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Abstract

Molecular chaperones are essential elements of the protein quality control machinery that governs translocation and
folding of nascent polypeptides, refolding and degradation of misfolded proteins, and activation of a wide range of client
proteins. The prokaryotic heat-shock protein DnaK is the E. coli representative of the ubiquitous Hsp70 family, which
specializes in the binding of exposed hydrophobic regions in unfolded polypeptides. Accurate prediction of DnaK binding
sites in E. coli proteins is an essential prerequisite to understand the precise function of this chaperone and the properties of
its substrate proteins. In order to map DnaK binding sites in protein sequences, we have developed an algorithm that
combines sequence information from peptide binding experiments and structural parameters from homology modelling.
We show that this combination significantly outperforms either single approach. The final predictor had a Matthews
correlation coefficient (MCC) of 0.819 when assessed over the 144 tested peptide sequences to detect true positives and
true negatives. To test the robustness of the learning set, we have conducted a simulated cross-validation, where we omit
sequences from the learning sets and calculate the rate of repredicting them. This resulted in a surprisingly good MCC of
0.703. The algorithm was also able to perform equally well on a blind test set of binders and non-binders, of which there
was no prior knowledge in the learning sets. The algorithm is freely available at http://limbo.vib.be.
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Introduction
Hsp70 molecular chaperones are part of the quality control

machinery that functions to assist protein folding. Members of the

Hsp70 family have been implicated in refolding of misfolded

proteins, folding of newly synthesized polypeptide chains,

disassembly of larger aggregates and translocation of proteins in

organelles [1]. Hsp70 molecules also enable cell survival during

stress or heat-shock conditions that are characterized by an

increased concentration of (partially) denatured polypeptides.

These chaperones recognize and bind misfolded or aggregation-

prone peptide stretches through exposed hydrophobic regions

which are normally buried in the protein core. Such exposed

regions are typical for non-native proteins [2,3].

Hsp70 molecular chaperones consist of two distinct domains, an

N-terminal ATPase domain [4] and a C-terminal peptide binding

domain [5]. Hsp70 function is dependent on an ATP-regulated

cycle of substrate binding and release [6]. With ATP bound,

substrate affinity is low and Hsp70 resides in an open state, ready

to receive a suitable substrate. Once the substrate is bound, ATP is

hydrolyzed to ADP and Hsp70 undergoes a conformational

change to a high affinity state, subsequently trapping the substrate.

The co-chaperone Hsp40 (DnaJ in E. coli) binds Hsp70 and

stimulates the ATPase function, causing retention of the substrate.

Hsp40 also recognizes hydrophobic stretches and may serve as a

substrate delivery chaperone to Hsp70 [6,7]. Upon exchange of

ADP for ATP, Hsp70 returns to a low affinity state, enabling

binding of another substrate or providing another refolding cycle

for the same substrate if necessary.

The crystallisation of the archetypical and well characterized E

coli Hsp70 DnaK bound to a peptide reflects a heptameric

substrate binding motif requiring a hydrophobic core region and

preferably basic flanking residues that complement the overall

negatively charged DnaK surface [5]. This preference was later

confirmed in the seminal work of Bukau and co-workers by

binding studies of DnaK to cellulose-based peptide libraries and a

DnaK binding profile was derived [3].

Contrary to these previous studies on DnaK binding motif

profiling which utilised only sequence information, we comple-

ment the experimental binding information on a set of peptides

with structural data from homology modelling to obtain an

accurate predictor. Similar dual based approaches have already

been shown successful to predict other peptide signatures.

Prediction of binding of endogenous antigenic peptides to MHC

class I molecules was aided by adding structural information from

molecular models to the sequence data [8]. Branetti et al used

structural data from various SH3/ligand complexes and sequence

information from phage libraries to predict preferred ligand

binding to different SH3 domains [9]. Recently, an algorithm to

PLoS Computational Biology | www.ploscompbiol.org 1 August 2009 | Volume 5 | Issue 8 | e1000475



predict amylogenic regions in protein sequences profited greatly

from the combination of sequence based data and structural

information from amyloid fibers crystallographic studies (Maurer-

Stroh et al, unpublished data).

