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Through alternative splicing, multiple different tran-
scripts can be generated from a single gene. Alternative
splicing represents an important molecular mechanism
of gene regulation in physiological processes such as
developmental programming as well as in disease. In
cancer, splicing is significantly altered. Tumors express
a different collection of alternative spliceoforms than
normal tissues. Many tumor-associated splice variants
arise from genes with an established role in carcinogen-
esis or tumor progression, and their functions can be
oncogenic. This raises the possibility that products of
alternative splicing play a pathogenic role in cancer.
Moreover, cancer-associated spliceoforms represent
potential diagnostic biomarkers and therapeutic targets.
G protein-coupled peptide hormone receptors provide
a good illustration of alternative splicing in cancer. The
wild-type forms of these receptors have long been
known to be expressed in cancer and to modulate tu-
mor cell functions. They are also recognized as attrac-
tive clinical targets. Recently, splice variants of these
receptors have been increasingly identified in various
types of cancer. In particular, alternative cholecystoki-
nin type 2, secretin, and growth hormone-releasing
hormone receptor spliceoforms are expressed in tu-
mors. Peptide hormone receptor splice variants can
fundamentally differ from their wild-type receptor
counterparts in pharmacological and functional char-
acteristics , in their distribution in normal and ma-
lignant tissues , and in their potential use for clini-
cal applications. (Am J Pathol 2009, 175:461–472; DOI:
10.2353/ajpath.2009.081135)

RNA splicing is the process by which introns are re-
moved from precursor mRNA to form a mature transcript
ready for translation. Through splice site variation, multi-

ple different transcripts can be produced from a single
pre-mRNA. This so-called alternative splicing contributes
to the diversity of the human proteome, which is gener-
ated from a limited genome. Alternative splicing occurs
physiologically, such as during development, as well as
in pathology. It has been found to be associated with a
number of nonneoplastic diseases like cystic fibrosis and
retinitis pigmentosa. Moreover, alternative splicing is in-
creasingly recognized in neoplasia. Indeed, cancers ex-
press a broad collection of mRNA splice variants that
may be distinct from those occurring physiologically, with
some even exhibiting oncogenic functions. This raises
the possibility that products of alternative splicing play a
pathogenic role in cancer and modify tumor behavior, as
well as may be potentially useful as diagnostic or prog-
nostic biomarkers or as therapeutic targets.

A large variety of cellular and extracellular proteins
relevant in the neoplastic process are alternatively
spliced in cancer.1 Among them, G protein-coupled pep-
tide hormone receptors represent important examples.
Situated in the cell membrane, these receptors are spe-
cialized to transmit extracellular signals into the cell: On
ligand binding, intracellular second messenger systems
are activated through mediation of G proteins, which
eventually modulate gene expression and protein activ-
ity. Peptide hormone receptors constitute the largest fam-
ily of plasma membrane proteins. They are involved in the
regulation of a plethora of important cell functions in
physiology and disease. Accordingly, they are the tar-
gets of a large number of pharmaceutical drugs.

Alternative splicing of peptide hormone receptors has
long been known to occur under physiological condi-
tions, where it may contribute to functional receptor di-
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versity, despite a restricted repertoire of receptor genes
and receptor ligands.2,3 More recently, peptide hormone
receptor splice variants have been recognized to arise
also in cancer. These cancer-associated receptor spli-
ceoforms can fundamentally differ from the wild-type re-
ceptors by exhibiting other pharmacological or functional
characteristics. For instance, a peptide receptor splice
variant may not bind a ligand that shows high affinity for
the wild-type receptor.4 Or a peptide receptor splice
variant may exhibit constitutive activity, whereas the wild-
type form signals only on ligand binding.5 Moreover,
peptide receptor splice variants may display a different
distribution in normal and malignant tissues than wild-
type receptors, with often predominant expression in
cancer.6–8 Finally, peptide receptor splice variants may
differ from wild-type forms in their potential use for clinical
applications.8 Therefore, peptide hormone receptors pro-
vide a good illustration of our current understanding of
alternative splicing in cancer.

We have organized this review to first describe the
splicing process and general aspects of alternative splic-
ing in cancer with respect to underlying molecular mech-
anisms, presumed biological significance, and clinical
potential. As an illustration of these concepts, we then
focus on alternative splicing of peptide hormone recep-
tors in cancer. We analyze the impact of alternative splic-
ing events on receptor pharmacology and functionality,
and possible uses of peptide receptor spliceoforms for
cancer diagnosis and therapy.

The Process of Pre-mRNA Splicing

Most eukaryotic pre-mRNAs contain intervening se-
quences (introns) that must be removed (spliced out) to
yield the correct coding frame within the concatenated
exon sequences. Splicing occurs when specific nucleo-
tide sequences at intron-exon boundaries within the pre-
mRNA are recognized by the spliceosomal splicing ma-
chinery, a complex of small nuclear ribonucleoproteins
(snRNPs) and proteins that assemble in a temporally and
spatially specific manner to catalyze intron excision and
ligation of exon ends (Figure 1).9 This process involves
sequential changes in RNA–RNA, RNA–protein, and pro-
tein–protein interactions within this complex. The classi-
cal splicing process acts on an intron defined by a donor
splice site at the 5� end beginning with a GU dinucle-
otide, an acceptor splice site at the 3� end ending with an
AG dinucleotide, and a branch point upstream of the 3�
end. Splicing is initiated by the establishment of the E
(early) complex, with U1 snRNP binding to the donor site,
splicing factor 1 binding to the branch point, and U2
snRNP auxiliary factor binding to the acceptor site. Splic-
ing initiation is followed by formation of the A complex,
with U2 snRNP binding to the branch point, and formation
of the B complex, with U4, U6, and U5 snRNPs joining the
complex and leading to remodeling. This remodeling
leads to the C complex, which is catalytically active,
resulting in trans-esterification reactions leading to the
cleavage and ligation of the nucleotide chain.

