zhong W, Ferrari E, Lesburg CA, Maag D, Ghosh SK, Cameron

CE,et al. Template/primer requirements and single nucleotide

incorporation by hepatitis C virus nonstructural protein 5B

polymerase. J Virol 2000;74:9134–43.

27. Mottola G, Cardinali G, Ceccacci A, Trozzi C, Batholomew L,

Torrisi MR, et al. Hepatitis C virus nonstructural proteins are

R
e

al
vit
e

L 
u

fic
er

as
e

A
c

vit
yti

F(
cni dlo
r

ae
)es

2
N

X
Cp

ero
C

S
N

2 S
N

3 A4 S
N

B4S
N

A5 S
N

B 5S
N lop
y(

I :
)

C

0

4

2

Fig. 10 Effect of HCV proteins on IFN-beta promoter activity in

Huh7 cells. Huh7 cells were co-transfected with 0.18 lg pGL3-

p125luc, 0.02 lg PRL-TK, and 0.4 lg expression plasmids for each

of seven HCV proteins. As a positive control, 100 lg/ml poly(I:C)

were added to the culture medium. The normalized luciferase

activities were calculated by assigning a value of 1 to the levels of

activity of cells that were transfected with the empty vector

Hep Intl (2007) 1:302–310 309

123



localized in a modified endoplasmic reticulum of cells expressing

viral subgenomic replicons. Virology 2002;293:31–43.

28. Dimitrova M, Imbert I, Kieny MP, Schuster C. Protein-protein

interactions between hepatitis C virus nonstructural proteins.

J Virol 2003;77:5401–14.

29. Shirota Y, Luo H, Qin W, Kaneko S, Yamashita T, Kobayashi

K, et al. Hepatitis C virus (HCV) NS5A binds RNA-dependent

RNA polymerase (RdRp) NS5B and modulates RNA-depen-

dent RNA polymerase activity. J Biol Chem 2002;277:

11149–55.

30. Shimakami T, Hijikata M, Luo H, Ma YY, Kaneko S, Shim-

otohno K, et al. Effect of interaction between hepatitis C virus

NS5A and NS5B on hepatitis C virus RNA replication with the

hepatitis C virus replicon. J Virol 2004;78:2738–48.

31. Lohmann V, Körner F, Koch JO, Herian U, Theilmann L,

Bartenshlager R. Replication of subgenomic hepatitis C virus

RNAs in a hepatoma cell line. Science 1999;285:110–3.

32. Lohmann V, Körner F, Dobeierzewska A, Bartenshlager R.

Mutations in hepatitis C virus RNAs conferring cell culture

adaptation. J Virol 2001;75:1437–49.

310 Hep Intl (2007) 1:302–310

123


	Interferon-beta is activated by hepatitis C virus �NS5B and inhibited by NS4A, NS4B, and NS5A
	Abstract
	Introduction
	Materials and methods
	Cell culture
	Construction of plasmids expressing HCV proteins
	Reporter plasmids for luciferase assay
	Inhibition of TLR3 expression by RNA interference
	Expression plasmids of TRIF and its dominant negative form
	Transfection, luciferase assays, and reagents
	Western blotting
	Statistical analysis

	Results
	HCV NS5B protein activates IFN-beta promoter
	RdRp activity of NS5B is required for the activation �of IFN-beta
	Mapping the region of the IFN-beta promoter responsible for activation by NS5B protein
	IRF-3 was phoshorylated by NS5B expression
	HCV NS5B activation of IFN-beta through TLR3 �and TRIF
	HCV NS4A, NS4B, and NS5A inhibit NS5B-induced activation of IFN-beta
	HCV NS4A, NS4B, and NS5A do not inhibit �TRIF-induced activation of IFN-beta
	HCV NS4A, NS4B, and NS5A partially inhibit �dsRNA-induced activation of IFN-beta

	Discussion
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