In this article we introduce such a dual based method for

profiling DnaK binding sequences. We combine sequence based

information from experimental binding assays with structural

information from molecular modelling via the FoldX force field

[10]. We present a DnaK binding prediction algorithm that, under

cross-validated conditions, performs strikingly accurate.

Results

Peptide set composition
We screened the ability of DnaK to bind cellulose-immobilised

peptides by detecting the bound DnaK via a specific monoclonal

antibody (see materials and methods), according the method

previously developed by Bukau and co-workers [3]. Figure 1 shows

the outcome of a typical experiment. The peptides were selected in

groups by different criteria. Group 1 peptides were selected using

the statistical thermodynamics algorithm TANGO for the

prediction of cross-beta protein aggregation [11], on the

assumption that the Hsp70 chaperone family binds to exposed

sequences that can nucleate protein aggregation. An initial crude

DnaK predictor was then constructed on the basis of these

peptides. The E coli proteome was then scanned with this predictor

to search for relatively short proteins harbouring more than one

predicted DnaK binding sites. Seven proteins that met these

requirements were randomly picked for a DnaK binding peptide

scan and were named Group 2. Such a peptide scan consists of

subsequent decapeptides overlapping by five residues, spanning

the whole protein sequence. Two additional putative DnaK

binding peptides from the known DnaK binding RNA-polymerase

sigma-32 factor [3,12] were included in the binding experiments

(Group 3). All analyzed peptide sequences are listed in Table S1 of

the Supplemental data.

A separate experiment was carried out where the peptide

membrane was drenched with only the monoclonal antibody but

not DnaK. A significant chemiluminescence signal would be the

result of antibody-peptide binding and thus a false positive. A total

of 16 peptides with a false positive signal higher than half of the

DnaK-peptide signal were removed from the sets for any further

analysis. The false positive signal of the rest of the peptides was

subtracted from their DnaK-interaction signal to correct for any

antibody-peptide binding that might occur.

To build the learning sets of sequences (see below), the peptides

were grouped as either binders or non-binders. Setting a single

cut-off value of relative binding would create a twilight zone of

peptides that show neither clear binding nor clear non-binding.

Therefore we set a high and a low cut-off value per membrane/

experiment. Peptides with a signal above the high cut-off are

considered as binders, peptides with a signal below the low cut-off

are considered as non-binders.

Out of a total of 172 peptides, there were 53 binders and 119

non-binders. A fraction of 15% from each set was randomly

selected to constitute an independent validation set. Sequences

from this validation set were never implemented in any training

sets of the predictor to allow an independent validation assessment.

This set consisted of 9 binders and 19 non-binders. The remaining

144 peptide sequences will be referred to as ‘benchmark’ sets. The

binders and non-binders groups are less then 90% redundant in

sequence identity.

Learning set selection
A sequence based profile or position specific scoring matrix

(PSSM) can only be derived from properly aligned learning sets of

sequences of the same length. As the aim of our DnaK predictor

was to evaluate stretches of heptapeptides for DnaK binding

affinity, we fragmented both positive (binders) and negative (non-

binders) benchmark sets into heptapeptides to create the final

learning sets. To generate the negative learning set we assumed

that for peptides longer than 7 residues, each heptapeptide

fragment of the peptide is a true non-binder. Therefore the final

negative learning set consisted of all possible heptapeptides from

the full length non-binding peptides.