Exonic and intronic splicing enhancer and silencer
regions represent short (�10) nucleotide sequences

away from the splice sites that bind a wide range of
stimulatory and inhibitory regulatory splicing factors,
such as serine/arginine-rich (SR) proteins and heteroge-
neous nuclear ribonucleoproteins. These importantly
contribute to splice site recognition by the splicing ma-
chinery. The activity of splicing factors is often regulated
by their phosphorylation status.10

Splice site selection by the spliceosome is flexible,
allowing the generation of differentially spliced mRNA
isoforms of the same gene. Given the molecular mecha-
nisms described above, it can be easily envisioned that
alternative splicing may occur in response to less-than-
optimal splice site sequences or variations in activity of
protein kinases or phosphatases, in the stoichiometry of
splicing regulatory factors, or even key core components
of the spliceosome.11,12 These differences can result in
the excision of an exon that is normally included in cod-
ing, the inclusion of an intron, the inclusion of an exonic
cassette that is not normally recognized, or the use of
alternative 5� or 3� splice sites. Combinations of these
events are also observed. Substantial protein sequence
variation can occur by a shift in the coding frame, by the
inclusion of nucleotide sequences that are not normally
part of the mature mRNA, or by the introduction of a
premature stop codon.

Splice Variant Expression Patterns in Tumors

The splice variant expression in tumors has classically
been assessed at the single gene level by PCR and
sequencing. Recently, it has also increasingly been ex-
amined on a genome-wide basis with bioinformatic and
microarray strategies.13 Tumoral RNA splicing can also
be analyzed computationally by comparing mRNA se-
quences deposited in the GenBank with the human EST

Figure 1. Molecular mechanism of pre-mRNA splicing. The splicing process
is initiated by recognition of the splice donor and acceptor sites by U1 snRNP
and U2 snRNP auxiliary factor, respectively, and binding of splicing factor 1
to the branch point. Thereupon, the intron ends are brought in close prox-
imity. This is followed by further assembly of the spliceosome and remod-
eling of the complex, which eventually becomes catalytically active to splice
out the intron and join the ends of the exons.
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database. This process reveals extensive variant spliceo-
forms present in tumor libraries.14 Furthermore, splice
variant expression signatures in tumors can be charac-
terized with oligonucleotide arrays directed against
splice sites.15 These investigations have rapidly enlarged
the number of known splice variants in cancer. Moreover,
they have revealed that splice variant expression pat-
terns in tumors may be distinct from those in normal
tissues.

For many genes, the expression ratio between a splice
variant and the wild-type form or between various splice
variants significantly differs between cancer and normal
cells. In particular, many splice variants are up-regulated
in tumors compared with normal tissues. Some spliceo-
forms even appear to arise de novo in cancer, as they are
not found under normal conditions. Of note, splice variant
expression patterns in tumors have usually been com-
pared with those in normal tissues, but not with those
occurring in nonneoplastic diseases such as inflamma-
tion. It is possible that some spliceoforms thought to be
typical of cancer may also arise in nontumor pathology.

Molecular Mechanisms of Splicing in Tumors

The molecular mechanisms underlying the distinct splic-
ing in cancer are incompletely understood and are by far
not defined for every spliceoform. The investigation of
individual genes has, however, revealed that the normal
splicing process can be disrupted in cancer at various
critical steps.

Point mutations and single nucleotide polymorphisms
can interfere with normal splice site selection and
splicing efficiency: Nucleotide changes occurring
within splice site consensus sequences can reduce bind-
ing affinity of spliceosomal proteins; likewise, sequence
alterations within exonic and intronic splicing enhancer
and silencer regions affect binding of regulatory splicing
factors. Possible results of these changes include exon
skipping, such as in the phosphatase and tensin ho-
molog (PTEN) and adenomatosis polyposis colic (APC)
splice variants that underlie familial cancer syn-
dromes,16,17 intron retention, or preferential use of a
nearby cryptic splice site, such as in a Kruppel-like factor
6 splice variant associated with prostate cancer.18 Fur-
thermore, genomic sequence alterations can create new
splice sites, a mechanism that is responsible for instance
for a the tyrosine kinase receptor splice variant in gastro-
intestinal stromal tumors,19 or new splicing enhancer or
silencer regions that influence splice site choice.18 It is
likely that many genomic mutations and single nucleotide
polymorphisms important for missplicing in cancer are
not yet detected or recognized as relevant, since splicing
enhancer and silencer regions are not fully defined.

An imbalance in the levels of stimulatory and inhibitory
splicing factors is likely to contribute to splicing in cancer
as well. Indeed, individual splicing factors are selectively
up-regulated in tumors. For example, human ovarian can-
cers exhibit significantly higher levels of specific SR pro-
teins than nonneoplastic ovaries.20 Likewise, the spli-
ceosomal protein SPF45 is overexpressed in numerous

carcinomas as compared with normal tissues.21 Up-reg-
ulation of stimulatory splicing factors during the neoplas-
tic process was found to be associated with increased
splicing of genes regulated by these splicing factors,
such as in a mouse model of mammary tumorigenesis
and in human breast cancer.22,23

Changes in splicing factor levels, as well as sequence
alterations in genomic regions critical for splicing, usually
do not completely abrogate wild-type expression; in-
stead, wild-type and splice variant forms are concomi-
tantly expressed.

Do Splice Variants Contribute to Malignancy?

Some cancer-associated spliceoforms arise from genes
with an established role in carcinogenesis or tumor pro-
gression, such as tumor suppressor genes, protoonco-
genes, and genes involved in cell motility. The effects of
these splice variants are often favorable for cancer de-
velopment. In fact, the functions of some of these splice
variants may be more oncogenic than those of the cor-
responding wild-type forms. In particular, many splice
variants of genes involved in cell death antagonize the
pro-apoptotic effect of their wild-type counterparts in a
dominant negative fashion and thus stimulate tumor
growth. A typical example is the Kruppel-like factor 6
splice variant 1 (SV1), which is over-expressed in meta-
static prostate cancer. SV1 stimulates growth and inva-
sion, whereas wild-type Kruppel-like factor 6 suppresses
proliferation of prostate cancer cells.18,24 Conversely,
splice variants of proto oncogenes can show a gain of
function compared with corresponding wild-type forms.
For instance, a splice variant of the tyrosine kinase re-
ceptor occurring in gastrointestinal stromal tumors was
found to be constitutively active, in contrast to wild-type
the tyrosine kinase receptor.19 Constitutively active the
tyrosine kinase receptor is known to lead to gastrointes-
tinal stromal tumors development. Similarly, over-expres-
sion of a splice variant of the proto oncogene Mdm2 p53
binding protein homolog (MDM2) leads to malignant
transformation of transfected cells in vitro and spontane-
ous tumor formation in vivo.25,26 Finally, splice variants of
genes involved in cell migration can stimulate invasion of
cancer cells, as demonstrated for a constitutively active
spliceoform of Ron overexpressed in breast and colon
cancer27 and various CD44 spliceoforms. For instance,
the CD44 splice variant CD44v5 was found to increase
tumor cell invasiveness.28 Moreover, tumors expressing
the CD44 splice variant CD44v4-10 showed significantly
more metastases, as well as larger primary tumors, than
tumors expressing nonspliced standard CD44 in vivo.29

But what is the actual biological relevance of the on-
cogenic effects of tumor-associated splice variants de-
fined in experimental models? This is indeed an unre-
solved issue. Functions of splice variants are generally
assessed in cells engineered to express the spliceoform
in question selectively and in what may be nonphysiologi-
cally high amounts.24,27 It is possible that splice variants
do not modify cell functions to the same extent in
naturally occurring tumors, where they are often ex-

Alternative Splicing of Cancer Receptors 463
AJP August 2009, Vol. 175, No. 2



pressed at significantly lower levels and in a different
cellular context.

Moreover, it has not been clearly determined whether
splice variants may play a primary role in carcinogenesis
and tumor progression. Alternatively, their occurrence in
cancer may reflect an epiphenomenon related to the
general deregulation of cellular functions or the special
tumoral microenvironment, such as hypoxia.30 While the
latter scenario may explain the presence of splice vari-
ants with no apparent function in cancer, it also provides
the possibility for oncogenic splice variants to contribute
to the malignant phenotype through the process of clonal
selection.31

Potential Clinical Use of Cancer-Associated
Splice Variants

Based on their expression and functions in neoplasia,
splice variants may potentially be used clinically for di-
agnostic and therapeutic purposes. Conceivable ap-
proaches are summarized in Figure 2. Such applications
are the focus of current research, but have, however, not
been established in clinical practice.

Splice Variant-Targeted Tumor Diagnosis

Diagnostic approaches aim at taking advantage of the
increased production of splice variant transcripts or pro-
teins by tumors, as compared with normal tissues, such
that splice variant functions need not be known.

Tumor cells can be identified in clinical specimens with
PCR on the basis of their specific splice variant expres-
sion pattern. For instance, by measuring in pleural effu-
sion or urine samples the mRNA ratio of two CD44 splice
variants (namely CD44v8-10 expressed predominantly in
epithelial cancers and CD44v10 occurring in normal leu-
kocytes) malignant conditions could be distinguished
from reactive ones with high specificity. This assay was
able to reveal cancer even in specimens that were cyto-

logically negative or ambiguous.32 Furthermore, such a
test may also provide prognostic information, as shown in
a follow-up study: The ratio of CD44v8-10 versus stan-
dard CD44 mRNA levels in urine samples correlated with
bladder cancer stage, metastasis, and survival.33 These
studies provide interesting examples of how cancer cells
may be detected with a highly sensitive technique, such
as PCR, based on their splice variant expression pattern,
despite the fact that the splice variants are present not
only in tumor cells, but also in normal cells. However,
these tests have not reached clinical practice to date.

Furthermore, splice variants may serve as serum mark-
ers of cancer. If the protein product of a spliceoform is
soluble and secreted from tumor cells, it may be detect-
able in the serum with an antibody-based assay. This is
the case for the aforementioned CD44 spliceoform
CD44v8-10, which can be measured in the serum with an
enzyme-linked immunosorbent assay (ELISA) test using
an antibody directed against the unique region of this
variant. CD44v8-10 serum levels were thus found to be
significantly higher in patients with colon cancer than in
normal controls and were associated with tumor burden,
stage, and metastasis.34

Splice variant-specific antibodies may also be used
for targeted tumor scintigraphy when radiolabeled. This
technique was successfully performed for a fibronectin
spliceoform that expresses the variable extracellular do-
main B and accumulates around tumoral neovasculariza-
tions.35 Fibronectin-extracellular domain B-expressing
lung cancers and liver metastases as small as 4 to 6 mm
could be imaged with an intravascularly injected 123I-
labeled antibody specifically recognizing the extracellu-
lar domain B.36 Conversely, less encouraging results
were obtained for tumors expressing the CD44 spliceo-
form CD44v6. With a 99mTc-labeled antibody against
CD44v6, 80% of primary tumors, but only 20% of metas-
tases of head and neck cancers, could be visualized.37