Generating a heptapeptide learning set from the true binder

peptides is less trivial as one or more heptapeptide stretches must

be identified from each DnaK binding peptide that is assumed to

Figure 1. DnaK binding to immobilised peptides attached to a
cellulose-based membrane. A) Group 2 peptides Membrane A, B)
Group 2 peptides Membrane A bound to antibody only, indicating
potential false positives (see supplementary Table 1 for all groups of
peptide sequences and raw binding data).
doi:10.1371/journal.pcbi.1000475.g001

Author Summary

Molecular chaperones are essential elements of the
protein quality control machinery that governs transloca-
tion and folding of nascent polypeptides, refolding and
degradation of misfolded proteins, and activation of a
wide range of client proteins. This variety of functions
results from the existence of multiple chaperones with
different structures. Chaperones bind to exposed regions
of proteins to fulfil their function. The chaperone must
hereby recognise a certain signal sequence on the
substrate protein. The nature of the sequence that is
exposed will determine the types of chaperones that can
interact with it, and in the end will also determine the fate
of the substrate protein: refolding, translocation, degrada-
tion or activation. Knowledge of the binding sequence
determinants of molecular chaperones will shed more light
on the mechanism of how each chaperone contributes to
the cellular protein quality control system.

In this study we have made an algorithm which accurately
predicts binding sites for the well studied E. coli Hsp70
chaperone, DnaK, which is implicated in folding efficiency
and prevention of aggregation. The ability to detect and
design high-affinity DnaK binding sites enhances our
understanding of chaperone-substrate recognition and
opens great opportunities to enhance protein solubility
using protein-DnaK binding motif fusions.

Accurate DnaK Binding Prediction
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occupy the DnaK substrate binding groove. To this end, we used

the FoldX force-field [10] to identify such potential stretches

within each full peptide. Each peptide from the binders set was

threaded through the DnaK binding pocket using the crystal

structure of DnaK bound to a substrate peptide [5]. In this way,

the binding energy of each possible heptapeptide from every full

peptide was calculated with FoldX (see material and methods).

The best binding heptapeptide from each full peptide was selected

to fill the positive learning set of heptapeptides. To allow multiple

potential heptapeptide DnaK binders per full peptide, we also

added those heptapeptides with a binding energy within 0.5 kcal/

mol of the binding energy of the best binding heptapeptide.

The final negative and positive learning sets contained 443 and

56 heptapeptides, respectively.

Receiver operator characteristic (ROC) curves and
Matthews correlation coefficient as predictor
performance markers

The performance of the intermediate and final predictor PSSMs

was assessed by receiver operating characteristic (ROC) curves in which,

for a certain score threshold, the percentage of false positive

predictions is plotted against the percentage of true positive

predictions (see material and methods for detailed explanation of

data point generation). The performance of each PSSM was

measured against the aforementioned benchmark sets of known

true positive binders and true negative binders. The calculation of

ROC curves allows finding a predictor with high specificity, i.e. to

find a score threshold above which the amount of false positives

remains acceptable, while still finding a large amount of true

positives. In this study we aim at specificity between 90–100%, i.e.

0–10% false positives. The overall performance for a certain score

threshold is calculated via the Matthews correlation coefficient

(MCC) (see material and methods for formula). Hence, we will use

the highest MCC in the 90–100% specificity area as a predictor

performance marker.

Sequence based PSSM
Two separate PSSMs were constructed from the positive and

negative learning sets using the log odd based method, similar to a

recently developed amyloid prediction algorithm (Maurer-Stroh et

al, unpublished data). For each position in the heptapeptides, the

residue frequency was calculated by normalising the number of

residue occurrences by the total number of sequences in each

learning set. The logarithm of the ratio of the observed frequency

over the expected frequency was calculated and used as the PSSM

value for each position of the heptapeptide (see material and

methods for formula). The expected frequency is the occurrence of

residues in large databases, for which we used the Swiss-Prot

database frequencies [13]. The log odd score based PSSM has

advantages over the frequency based PSSM; it accounts for the

chance of randomly finding a specific residue and inherently puts

more weight on (DnaK) motif specific residues.