Likewise, a 186Re-labeled CD44v6 antibody did not clearly
image breast cancers because of high background

Figure 2. Potential approaches to use cancer-
associated splice variants clinically for diagnos-
tic or therapeutic purposes. For diagnostic ap-
plications, the splice variant transcript or protein
can serve as target that is detected by PCR or
with an antibody, respectively. For cancer ther-
apy, splice variants with a function promoting
tumor development may be down-regulated by
inhibition of splice variant synthesis at the level
of the splicing process or by RNA interference at
the mature mRNA level. Furthermore, tumoral
splice variant proteins may serve as targets for
radiotherapy or immunotherapy.
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radioactivity.38 Indeed, success of tumor targeting with
radiolabeled antibodies depends on a number of fac-
tors that include, besides antibody factors, high target
expression levels in tumors, but low target levels in
normal background tissues. Apparently, these prereq-
uisites are not fulfilled for all tumor-associated splice
variants considered for this application.

Splice Variant-Targeted Tumor Therapy

For therapeutic applications, either the presence or the
functions of cancer-associated splice variants may be
targeted. The former strategy appears timelier, as many
spliceoforms are not yet functionally characterized or
their biological relevance is not fully elucidated.

Specific antibodies coupled to a radionuclide or a
chemotherapeutic agent may potentially be used for tar-
geted radio- or chemotherapy, analogous to splice vari-
ant-targeted tumor imaging. This technique has been
tested clinically for CD44v6-expressing tumors. Phase I
trials were performed with various toxic anti-CD44v6 an-
tibodies in patients with head and neck cancer, as well as
breast cancer.39,40 However, tumor response rates were
small, and fatal side effects related to antibody binding to
normal tissues occurred. It is likely that for such applica-
tions the CD44v6 expression levels are not sufficient in
tumors, while being too high in normal tissues.41

The presence of splice variants in cancer may further-
more be used for immunotherapy.13 The unique se-
quences of cancer-associated splice variants that are not
shared by the wild-type forms represent tumoral neoan-
tigens that can be recognized by the immune system.
Accordingly, a number of splice variant proteins have
been found to induce a cellular or humoral immune re-
sponse in cancer patients.13 This represents the basis for
potential immunotherapies, including stimulation of cyto-
toxic T-cells and vaccination, which in fact have been
shown to be effective in animal tumor models. For
instance, in a mouse model of mammary adenocarci-
noma, active immunization with a cancer-associated
CD44 splice variant resulted in significantly reduced
tumor growth.29

As for the therapeutic inhibition of splice variant effects
on important tumor cell functions, such as apoptosis, the
main approach has been to decrease splice variant syn-
thesis (reviewed by Garcia-Blanco42), whereas pharma-
ceutical antagonism of splice variant functions has been
less explored in cancer. The expression of a splice vari-
ant may be specifically inhibited with an oligonucleotide
interfering with splice site choice. Conventional antisense
oligonucleotides sterically block splice sites. For in-
stance, oligonucleotides directed against the anti-apop-
totic splice variant of bcl-x increased the relative expres-
sion of the pro-apoptotic bcl-x form and stimulated
apoptosis in cancer cells.43,44 Conversely, splicing can
be induced by bifunctional oligonucleotides exhibiting
an RNA binding domain directed against an exonic
splicing enhancer sequence and a splicing factor re-
cruitment domain mediating interaction with RNA bind-
ing proteins.45 Furthermore, spliceoforms can be de-
graded through RNA interference.42

The expression of splice variants can also be modified
nonspecifically by inhibiting splicing factors either phar-
macologically or by RNA interference. This approach was
shown to exert a negative effect on cancer cells in vitro.
For example, the topoisomerase I inhibitor NB-506 reduces
phosphorylation and thus the activity of SR proteins. In
cancer cells, it inhibits splicing and is cytotoxic.46 Likewise,
knockdown of a SR protein kinase responsible for SR pro-
tein phosphorylation by RNA interference increased apo-
ptosis and sensitivity to chemotherapeutic drugs of pancre-
atic cancer cell lines.47

Alternative Splicing of Peptide Hormone
Receptors in Cancer

G protein-coupled peptide hormone receptors represent
an important family of molecular targets in cancer.48

Many of them show significant overexpression in tumors.
On this basis, clinical applications are being developed.
Radiolabeled receptor ligands can be applied to tar-
geted imaging and radiotherapy of receptor-expressing
tumors. Moreover, peptide hormone analogs that inter-
fere with receptor-regulated tumor cell functions, such as
hormone secretion and proliferation, are used for ther-
apy. In the last few years, it has increasingly been rec-
ognized that tumoral peptide receptors correspond not
only to the wild-type forms, but also to splice variants. The
functional characteristics of these splice variants often
differ substantially from those of their wild-type counter-
parts. While some splice variants inhibit expression or
ligand binding and signaling of the corresponding wild-
type forms, others amplify wild-type effects. Peptide re-
ceptor spliceoforms may thus influence clinical applica-
tions based on wild-type receptor expression and
functions. Furthermore, they also represent potential clin-
ical targets on their own.

Table 1 provides a summary of the peptide hormone
receptor splice variants known to occur in cancer. Figure
3, A–E shows typical examples of how the normal recep-
tor structure can be altered in these splice variants and
how this affects receptor function. In the following sec-
tions, the most important receptor spliceoforms are dis-
cussed in detail.