The non-binders PSSM now represents a sequence profile

which is unfavorable for DnaK binding, whereas the binders

PSSM reflects residue preferences for binding. To incorporate

both types of data, we generated the final sequence-based PSSM

by subtracting the scores of the non-binders PSSM from the scores

of the binders PSSM, hereby reaching a consensus profile from the

experimental data.

Structure based PSSM
To generate the structure based residue profile of DnaK

substrate binding, we used the high resolution crystal structure

published by Zhu et al as a template structure [5]. A heptapeptide

with the sequence NRLLLTG, identified in a phage-display

library screen [14], was co-crystallized and showed a substrate

recognition motif of DnaK for a minimum of 7 residues arranged

in an extended peptide conformation (Figure 2). To address the

contribution of every possible amino acid at each of the seven

positions in the heptapeptide, we used the FoldX force-field to

perform a position scan on the heptapeptide. Firstly, the

heptapeptide was mutated to poly-alanine. Next, each position

was sequentially mutated to all other 19 amino acids, while the

other 6 residues remained as alanine. The binding energy for each

residue at every position was calculated and subtracted from the

binding energy of alanine at the same position, resulting in the

corresponding DDG for each residue and position. The more

negative the DDG, the better the residue fits DnaK binding. To

convert each DDG into a PSSM score, we took the negative of

each DDG and filled the structure-based PSSM accordingly.

Peptide backbone variation could influence the quality of the

resulting PSSM. Therefore we assessed multiple backbone

conformations of the entire structure by generating a ROC curve

for PSSMs originating from different structures and calculating the

MCC in the high specificity area. Structures of DnaK in complex

with a substrate peptide were gathered from an NMR ensemble

(PDB code 1Q5L) [15] and from different crystal structures (PDB

codes 1DKX and 1DKY, of which the latter is a DnaK dimer with

monomers A and B) [5]. The MCC of structure 1DKX was the

highest as compared to 1DKY (A and B) and was above the MCCs

of three randomly picked NMR structures from the ensemble

1Q5L (Table 1 and Figure 3). Moreover, the overall performance

of the NMR structures was much lower than that of any X-ray

structure, as shown in the ROC curves. Therefore we continued

with the PSSM of the crystal structure 1DKX (See suppl. Table

S2b for PSSM).

Performance assessment and learning set optimization
The performance of the sequence based matrix and the

combination of the sequence- and structure-based matrices was

also assessed by means of ROC curves. To test the robustness of

the learning set, each predictor was subjected to a simulated cross-

validation and a cross-validation against the validation peptide

set.. During the simulated cross-validation we excluded sequences

and their close homologs sequentially from the learning sets and

calculated the rate of repredicting them. The MCC of the

sequence-based predictor was 0.792, but this dropped to 0.708

after a simulated cross-validation assessment. While these MCC

values are acceptable, the MCC of this predictor against the

validation set was only 0.106, indicating that the current learning

sets of peptides are not suitable to predict DnaK binding of

peptides of which there is no prior knowledge in the learning sets.

Next, we added the structure-based matrix scores to the sequence-

based matrix scores. Before cross-validation, the MCC had a value

of 0.756, reduced to 0.626 upon simulated cross-validation and

0,375 when the validation set was assessed. Although the not cross-

validated and simulated cross-validation MCC had a slight

performance setback (but still acceptable) upon combining

sequence and structure-based PSSMs, the validation set MCC

improved remarkably (Figure 4 for the ROC curves). It seems thus

that adding structural information broadens the generality of the

predictor.

Although the heptapeptides in the learning sets were selected on a

methodologically acceptable basis, inconsistencies in the learning set

selection could not be excluded. We recently developed a training

algorithm in which learning set sequences are sequentially removed

and the effect on the cross-validation is assessed (Maurer-Stroh et al,

Accurate DnaK Binding Prediction
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unpublished data). Only when the Matthews correlation coefficient

in the high specificity area improved, removal of the learning set

sequence was accepted. The algorithm removed 8 sequences from

the learning sets when the sequence-based PSSM was used to

evaluate the MCC. The final not cross-validated MCC became

0.919, whereas simulated cross-validation showed an MCC of 0.651

and the validation set had an MCC of 0.662, a huge improvement

compared to the starting MCC values for the sequence-based PSSM

(See suppl. Table S2a for PSSM). Next, we trained the algorithm

with the combined sequence- and structure-based PSSM. Here, 6 of

the 499 learning set sequences were removed. The not cross-

validated MCC reached 0.819 and upon cross-validation we were

able to obtain an MCC of 0.703. This optimized sequence and

structure based predictor had an MCC of 0.759 on the validation

set sequences (Figure 5 for the ROC curves and suppl. Table S2c for

PSSM)). The accuracy of the non cross-validated predictor was

92,4% in which 77,3% of the experimentally verified binding

peptides were correctly predicted (true positives) with only 1% false

Figure 3. ROC curves as calculated from the PSSMs of different
DnaK-substrate structures. The curves represent structures 1DKX
(closed circle), 1DKY A (open square), 1DKY B (closed triangle) and 3
NMR structures from the same ensemble (open triangle, open circle,
closed square).
doi:10.1371/journal.pcbi.1000475.g003

Table 1. Matthews correlation coefficient of a structure-
based prediction in the high specificity area (90–100%) for
different DnaK starting template structures.

Template structure MCC at high specificity

1Q5L_1 20.010

1Q5L_11 0.179

1Q5L_15 0.271

1DKY_A 0.512

1DKY_B 0.496

1DKX 0.588

doi:10.1371/journal.pcbi.1000475.t001

Figure 2. DnaK bound to a substrate peptide. Left: Substrate binding C-terminal domain of DnaK shown in cartoon style with bound
heptapeptide NRLLLTG in stick style. Right: Detailed view of substrate binding in the beta sheet sandwich of DnaK. Molecular graphics created with
YASARA (http://www.yasara.org) and Povray (http://www.povray.org).
doi:10.1371/journal.pcbi.1000475.g002

Accurate DnaK Binding Prediction
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positives (or 99% specificity). It is important to note that a higher

rate of true positive detections can be achieved (93,2% instead of

77,3%) but at the cost of a lower specificity (91%). These settings can

easily be customized in the online version of the predictor. When

ran over the validation set, the highest obtainable accuracy was 89%

with 66,7% true positives and no false positives. The performance

appears to be stable when analyzing benchmark sets of variable

redundancy (Suppl. Table S3, Suppl. Figure S1). The evolution of

the best MCC at high specificity for the various predictors is listed in

Table 2.

Residue preferences for DnaK binding
Our DnaK binding profile confirms previous observations of a

hydrophobic core with basic flanking residues [3], albeit not as

strict as once thought. We are able to define specific residue

preferences and disfavors of each of the seven peptide positions

(numbered N-terminally from 1 to 7). Positions 2, 3, 4, 5 and 6

score high for hydrophobic residues, with all but position 4 having

also preference for the aromatic resdues F and Y (W also at

position 6). The basic residue preference is most apparent at

position 7, where R is the most preferred residue, after the

aromatic F. Positions 2, 3 and 5 also allow basic residues

(preferably R), but this feature is not as pronounced as at position

7. Position 4 is the most restricted position, where only L, I, M and

to a lesser extent T and V are observed. Most other amino acids

are not allowed at this central position. Positions 2 and 3 are also

very restricted in their residue preference. The majority of amino

acids is not observed in binding sequences at these positions.

Hydrophobicity (mainly L), aromaticity (mainly F,Y) and positive

charge (R) seem to be the requirements here. The large aromatic

residue W is strongly preferred at the first and sixth position.

Overall there seems to be an underrepresentation of C and D. E is

strongly disfavoured at the second position, but shows a positive

score at the very first position. A graphical representation of the

profile is given in Figure 6 (See Suppl. Table S2c for PSSM).