Cholecystokinin Receptor Type 2

The cholecystokinin receptor type 2 (CCK2 receptor) is
physiologically expressed mainly in the brain and gastro-
intestinal tract, where it mediates the effects of gastrin on
gastric acid secretion and cell growth.49 In addition, its
wild-type form is expressed by a wide variety of gut and
lung tumors, where it also stimulates proliferation.50,51

Several splice variants of the CCK2 receptor exist, and
one of them has been found to be also present in cancer.
This particular spliceoform retained intron 4 (CCK2Ri4sv).
The molecular basis for this alternative splicing event was
characterized to be a weak 3� splice site of intron 4 in
association with reduced levels of the splicing factor U2
snRNP auxiliary factor 35 in tumor cells.52
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Table 1. G Protein-Coupled Peptide Hormone Receptor Splice Variants in Tumors

Receptor Transcript Protein Function Tumoral expression In vivo targeting

CCK2 receptor Intron 4 retention 69 aa insertion in
IC3

Constitutive activity;
stimulation of
proliferation

Insulinomas, gastrointestinal
stromal tumors, colorectal
adenomas and
adenocarcinomas,
pancreatic and gastric
adenocarcinomas,
Barrett’s mucosa, small
and non-small cell lung
cancer

Antisense oligonucleotide
inhibits growth of
pancreatic cancer
xenografts in nude
mice; 90 in vivo tumor
binding of radiolabeled
ligand in animal model

Secretin receptor Exon 3 skipping 36 aa deletion in
N-terminus

No ligand binding,
dominant negative
activity on wild-
type. Inhibition of
gastrin secretion
from gastrinomas?

Gastrinomas, pancreatic
adenocarcinomas,
cholangiocellular
carcinomas

Exons 3 � 4
skipping

No TMs No ligand binding,
secreted

Pancreatic
adenocarcinomas,
cholangiocellular
carcinomas

Detectable in pancreatic
cancer and chronic
pancreatitis patients’
sera with ELISA

Exons 2 � 3
skipping

No TMs No ligand binding Lung carcinoids

Exon 9 skipping Truncation in IC2 No signaling Lung carcinoids
GHRH receptor Exons 1-3

skipping, intron
3 retention
(SV1)

N-terminal
truncation

Constitutive activity;
stimulation of
proliferation

Prostate, breast,
endometrial, ovarian,
pancreatic, colorectal,
gastric, esophageal, and
small cell lung cancer,
adrenal cortical
carcinomas, insulinomas,
gastrinomas, pituitary
adenomas,
glioblastomas, malignant
melanomas, lymphomas

Antagonists inhibit growth
of tumor xenografts in
nude mice

Exons 1-3 and 7
skipping, intron
3 retention
(SV2)

N-terminal
truncation,
truncation after
EC1

Prostate, breast, ovarian,
and pancreatic cancer

Exons 1-3 and
5–7 skipping,
intron 3
retention (SV4)

N-terminal
truncation, no
TMs

Pituitary adenomas

Exon 11 skipping Truncation after
IC3

No signaling;
dominant negative
activity on wild-type

Pituitary adenomas

PAC1 receptor Variable skipping
of exons 4-6
and 13-16

Deletions in N-
terminus and
IC3

Variable ligand
binding affinity and
stimulation of
intracellular signal
transduction

Neuroblastomas,
retinoblastomas,
colorectal carcinomas

VPAC1 receptor Exons 10 � 11
skipping

Deletion of part of
TM5, IC3, TM6,
EC3, and TM7

No signaling B and T cell lymphomas,
colorectal carcinomas

VPAC2 receptor Exons 10 � 11
skipping

Deletion of part of
TM5, IC3, TM6,
EC3, and part of
TM7

No signaling T cell leukemia

LH/hCG receptor Exon 9 skipping 62 aa deletion in
N-terminus

No ligand binding, no
cell surface
expression,
complexing with
and degradation of
wild-type LH/hCG
and FSH receptors
in endoplasmic
reticulum

Endometrial and ovarian
adenocarcinoma

Exon 9 skipping,
intron 10
retention89

No TMs Ovarian adenocarcinoma

Corticotropin
releasing factor
receptor 1

Intron retention 29 aa insertion in
IC191

Pituitary adenoma

aa, amino acids; EC, extracellular loop; IC, intracellular loop; TM, transmembrane segment.
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CCK2Ri4sv expression is strongly associated with can-
cer. It was described in a number of gastrointestinal and
lung tumors and tumor precursor lesions (Table 1), but
much more rarely in normal tissues.5,8,52–55 Of note, re-
ports on CCK2Ri4sv expression in colorectal and gastric
cancer are inconsistent.5,8,56 This variable identification
of CCK2Ri4sv may at least in part be due to the very small
amounts of CCK2 receptor transcripts in these tumors.8

For amplification of very low abundance transcripts, tech-
nical aspects that varied between the different studies,
such as the amount of RNA used for RT-PCR or primer
design, may be critical.