Discussion

From a dataset of 144 non-redundant experimentally tested

peptide sequences, we were able to build a predictor for DnaK

binding protein motifs by adding structural information obtained

through molecular modelling. The final predictor performs well

under cross-validated conditions.

The success rate was dependent on two main variables. Firstly,

the training set was well optimised since the training set

optimisation algorithm rectifies to a certain extent anomalies from

Figure 4. ROC curves representing the performance of the
different predictors before learning set optimization. The graph
visualizes the not cross-validated sequence-based predictor (open
square), the not cross-validated sequence and structure-based predictor
(closed square), the cross-validated sequence-based predictor (open
circle), the cross-validated sequence and structure-based predictor
(closed circle), the sequence based predictor on the independent
validation set (open triangle) and the sequence and structure-based
predictor on the independent validation set (closed triangle).
doi:10.1371/journal.pcbi.1000475.g004

Figure 5. ROC curves representing the performance of the
different predictors generated after running the learning set
training algorithm. The graph visualizes the not cross-validated
sequence-based predictor (open square), the not cross-validated
sequence and structure-based predictor (closed square), the cross-
validated sequence-based predictor (open circle), the cross-validated
sequence and structure-based predictor (closed circle), the sequence
based predictor on the independent validation set (open triangle) and
the sequence and structure-based predictor on the independent
validation set (closed triangle).
doi:10.1371/journal.pcbi.1000475.g005

Table 2. Best Matthews correlation coefficients at high
specificity (.90%) of the different predictors in the building
and final stages of development.

Benchmark
set

Simulated
cross-validation

Validation
set

Not optimized PSSMs

Sequence 0.792 0.708 0.106

Structure 0.588 - 0.593

Sequence+Structure 0.756 0.626 0.375

Optimized PSSMs

Sequence 0.919 0.651 0.662

Sequence+Structure 0.819 0.703 0.759

doi:10.1371/journal.pcbi.1000475.t002

Accurate DnaK Binding Prediction
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Figure 6. Graphical representation of the final DnaK heptameric binding profile over all aminoacids and all residue positions. The
axes crossing point at score zero was chosen for convenience. Position 1 and 7 respectively represent the N-and and C-terminal end of the
heptameric motif.
doi:10.1371/journal.pcbi.1000475.g006

Accurate DnaK Binding Prediction
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in silico analysis. Our initial positive learning set was, in part,

generated from in silico threading; from each full peptide the

heptapeptide with the best binding energy was selected and also

those heptapeptides with a binding energy within 0.5 kcal/mol of

the heptapeptide with the best binding energy. The latter step is

prone to some misclassification, since we allow multiple DnaK

binding sites per peptide and this might not always be the case in

vitro. However, our learning set training algorithm was able to

remove 6 heptapeptides that appeared ‘noisy’ to allow acceptable

cross-validated prediction of the benchmark peptide set. The

second and most profound variable is the initial perspective of this

study, that combined sequence and structural data will comple-

ment each other to detect protein-protein interaction motifs. The

ROC curves in Figure 5 illustrate the power of merging both

approaches: the overall performance of the dual based predictor

exceeds the individual sequence- and structure-based predictors

(see also Table 2). Each approach must therefore, to a certain

extent, contribute information that the other lacks. The sequence

learning set or alignment of both binders and non-binders must

inherently provide information on the ability of seven consecutive

residues to adopt the extended conformation, since this represents

the DnaK binding mode of a substrate peptide. The structural

approach serves to further refine the sequence information by

detecting direct peptide binding preferences based on amino acid

sidechain volume, charge, hydrophobicity, etc. The major

improvement in the cross-validation upon adding the structural

information could also be explained as the ability of the structural

data to cancel out some positional residue bias or any missing

residue information inside the sequence data set.

It should be noted however, that the structural template was

chosen according to its stand-alone MCC and ROC performance

with the experimental benchmark sequence set (Figure 3 and

Table 1). Structure profiles based on NMR structures were unable

to come close to the performance obtained with the X-ray structure.

Moreover, the fact that out of three crystal structures the one with

the highest resolution performed best should stress the use of high

quality crystal structures to obtain a reliable structure-based profile.

Our dual approach DnaK profile confirmed in part the

previously observed residue preferences for basic residues flanking

a hydrophobic core region [3]. We extended this to show that

positions 1 and 3 do not totally disfavour the negatively charged

glutamate. Aspartate on the other hand is strongly rejected in all

positions. The central position 4 prefers the aliphatic hydrophobic

amino acids leucine, isoleucine and methionine. It is the most

restricted position, which is not remarkable since the residue must

fit in a well defined hydrophobic pocket of DnaK [5]. Aromatic

residues, although not always evenly distributed, are very

abundant at all sites, except at the central position which is

neutral for phenylalanine and the last position which disfavors

tryptophan. The second and third positions show a clear spectrum

of aliphatic, aromatic and basic residues. The absolute last position

prefers arginine, and phenylalanine (Figure 6). Overall, phenylal-

anine is the only residue not to have a clear disfavored site.

We have compared our method with a previously published

predicting algorithm [3] (see supplementary Table S2d for PSSM).

To test the generality and possible overprediction of sequences

that are not known DnaK binders, we added 200 randomly

selected 15-mer peptides from real proteins to the negative

benchmark set. Additionally, the peptides were selected with the

prerequisite to have less than 50% sequence identity to the

learning set sequences. In this task, both methods perform

comparably well at relevant levels of high specificity of 90.3%

(Figure 7A). As can be seen in the ROC curve for this specificity,

our method reaches a sensitivity of 68.2% where the previously

published algorithm has a sensitivity of 54.5%. For the same

amount of false positives, we predict thus more true positives

compared to the algorithm of Rüdiger et al. in this experiment. We

also compared the performance of both predictors on the

validation set of peptide sequences (Figure 7B) and conclude that

our method performs slightly better in terms of true positive

predictions (sensitivity). Of note, the algorithm of Rüdiger et al. was

modified from a 13-mer scoring matrix to a 7-mer scoring matrix

to score heptapeptides (see supplementary Table S2d for PSSM).

In summary, we have shown that the combination of sequence

and structural data can be combined to generate a validated

Figure 7. ROC performance comparison with a previously
published algorithm. A: Comparison of our DnaK predictor (closed
square) with the previously published predicting algorithm from
Rüdiger et al [3] (open square) for the extended benchmark peptide
set. The data point above 90% specificity (90.7%) with the best MCC in
both predictors is shown as a dashed line. B: ROC curves comparison
between our predictor (closed square) and the algorithm of Rüdiger et
al (open square) for the validation set of peptides.
doi:10.1371/journal.pcbi.1000475.g007

Accurate DnaK Binding Prediction
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DnaK-substrate binding predictor using experimentally tested

peptide sequences. Given a well sampled sequence dataset and one

or more high quality crystal structures, the same methodology can

be applied to generate other protein-protein interaction predictors.

The algorithm is freely accessible at http://limbo.vib.be

Materials and Methods

In vitro peptide binding
For DnaK-peptide binding determination peptides where

chemically sensitized on cellulose beta-alanine membranes (Pep-

Spot membranes, JPT Peptide Technologies, GmbH). The

membranes were washed in 100% MeOH for ten minutes, and

three times for twenty minutes in 20 mM Tris buffer pH 7.5 plus

150 mM NaCl (TBS buffer). The membranes were blocked in

blocking buffer (BSA 2% w/v in TBS buffer) for one hour. The

blocked membranes were incubated in 100 nM DnaK (Axxora) in

31 mM Tris pH 7.5, 170 mM NaCl, 6.4 mM KCl, 5% Sucrose,

0.05% Tween-20 for one hour. Subsequently membranes were

washed three times for ten minutes in TBS buffer and incubated

for one hour with mouse monoclonal anti-DnaK antibody (clone

8E2/2, Stressgen) diluted 1:2000 in blocking buffer plus 0.05% v/

v Tween20. Membranes were washed three times for ten minutes

with TBS buffer plus 0.05% v/v Tween20 and incubated for

30 minutes with anti-mouse HRP-conjugated antibody (Promega)