Intron 4 retention leads to the insertion of 69 amino
acids in the third intracellular loop of the CCK2 receptor
protein, a domain relevant for signal transduction (Figure
3B). Accordingly, CCK2Ri4sv was found to differ from the
wild-type CCK2 receptor with respect to activation of
intracellular signal transduction pathways, whereas ligand
binding characteristics were unchanged: CCK2Ri4sv
showed spontaneous signaling in the absence of a receptor
ligand.5 Of note, this constitutive activity appears to depend
on the cell type expressing CCK2Ri4sv. It was observed
particularly in mesenchymal cells, but not consistently in
epithelial cells.57,58 In transfected cells, CCK2Ri4sv stimu-
lated cell proliferation in vitro and in vivo, possibly more
potently than the wild-type receptor.5,58,59 CCK2Ri4sv ex-
pression was also associated with increased tumoral angio-
genesis in vivo.59 However, it is unclear if these tumor-
promoting effects of CCK2Ri4sv observed in experimental
models are similar in naturally occurring tumors. In fact,
studies assessing the functional effects of CCK2Ri4sv were
performed mainly with engineered cells exhibiting exces-
sive CCK2Ri4sv expression, while original tumors were
found to express this variant at very low levels.8 Conse-
quently, the impact of CCK2Ri4sv on tumor growth could be
much smaller in original tumors. Therefore, the potential
therapeutic benefit that may be obtained from the inhibition
of CCK2Ri4sv with, for instance, antisense oligonucleotides
in cancer patients is at present unknown.

It has also been proposed to target tumoral CCK2Ri4sv
with a selective radiolabeled receptor ligand for imaging
or radiotherapeutic purposes has also been proposed
based on a pilot study performed in a CCK2Ri4sv-
expressing animal tumor model.60 The attractive aspect
of such a procedure would be the low expression of
CCK2Ri4sv in normal tissues. However, selective ligands
that bind only to CCK2Ri4sv but not to the wild-type CCK2

receptor, which exhibits essentially the same ligand bind-
ing domain as the splice variant and is abundantly ex-
pressed in normal tissues, have not yet been reported.
Moreover, it is doubtful that the CCK2Ri4sv protein levels
in original human tumors are sufficient for a successful
targeting with a radioactive ligand.

Secretin Receptor

The secretin receptor occurs physiologically in pancre-
atic and bile ducts and the gastric mucosa, where it
stimulates secretion of bicarbonate and gastrin, respec-
tively. It is expressed by a limited number of liver, pan-
creatic, and lung tumors.6,7,61 All these tumors exhibit not
only wild-type, but also splice variant secretin receptor
expression (Table 1). Alternative splicing of the secretin
receptor is characterized by several special features. In
contrast to the CCK2 receptor, a number of different
cancer-associated splice variants have been identified
for the secretin receptor due to a more complex gene
structure with more exons. Moreover, these secretin re-
ceptor spliceoforms show a high specificity for cancer.
Indeed, most of them have been identified only in tumors,
but not in normal tissues. Finally, the various spliceoforms
are differentially expressed in tumors. Thus, secretin re-

Figure 3. Alternative splicing of G protein-coupled peptide hormone recep-
tors. A: Schematic structure of G protein-coupled peptide hormone receptors
with the functionally important domains. The extracellular N-terminal do-
main provides the ligand binding site. The seven transmembrane segments
(TM) anchor the receptor in the cell membrane; they are connected by three
intracellular (IC) and three extracellular (EC) loops. The intracellular loops,
especially the third, couple to intracellular second messengers as a result of
a conformational change of the receptor on ligand binding and are, thus,
important for intracellular signal transduction. The intracellular C-terminal
domain mediates receptor desensitization and internalization. B–E: Typical
structural changes in receptor splice variants. B: An extension in the third
intracellular loop of the CCK2 receptor, created by intron 4 retention, is
associated with constitutive activation of intracellular signaling pathways in
the absence of a ligand. C: An in-frame deletion within the extracellular
N-terminal domain of the secretin receptor, originating from exon 3 skipping,
inhibits ligand binding. D: A deletion in the N-terminal domain of the secretin
receptor produced by skipping of exons 3 and 4 leads to a frame-shift, early
stop codon, and truncation; in the absence of any transmembrane domain,
the receptor is not anchored in the cell membrane and secreted from the cell.
E: N-terminal truncation of the GHRH receptor in SV1, created by deletion of
exons 1 through 3 and retention of intron 3, leads to receptor activity in the
absence of ligand binding.
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ceptor splice variants are of particular interest for poten-
tial clinical applications.

The secretin receptor splice variant first described has
exon 3 inappropriately spliced out. This variant is ex-
pressed in gastrinomas in very high incidence, as well as
in a subset of pancreatic ductal adenocarcinomas and
cholangiocellular carcinomas, but not in nonneoplastic
pancreas or liver.4,6,7,62,63 Exon 3 skipping leads to an
in-frame deletion of 36 amino acids within the N-terminal
domain of the secretin receptor (Figure 3C). The variant
receptor can thus not bind secretin. Though nonfunc-
tional by itself, it inhibits wild-type secretin receptor bind-
ing and signaling through receptor heterodimeriza-
tion.4,63 These data suggest that this splice variant may
interfere with wild-type receptor-controlled tumor cell
functions, such as stimulation of gastrin secretion from
gastrinomas or cell proliferation, depending on the ratio
of splice variant to wild-type receptor levels. Initial data
indeed indicated that the splice variant with the exon 3
deletion may be responsible for the negative secretin
stimulation test obtained in rare gastrinoma patients.4

This observation was, however, not corroborated in a
recent study that included a larger number of gastrinoma
patients, which may be explained by the generally very
low splice variant amounts as compared with wild-type
secretin receptor levels in these tumors.62 This example
illustrates the importance of validating functional charac-
teristics of splice variants obtained in in vitro models by
quantitative expression analysis in original tumors and
systematic clinical correlation.