diluted 1:10000 in blocking buffer plus 0.05% v/v Tween20. The

membranes were finally washed two times for ten minutes in TBS

buffer plus 0.05% Tween20, one time for ten minutes in TBS

buffer and subjected to chemiluminescent reaction using Super-

Signal West Dura substrate (Pierce), detected by CCD camera

connected to the ChemiDoc XRS image acquire and process

system (BioRad).

ROC curve data point generation
All benchmark peptides were scored with every intermediate

and final scoring matrix as described in the results section of this

article. The range between the minimum and maximum score was

calculated and divided in 30 equally sized bins. Each bin threshold

was compared to the score of the individual peptides. When the

peptide score was above a certain threshold, we consider the

peptide as a predicted binder. If the peptide was indeed an

experimentally verified DnaK binder, the number of predicted

true positives was increased by one. When the predicted binder

was shown to be an experimentally verified non-binder, the

number of predicted false positives was increased by one for that

threshold. Each tuple of false positives and true positives for such a

threshold becomes one data point in the ROC curve.

Matthews correlation coefficient
The Matthews correlation coefficient (MCC) is a measure of

quality of binary classifications and is given by the formula:

MCC~
tptn{fpfnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tpzfp

� �
tpzfn

� �
tnzfp

� �
tnzfnð Þ

q

Where tp = true positives, tn = true negatives, fp = false positives, fn = false

negatives. An MCC value of 1 is for a perfect prediction, 0 for a

completely random assignment and 21 for the worst possible

prediction.

Position specific scoring matrix (PSSM) calculation
For both the alignments of the binding and non-binding

heptapeptides the number of observed residue occurrences nobs at

each position was counted. Next, this value was normalised by the

number of aligned sequences in each learning set, which resulted

in the positional residue frequency fobs:

fobs~
nobs

Nseq

The final matrix score S was calculated by taking the logarithm of

the ratio of the observed frequency fobs over the experimental

(database) residue frequency fex:

S~log
fobs

fex

� �

Some residues do not occur at all at certain positions in the

heptapeptide alignment which leads to the logarithm of zero. To

circumvent this issue, we implemented so-called pseudocounts:

whenever a zero count occurred, it was substituted by 0.001.

In silico binding energy calculations using FoldX
We employed FoldX version 2.7 to model mutants of the

peptide bound to DnaK in the crystal structure (PDB code:

1DKX). To this end, the peptide was first reduced to poly-Alanine.

Then, all possible natural amino acids were systematically

introduced at each position, while keeping the remainder of the

peptide as alanines. Energy estimates were calculated with FoldX

as the DG difference (DDG) to the reference poly-Alanine. This

method reduces the sequence space to be covered by the

modelling dramatically, but ignores any dependencies between

the positions. Given the extended conformation of the peptide

bound to DnaK, this assumption seems reasonable.

Supporting Information

Table S1 Full list of peptides tested for DnaK binding by means

of cellulose-based scans

Found at: doi:10.1371/journal.pcbi.1000475.s001 (0.36 MB

DOC)

Table S2 The various position specific scoring matrices

generated and used in the manuscript

Found at: doi:10.1371/journal.pcbi.1000475.s002 (0.14 MB

DOC)

Table S3 Performance analysis of the predictor on benchmark

sets with varying degrees of redundancy

Found at: doi:10.1371/journal.pcbi.1000475.s003 (0.04 MB

DOC)

Figure S1 ROC curves to evaluate the performance of the

algorithm on benchmark sets with varying degree of redundancy.

Found at: doi:10.1371/journal.pcbi.1000475.s004 (0.04 MB

DOC)
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