A second secretin receptor spliceoform with tandem
deletion of exons 3 and 4 was found expressed in pan-
creatic adenocarcinomas and cholangiocellular carcino-
mas, but not in gastrinomas or nonneoplastic pancreas or
liver specimens.6,7,64 The deletion in this spliceoform is
predicted to lead to a frame-shift, early truncation, and
total absence of transmembrane segments in the recep-
tor protein, whereas the leader sequence responsible for
trafficking of the receptor to the cell membrane is pre-
served (Figure 3D). Correspondingly, this splice variant
was found not to be functional, but to be secreted from
cells.64 On this basis, an ELISA serum test specific for
this spliceoform was developed in our laboratory and
tested in a clinical pilot study.64 The results were en-
couraging, as the test was positive in 69% of pancreatic
cancer patients, but not in healthy controls. Of note,
splice variant serum levels were also elevated in chronic
pancreatitis patients, although splice variant transcripts
were not detected with PCR in chronic pancreatitis spec-
imens.6 At present, it is unclear if this discrepancy be-
tween the ELISA and PCR results may be due to nonspe-
cific reactivity of the ELISA test or if the spliceoform also
arises focally in chronic pancreatitis, for instance in hy-
perplastic or preneoplastic ductal changes that were
missing in the samples subjected to PCR analysis. These
data emphasize the need to fully optimize a sensitive and
specific clinical assay for a splice variant that is intended
to serve as cancer biomarker and to validate this test in a
spectrum of patients with relevant nonneoplastic and
neoplastic diseases, as well as to thoroughly correlate
test results with splicing patterns in tissues.

An entirely different secretin receptor splice variant
expression pattern was present in bronchopulmonary
carcinoid tumors. These tumors were found to express
two spliceoforms not detected in other tumors before,
one with an exon 9 deletion and another one with exon 2
and 3 deletions (Table 1). However, splice variants typi-
cal of pancreas and liver cancer were not identified.61

Both secretin receptor spliceoforms occurring in lung
carcinoids are likely not to signal in response to secretin.
Their significance remains to be defined.

Of note, a unique secretin receptor splicing pattern
was also found in peritumoral lung exhibiting chronic
inflammation. In these tissues, a splice variant missing
part of exon 1 and all of exons 2 to 4 was identified, while
the secretin receptor spliceoforms arising in cancer were
not present.61 This example underlines that splice vari-
ants are not restricted to cancer, but can also occur
selectively in nonneoplastic pathological conditions.

Growth Hormone-Releasing Hormone Receptor

The growth hormone(GH)-releasing hormone (GHRH) re-
ceptor is physiologically expressed on the somatotrophs
of the anterior pituitary gland, where it mediates the ef-
fects of GHRH on GH secretion. Four different spliceo-
forms of this receptor have been recognized in neoplasia
(Table 1). Of particular interest, these splice variants
occur not only in pituitary adenomas, ie, at the site of
physiological GHRH receptor expression, but also in
many clinically important extra-pituitary tumors.65–68

Among these spliceoforms, splice variant 1 (SV1) has
most extensively been explored, as it is the only one
predicted to be functional.

SV1 and full-length, pituitary-type GHRH (pGHRH) re-
ceptor were found to be expressed, concomitantly as
well as independently, in cell lines and tissues of a large
variety of human epithelial, neuroendocrine, and lymphatic
cancers at the mRNA and protein level (Table 1).65,69–75

SV1 also shows a wide-spread expression in nonneo-
plastic tissues, such as prostate, kidney, liver, pancreas,
colon, lung, and pituitary gland.

SV1 has lost exons 1 to 3 but has intron 3 retained,
which contains a new in-frame start codon. As a result,
the first 89 amino acids at the N-terminus of the pGHRH
receptor are replaced by a novel 25 amino acid se-
quence in SV1, while the rest of the spliceoform is iden-
tical to the full-length receptor (Figure 3E).65 SV1 still
binds GHRH at the truncated N-terminus and signals in
response to GHRH. In addition, it exhibits constitutive,
ligand-independent signaling, in contrast to the pGHRH
receptor.70 Both SV1 and pGHRH receptors stimulate
tumor cell proliferation on GHRH activation, with SV1
being more potent than the pGHRH receptor in certain
tumor cell types.70,76 Moreover, basal tumor cell prolifer-
ation in the absence of a ligand is increased in cells
transfected with SV1, as compared with cells expressing
the pGHRH receptor.70 GHRH receptors expressed on
tumor cells stimulate tumor cell proliferation probably
indirectly via multiple mechanisms, namely via secretion
of the mitogens GHRH, GH, and/or insulin-like growth
factors I and II.77–79
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The proliferative effects of both SV1 and the pGHRH
receptor on tumors represent the basis for potential ther-
apeutic applications. GHRH receptor antagonists, which
equally bind to SV1 and the pGHRH receptor, have been
developed that potently inhibit growth and metastasis of
a large number of experimental tumors expressing SV1
and pGHRH receptors in vitro and in vivo.77,79,80 Of note,
it is unknown if these antiproliferative effects are medi-
ated by inhibition mainly of SV1, pGHRH receptors, or
both. As it has been shown that GHRH receptor antago-
nists are well tolerated by humans81 and that SV1 and
pGHRH receptors are expressed in substantial amounts
in original human tumors, the requirements necessary to
start on clinical trials on the use of GHRH receptor an-
tagonists in cancer patients appear largely fulfilled. How-
ever, such studies have not yet been performed.

Other G Protein-Coupled Receptors

A number of other G protein-coupled receptors have
been found to be alternatively spliced in cancer (Table 1).
However, these spliceoforms have been less extensively
characterized with respect to expression and biological
activity.

The vasoactive intestinal peptide/adenylate cyclase
activating polypeptide 1 (pituitary) (VIP/PACAP) recep-
tors are widely expressed in cancer.48 However, alterna-
tive splicing of these receptors has been assessed in
only a limited number of tumors. The adenylate cyclase
activity polypeptide 1 (pituitary) receptor type 1 (PAC1)
receptor was investigated in selected embryonal tu-
mors.82,83 As many as 14 different spliceoforms of this
receptor were identified in neuroblastomas (summarized
by Lutz et al82). These show variable combinations of
alternative splicing at mainly two receptor regions, the
N-terminal domain and the third intracellular loop. Ac-
cordingly, they differ in ligand binding affinity and po-
tency to stimulate intracellular signal transduction path-
ways. Of particular interest, the PAC1 receptor splice
variant expression pattern was significantly different in
neuroblastomas as compared with the adult brain.

Splicing of the vasoactive intestinal peptide receptors
1 and 2 (VPAC 1 and 2) is different from that of the related
PAC1 receptor.84 VPAC1 and VPAC2 express a similar
spliceoform, lacking the third intracellular loop and the
last two transmembrane segments. Despite the absence
of the domain important for coupling to intracellular mes-
sengers, these spliceoforms still signal in response to
ligand binding, which is, however, different from that of
their wild-type counterparts. The VPAC1 and VPAC2 re-
ceptor splice variants were found to be differentially ex-
pressed in tumor cell lines derived from hematopoietic
malignancies and colorectal carcinoma.84,85

VIP/PACAP receptor splice variants have presently
been assessed only in selected tumor cell lines. It may be
worth evaluating whether a tumor-specific splicing pat-
tern can be observed in a larger number of normal tis-
sues and naturally occurring tumors, such as PAC1 re-
ceptor-expressing neuroblastomas, gliomas, endometrial
carcinomas, and the many VPAC1 receptor-expressing

adenocarcinomas.48 In fact, the high VIP/PACAP recep-
tor levels in nonneoplastic tissues have limited the devel-
opment of in vivo tumor targeting of these receptors.48 If
splice variants can be found that show a more selective
expression in cancer than in wild-type cells, more spe-
cific targeting approaches may be developed for these
receptors.

Furthermore, the luteinizing hormone/human chorionic
gonadotropin receptor (LH/hCG) was found to exhibit
alternative splicing in tumors. A splice variant with an
exon 9 deletion was identified that is not expressed on
the cell surface but is retained in the endoplasmic retic-
ulum, where it complexes with wild-type LH/hCG and
follicle-stimulating hormone receptors, resulting in lyso-
somal degradation.86,87 This splice variant appeared to
be up-regulated in endometrial adenocarcinoma but lost
in ovarian cancer as compared with the respective nonneo-
plastic tissues of tumor origin.88,89 Moreover, potential ad-
ditional LH/hCG receptor spliceoforms were observed in
endometrial cancer.88 The biological significance and clin-
ical potential of LH/hCG splice variants in gynecological
malignancies is undetermined.

Conclusion and Future Directions

G protein-coupled peptide hormone receptors provide a
good illustration of the current knowledge of the pres-
ence, functions, and potential clinical relevance of splice
variants in cancer in general. Although peptide receptors
have been known to be expressed in cancer for decades,
their splice variants have received attention only recently.
A number of peptide receptor spliceoforms have already
been detected in tumors, and, based on the large number
of peptide receptors present in neoplasia, more can be
expected to be discovered. Initial functional data indicate
that the role of some peptide receptor splice variants in
tumor cell biology may be just as relevant as that of their
wild-type counterparts. Expression and functions of pep-
tide receptor spliceoforms represent the molecular basis
for clinical applications in cancer patients. Indeed, pre-
liminary studies suggest a potential of some of these
spliceoforms for tumor diagnosis and therapy.

The characterization of alternative spliceoform expres-
sion in cancer is quite incomplete. Splice variant expres-
sion should be investigated not only in cancer cell lines,
but especially also in original tumor tissues. Indeed,
splicing patterns arising in vitro often differ significantly
from those occurring in vivo, and cancer cell lines can
even totally lose the expression of a splice variant
under culture conditions (personal observations).31,55,57,64

Moreover, the expression of splice variants should be
quantified with respect to incidence and mRNA or protein
levels in a representative number of original tumors. A
splice variant is suitable for in vivo tumor targeting only if
abundantly present in a large proportion of cases. In
addition, if exhibiting dominant negative activity on its
wild-type counterpart, it is likely to be of biological signif-
icance only when expressed in significant amounts rela-
tive to the wild-type form, as exemplified by the secretin
receptor exon 3 deletion variant in gastrinomas. Further-
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more, it can be relevant to ascertain which cell type ex-
presses the splice variant in a tumor. Functional data on a
splice variant obtained in transfected cell lines will be inter-
preted differently if the variant is present in the actual tumor
cell or, as is possible with CCK2Ri4sv, in an intratumoral
stromal cell.57 Finally, splice variants have to be assessed
not only in tumors, but also in normal tissues of tumor origin
as well as in nonneoplastic diseases. A splice variant rep-
resents a suitable clinical target only if it is substantially
up-regulated in cancer and is expressed in low amounts in
normal tissues and nonneoplastic pathologies, as illus-
trated with PCR detection of CD44v4-10 in cytological
specimens,32,33 in vivo targeting of CD44v6 with toxic
antibodies,39,40 and the ELISA serum test for the secretin
receptor(�exon3,4).64

A thorough characterization of the expression of splice
variants in human normal and pathological tissues will
importantly contribute to the interpretation of functional
data obtained in cell lines, as well as allow estimations of
the usefulness of spliceoforms for clinical applications
and the choice of adequate tumor models for in vivo
targeting studies. Thus, we may eventually be able to
take clinical advantage of alternative splicing for early
diagnostics, prognostics, and therapy of cancer.
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